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ABSTRACT
Background. Spatial genetic structure (SGS) analysis is a powerful approach to
quantifying gene flow between trees, thus clarifying the functional connectivity of
trees at population and landscape scales. The findings of SGS analysis may be useful
for conservation and management of natural populations and plantations. Pinus
cembroides is a widely distributed tree species, covering an area of about 2.5 million
hectares in Mexico. The aim of this study was to examine five natural seed stands
of P. cembroides in the Sierra Madre Occidental to determine the SGS at population
(within the seed stand) and landscape (among seed stands) levels in order to establish
guidelines for the conservation and management of the species. We hypothesized that
P. cembroides, in which the seeds are dispersed by birds and mammals, creates weaker
SGS than species with wind-dispersed seeds.
Methods. DNA fingerprinting was performed using the amplified fragment length
polymorphism (AFLP) technique. In order to estimate the SGS at population and
landscape levels, we measured the geographical (spatial) distance as the Euclidean
distance.We also estimated the genetic distances between individuals using the pairwise
kinship coefficient.
Results. The results showed non-significant autocorrelation in four out of five seed
stands studied (i.e., a mainly random distribution in the space of the genetic variants
of P. cembroides at population level).
Discussion. SGS was detected at the landscape scale, supporting the theory of isolation
by distance as a consequence of restricted pollen and seed dispersal. However, the SGS
may also have been generated by our sampling strategy. We recommended establishing
a close network of seed stands of P. cembroides to prevent greater loss of local genetic
variants and alteration of SGS. We recommend seed stands of P. cembroides of a
minimum width of 225 m.
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INTRODUCTION
Gene flow mediated by exchange of pollen and seed within and among tree populations
is necessary to maintain the long-term viability of forest species. Gene flow can stabilize
local genetic variation and spread potentially adaptive genes (Van Dyck & Baguette, 2005).
However, spatially limited gene flow can generate spatial genetic structure (SGS), i.e., the
non-random geographical distribution of genetic variation caused by isolation by distance
gene dispersal (Wright, 1938). Tree species with wind-dispersed seeds and that occur at low
densities tend to generate stronger SGS in their seedlings than species with animal-dispersed
seeds or that occur at high densities (Hamrick, Murawski & Nason, 1993).Moreover, limited
seed dispersal that leads to neighbors being closely related also impacts demographic and
reproductive processes (Hamrick, Murawski & Nason, 1993).

SGS analysis is a powerful approach to quantifying gene flow between trees (Segelbacher
et al., 2010), thus clarifying the functional connectivity of trees at population and landscape
scale (Van Dyck & Baguette, 2005). SGS can also be affected by mating systems, historical
events and ecological and other evolutionary forces (such as selection and genetic drift),
and it is therefore a crucial aspect of plant evolutionary processes and population dynamics
(Epperson, 2003; Rousset, 2004; Vekemans & Hardy, 2004). The findings of SGS analysis
may be useful for conservation and management of natural populations and plantations
(McCue, Buckler & Holtsford, 1996).

The pattern of SGS revealed by autocorrelation analysis is greatly affected by the distance
class width, sampling intensity and the total area sampled (Epperson & Li, 1996; Peakall,
Ruibal & Lindenmayer, 2003; Double et al., 2005). Strong autocorrelation may occur when
the spatial scale of sampling is smaller than the scale of the SGS (Cavers et al., 2005). In
order to reduce bias due to the distribution, sampling along a fine mesh of transects in
multiple dimensions and stratified sampling is recommended, thus combining high-density
local sampling with a broader sampling coverage (Vekemans & Hardy, 2004). Overall, the
line-transect scheme seems to perform slightly better than the simple-random scheme in
parameter estimation and to be more efficient for encompassing broad spatial scales (Zeng
et al., 2010).

SGS is also often associated with substantial stochastic variation due to genetic drift and
a limited number of polymorphic genetic markers. Thus, gene markers such as allozymes,
which provide few loci, are not adequate (Slatkin & Arter, 1991). Highly polymorphic
markers (e.g., microsatellites) or markers facilitating many loci (e.g., amplified fragment
length polymorphism [AFLP] markers) are therefore preferred in SGS analysis (Vekemans
& Hardy, 2004). The advantage of using AFLP markers is that they are produced randomly
throughout the whole genome and are highly reproducible and more sensitive than other
markers for characterizing SGS (e.g., Leinemann et al., 2013; Leinemann et al., 2014).
Moreover, AFLP markers are more precise (lower standard deviation) when the inbreeding
coefficient is estimated independently (Mueller & Wolfenbarger, 1999; Hardy, 2003).

Pinus cembroides Zucc. (1832) is one of eleven to fourteen taxa known as pinyon pines
and belonging to the subsection Cembroides, section Parrya, subgenus Ducampopinus
(Gernandt, Liston & Piñero, 2003). The monoecious P. cembroides is widely distributed,
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Table 1 Location of the five seed stands in the Sierra Madre Occidental in the states of Chihuahua and Durango, Mexico.

Code Forest stand N MD
(m)

Stand
size (ha)

Forest property,
Municipality

Latitude
(N)

Longitude
(W)

Elevation
(m)

PC-MA Mesa Azul 34 77 14.7 Bilaguchi, Guerrero 28◦19′5.04′′ 107◦39′43.57′′ 2,218
PC-BQ Baquiriachi 34 81 25.7 Baquiriachi, Balleza 26◦57′0.20′′ 106◦38′43.41′′ 2,369
PC-MM Mesa de la Majada 35 72 28.9 Ciénega Prieta, Guanaceví 26◦15′8.60′′ 106◦4′12.41′′ 2,631
PC-CT Cordón del Toro 35 54 8.6 El Toro y Anexos, Guanaceví 26◦19′20.27′′ 105◦5′3.14′′ 2,499
PC-AD Los Adobe 35 66 8.7 Garame de Abajo,

Santiago Papasquiaro
24◦58′22.79′′ 105◦32′41.20′′ 2,331

Notes.
N, sample size; MD, mean distance to the next tree.
Data fromWehenkel et al. (2015).

covering an area of 2.5 million hectares in Mexico (CONAFOR, 2009). The largest
populations are found in the states of Chihuahua, Coahuila, Durango, Nuevo León,
Hidalgo and Zacatecas. Individual specimens of P. cembroides often grow in mildly acidic
soils (mean pH 5.3, with H + representing on average 25% of the total exchangeable
cations), under a warm xerophytic temperate climate (Wehenkel et al., 2015), almost
always occupying transition zones between desert vegetation in arid climates and the more
humid mountain forests (Rzedowski, 1978). The International Union for Conservation
of Nature (IUCN) Red List guidelines indicate ‘‘minor concern’’ regarding the status of
P. cembroides (IUCN, 2015). Pinus cembroides, which is also well-known for producing
nutritious, cholesterol-free nuts (López-Mata, 2001; Luna-cavazos, Romero-Manzanares
& García-Moya, 2008; Amr & Abeer, 2011), is suitable for reforesting arid, semi-arid and
eroded areas.

Although phylogenetic analysis has been conducted (e.g., Flores-Rentería et al., 2013),
to the best of our knowledge, only one study has investigated the SGS within and among
P. cembroides stands (three) in the state of Durango, Mexico (Hernández-Velasco et al.,
2017). These authors did not find any evidence of significant SGS at the local scale,
suggesting that the genetic variants of these species are almost always randomly distributed
in space, probably due to high wind pollination and seed dispersal by animals (Vekemans
& Hardy, 2004). The significant level of SGS observed at a larger scale, however, may be
the result of isolation by distance gene dispersal between populations.

The aim of this study was to examine five P. cembroides seed stands in the Sierra Madre
Occidental, to determine the SGS at population (within each seed stand) and landscape
(among seed stands) levels (Table 1) in order to establish guidelines for the conservation
andmanagement of this species. We hypothesized that P. cembroides, in which the seeds are
usually dispersed by birds and mammals (Hubbard & McPherson, 1997; Richardson, 2000),
creates weaker SGS than pine species with wind-dispersed seeds (Hamrick, Murawski &
Nason, 1993).
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MATERIALS & METHODS
Study area
The following five P. cembroides seed stands were sampled: Mesa Azul (PC-MA) and
Baquiriachi (PC-BQ) in the state of Chihuahua, and Mesa de la Majada (PC-MM),
Los Adobe (PC-AD) and Cordón del Toro (PC-CT) in the state of Durango (Table 1;
Fig. 1). The seed stands were established according to the current Mexican norm for forest
germplasm (NMX-AA-SC-169-2016; Hernández-Velasco et al., 2017). The five seed stands
were growing on slightly acidic soil. The elevation ranges between 2,218 and 2,631 m
above sea level in the study area, with annual rainfall between 498 and 514 mm. The mean
temperature varies between about 11.0 and 13.1 ◦C (Table 2). The size of the seed stands
ranged from 4.2 to 13.8 hectares. The mean distance to the next sampled tree varies from 54
to 81 m, depending on the stand considered (Table 1). Needles were collected from 34–35
randomly chosen trees in each stand. These sample trees, which were adult, dominant and
occurred in the older age group, were a part of 130 previously selected adult phenotypes
(trees) in each stand and were superior in terms of dimension, and pest-resistance, relative
to the average tree in the same seed stands (for information about selection criteria of plus
trees, see NMX-AA-SC-169-2016 and (Hernández-Velasco et al., 2017).

Extraction of DNA and genetic markers
DNA fingerprinting was performed using the amplified fragment length polymorphism
(AFLP) technique, according to the protocol described by Vos et al. (1995) and modified
by Ávila Flores et al. (2016). The DNAwas extracted from the needles using the commercial
DNeasy 96 plant kit (QIAGEN) and digested simultaneously with the restriction enzymes
EcoRI and MseI. The primer combination E01/M03 (EcoRI-A/MseI-G) was used in the
pre-AFLP amplification and the primer pair E35 (fluorescently-labelled with FAM) and
M63+C (MseI-GAAC) in the selective amplification step.

All PCR reactions were conducted in a Peltier thermocycler (PTC−200 Version 4.0,
MJ Research). The amplified restriction products were electrophoretically resolved in a
genetic analyzer (ABI 3100) together with the GeneScan500 ROX (fluorescent dye ROX),
and the size of the AFLP fragments was determined with GeneScan 3.7.1 and Genotyper
3.7. (Applied Biosystems). The AFLP bands were classified as present (1) or absent (0) in
each individual, which was thus considered dominant or recessive (Simpson, 1997), i.e.,
detection of a band indicated the dominant genetic variant (the ‘‘plus phenotype’’) (Krauss,
2000; Bonin et al., 2004).

Analysis of the spatial structure of AFLP data
In order to estimate the SGS at population and landscape levels, the geographical (spatial)
distance was measured as the Euclidean distance and the genetic distance was estimated
from the pairwise kinship coefficient (Fij) (Hardy, 2003). Fij was measured using SPAGeDi
v1.4 (Vekemans & Hardy, 2004).

For statistical reasons, we defined the width of spatial distance classes as including a
minimum of 30 pairwise comparisons per distance class (Doligez & Joly, 1997). Thus, the
smallest distance class width should not be less than 125m at the local scale (i.e., within each
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Figure 1 Location of the five Pinus cembroides seed stands under study. Mesa Azul (PC-MA): black
diamond; Baquiriachi (PC-BQ): grey square; Mesa de la Majada (PC-MM): small white diamond; Los
Adobe (PC-AD): grey circle and Cordón del Toro (PC-CT): white triangle. Source: Available in the AR-
CGIS software (at Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community). Maps were created us-
ing ArcGIS R© software by Esri. Copyright c©Esri. All rights reserved.

Full-size DOI: 10.7717/peerj.8002/fig-1

of the five seed stands). The SGS statistics were therefore calculated for 125m distance-class
structures. However, as this autocorrelation technique are not capable of forecasting an
appropriate analytical scale (Peakall, Ruibal & Lindenmayer, 2003; Double et al., 2005), we
also calculated the SGS for distance class widths between 25 and 700 m (in 25 m steps from
25 to 300 m, in 50 m steps from 300 to 700 m), although the data did not comply with the
condition of a minimum of 30 pairwise comparisons for the 25, 50, 75 and 100 m distance
class widths.
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Table 2 Some climate and soil conditions of the five Pinus cembroides seed stands studied in the Sierra
Madre Occidental in the states of Chihuahua and Durango, Mexico (locations listed in Table 1).

Code Mat
(◦C)

Map
(mm)

Mmin
(◦C)

Mmax
(◦C)

Gsp
(mm)

pH

PC-MA 11.8 689 −5.1 28.2 510 5.54
PC-BQ 12.3 627 −4.3 27.3 498 5.71
PC-CT 11.8 635 −4.4 26.2 514 6.05
PC-MM 11.0 644 −5.0 25.3 516 6.05
PC-AD 13.1 661 −2.4 27.9 518 6.05

Notes.
pH, Degree of acidity; Mat, Mean annual temperature; Map, Mean annual precipitation; Mmin, Mean minimum tempera-
ture in the coldest month; Mmax, Mean maximum temperature in the warmest month and; Gsp, Growing season precipita-
tion, April to September.

At the large or landscape scale (among stands), the SGS was computed for distance
class widths of six, seven, eight, 86 km and 168 km for a minimum of 2,900 tree pairs
per distance class. For each spatial distance class, the 99% confidence interval (CI) was
computed using 999 permutations (with SPAGeDi) (Manly, 2007). The probability value
(P) was then computed for each spatial distance class and coefficient. After Bonferroni
correction (Hochberg, 1988), the corrected critical p value (significance level α∗= 0.0005)
was calculated by dividing the original critical p value (0.05) by the number of comparisons
or hypotheses (m = 100). Thus, the Bonferroni critical value of P was 1- α∗= 0.9995 in
this study (Hernández-Velasco et al., 2017).

The pairwise kinship coefficient (Fij) for dominant markers in diploids was computed
and averaged over a set of distance classes to detect the SGS. The Fij coefficient, computed
using SPAGeDi ver. 1.4, measures the occurrence of identical alleles at a given locus in a
pair of individuals (Hardy, 2003), i.e., it estimates the ratio of differences of probabilities of
identity (Rousset, 2002). If individuals are more closely related than individuals randomly
chosen from the ‘‘reference’’ population, the relative kinship coefficients will have positive
values. Consequently, negative values of the Fij indicate that i and j are less closely related
on average than random individuals (Hardy, 2003).

PCoA analysis
The binary AFLP data matrix was also analyzed by Principal Coordinate Analysis (PCoA),
and Nei’s Genetic Distance (Nei, 1972; Nei, 1978), which was determined using GenAlEx
v6.503 (Peakall and Smouse, 2012), to compute the genetic separation between the seed
stands and trees. The first two coordinates were used to graphically display genetic
differentiation of populations and individuals.

Detecting AFLP loci under natural selection (outlier AFLP loci)
In the present study, the SGS of AFLP markers under natural selection may be an indicator
of environmentally adapted provenances (Epperson, 1992; Stingemore & Krauss, 2013).
Candidate AFLP loci under natural selection were determined using differences in allele
frequencies between populations, and the multinomial Dirichlet model and the Reversible
Jump Markov Chain Monte Carlo algorithm were implemented in BayeScan v2.1 (Foll
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& Gaggiotti, 2008). AFLP markers were used as purely dominant binary data, but the
inbreeding coefficients (FIS), used to estimate allele frequencies, were not able to be
estimated from binary data. Therefore, BayeScan allowed FIS to move freely within its prior
range in order to still incorporate the uncertainty associated with this parameter.

A negative locus-specific component (A) value with posterior probability >0.99 indicates
possible balancing or purifying selection, and positive values of the A and posterior
probability >0.99 indicate diversifying selection (false discovery rates <0.01) (Foll &
Gaggiotti, 2008; Foll et al., 2010). We used the parameter values of the chain and the model
reported by Friedrich et al. (2018): output number of iterations (5,000), thinning interval
size (10), pilot runs (20), length of pilot runs (5,000), additional burn in (50,000), prior
odds for the neutral model (10), a lower boundary for uniform prior in the inbreeding
coefficient FIS (0) and a higher boundary for uniform prior in FIS (1).

Clark and Evans aggregation index
The aggregation index (CE) proposed by Clark & Evans (1954) was calculated using Spatial
Genetic Software v1.0. The values obtained indicate the spatial structure, where CE <1
represents an aggregated distribution, CE = 1 indicates a random structure and CE >1
indicates a regular distribution. The statistical significance of CE was calculated using
permutation tests (Degen, 2000).

RESULTS
The combination of the AFLP primers resulted in 281 polymorphic bands of 75 - 450 bp
across the 173 individual Pinus cembroides trees analyzed. No candidate AFLP loci under
differential selection (putative adaptive AFLP) were detected (posterior probability >0.99
and false discovery rates <0.01).

At the fine scale (within each of the five seed stands), significant autocorrelation
(P >0.9995, after Bonferroni correction) was only observed in PC-MA. In particular,
significant autocorrelation was only detected in the first five distance class widths (i.e.,
0–100 m, 0- 125 m, 0–150 m, 0–175 m and 0–200 m of the class sizes 100, 125, 150, 175 and
200 m) and the distance classes 50–75 m and 50–100 m (Table 3). Fij was weakly positive
in the first distance class in five distance class widths (0–75 m to 0–175 m) in PC-MA and
in a few other distance classes in PC-CT and PC-AD. However, this index became more
negative in larger distance class widths (>0–125 m in PC-AD and >0–200 m in PC-MA)
(Tables 3 and 4). The values of the aggregation index of Clark and Evans (CE) indicated
that the spatial distribution of the seed trees under study was only clumped in PC-MA and
PC-AD (Tables 3 and 4).

At the large scale (among seed stands), the individuals in the distance classes of 0–6 km,
0–7 km, 0–8 km and 0–86 kmwere geneticallymore closely related than random individuals
from the ‘‘reference group’’ calculated by Fij. On the other hand, the individuals in other
distance classes (0–168 km, 86–172 km, 172–258 km and 258–344 km) were found to be
genetically significantly different, according to the Fij values (Table 5).

At the large or landscape level (among seed stands, 6 to 168 km distances), the Principal
Coordinate Analysis (PCoA - Coord. 1 vs. 2) clearly separated the five stands into four
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Table 3 Analysis of the genetic spatial structure within the Pinus cembroides seed stands PC-MA, PC- BQ and PC-MM, considering the first
class in distance class widths of 25–700 m, with 999 permutations. The analysis was conducted using SPAGeDi v1.4 (Vekemans & Hardy, 2004).

F ij vs. spatial distance
Distance(m) PC-MA PC-BQ PC-MM

CE = 0.61*** CE = 1.28 ** CE = 1.05 ns
P(F ij) < CI F ij P(F ij) < CI F ij P(F ij) < CI F ij

0–25# 0.277 −0.085 0.523 −0.029 0.473 −0.031
0–50## 0.262 −0.061 0.514 −0.029 0.482 −0.031
0–75 0.999 0.041 0.393 −0.037 0.601 −0.025
0–100 0.9999+ 0.030 0.553 −0.027 0.608 −0.026
0–125 0.9999+ 0.020 0.244 −0.038 0.921 −0.016
0–150 0.9999+ 0.009 0.195 −0.038 0.867 −0.019
0–175 0.9999+ 0.006 0.276 −0.034 0.912 −0.020
0–200 0.9999+ −0.001 0.498 −0.030 0.838 −0.023
0–225 0.993 −0.007 0.520 −0.031 0.527 −0.029
0–250 0.994 −0.011 0.755 −0.027 0.549 −0.029
0–275 0.984 −0.015 0.448 −0.031 0.635 −0.028
0–300 0.973 −0.018 0.532 −0.030 0.652 −0.028
0–350 0.969 −0.019 0.695 −0.029 0.344 −0.031
0–400 0.986 −0.018 0.758 −0.029 0.327 −0.031
0–450 0.955 −0.021 0.598 −0.030 0.360 −0.030
0–500 0.938 −0.023 0.810 −0.029 0.494 −0.029
0–550 0.910 −0.024 0.707 −0.030 0.512 −0.029
0–600 0.897 −0.026 0.650 −0.030 0.194 −0.031
0–650 0.876 −0.026 0.266 −0.031 0.218 −0.030
0–700 0.823 −0.027 0.314 −0.031 0.282 −0.030

Notes.
Fij , coefficient of kinship; P , probability of autocorrelation at stand level; CI , confidence interval; +, significant results after Bonferroni correction; #, significant autocorrelation
detected in the 50–75 m distance class in the PC-MA stand; ##, significant autocorrelation detected in the 50–100 m distance class in the PC-MA stand; CE , index of aggrega-
tion.
Asterisks indicate significant differences: ** at the 99.0% and *** at 99.9% level ns, not significant.

clusters (Fig. 2): PC-CT along with PC-MM located in Durango, PC-MA (Chihuahua),
PC-AD (Durango) and PC-BQ (Chihuahua). However, the PCoA with Coordinate 1 vs. 3
revealed only three groups, and the three seed stands from Durango were grouped together
(Fig. 3). The first two coordinates explained 69.7% of the variation in AFLP, and the first
three coordinates explained 93.4% of the corresponding variation.

In a PCoA at the individual level, the first two coordinates explained a much lower
percentage of the variation in AFLP (4.4 and 3.1%). Together the first three coordinates
explained 10.1% of the variation. By plotting the first two coordinates, the 173 individual
PC trees were not generally divided in separate groups. PC-MM had the largest mean TD,
PC-BQ had the largest mean GD and PC-MA had the smallest mean GD (Fig. 4).

DISCUSSION
The results showed non-significant autocorrelation in 80% (four out of five) of the natural
seed stands studied (Tables 3 and 4), i.e., a mainly random distribution in the space
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Table 4 Analysis of the genetic spatial structure within the Pinus cembroides seed stands PC-CT and
PC-AD, considering the first class in distance class widths from 25–700 m, with 999 permutations and a
confidence interval of 99%. The analysis was conducted using SPAGeDi v1.4 (Vekemans & Hardy, 2004).

F ij vs. spatial distance
Distance PC-CT PC-AD

CE = 1.05 ns CE = 0.31***
P(F ij) < CI F ij P(F ij) < CI F ij

0–25 0.903 0.072 0.964 0.010
0–50 0.981 0.053 0.953 0.010
0–75 0.464 −0.031 0.966 −0.003
0–100 0.127 −0.041 0.999 0.005
0–125 0.394 −0.031 0.996 −0.004
0–150 0.329 −0.032 0.983 −0.012
0–175 0.345 −0.032 0.997 −0.011
0–200 0.260 −0.033 0.997 −0.013
0–225 0.157 −0.034 0.998 −0.013
0–250 0.357 −0.031 0.995 −0.016
0–275 0.308 −0.031 0.997 −0.016
0–300 0.090 −0.033 0.997 −0.016
0–350 0.065 −0.034 0.995 −0.017
0–400 0.347 −0.030 0.999 −0.016
0–450 0.603 −0.029 0.996 −0.036
0–500 0.734 −0.028 0.998 −0.019
0–550 0.805 −0.028 0.998 −0.019
0–600 0.829 −0.028 0.999 −0.020
0–650 0.943 −0.028 0.998 −0.022
0–700 0.868 −0.028 0.998 −0.023

Notes.
F ij , coefficient of kinship; P , probability of autocorrelation at stand level; CI , confidence interval; CE , index of aggregation.
Asterisks indicate significant differences: *** at 99.9% level; ns, not significant.

Table 5 Analysis of the genetic spatial structure among the Pinus cembroides seed stands, considering
a distance class size of 86 km, 999 permutations and a confidence interval of 99%. The analysis was con-
ducted using SPAGeDi v1.4 (Vekemans & Hardy, 2004).

F ij vs. spatial distance (SPAGeDi v1.4)
Fij P(Fij)<CI P(Fij)>CI MT

−0.000003 0.9999 (0–86)+ 0.9999 (86–172)+

0.9999 (172–258)+

0.9999 (258-344)+

4,132

Notes.
Fij , coefficient of kinship; GD, mean genetic distance; P(r), probability of autocorrelation per stand (in distance class, m); CI ,
confidence interval;MT , minimal pairs of trees for class (class distance); +, significant results after Bonferroni correction.

of the genetic variants of the Pinus cembroides at the population level. The results thus
did not confirm our hypothesis of weak SGS at the population level. Other studies of
several Mexican pine species such as P. cembroides, P. discolor, P. durangensis, P. teocote
(Hernández-Velasco et al., 2017), P. arizonica and P. cooperi (Friedrich et al., 2018) also
detected no too weak SGS at the local scale. Especially for P. cembroides,Hernández-Velasco
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Figure 2 Principal Coordinates Analysis (PCoA) (coordinate 1 vs. 2) showing the genetic separation
between the five seed stands of Pinus cembroides: Location with abbreviation of seed stand name: Mesa
Azul (PC-MA): grey diamond, Baquiriachi (PC-BQ): black square, Los Adobe (PC-AD): grey circle,
Mesa de la Majada (PC-MM): white diamond and Cordón del Toro (PC-CT): grey triangle.

Full-size DOI: 10.7717/peerj.8002/fig-2

Figure 3 Principal Coordinates Analysis (PCoA) (coordinate 1 vs. 3) showing the genetic separation
between the five Pinus cembroides seed stands: Mesa Azul (PC-MA): grey diamond, Baquiriachi (PC-
BQ): black square, Los Adobe (PC-AD): grey circle, Mesa de la Majada (PC-MM): white diamond and
Cordón del Toro (PC-CT): grey triangle.

Full-size DOI: 10.7717/peerj.8002/fig-3
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Figure 4 Principal Coordinates Analysis (PCoA) (coordinate 1 vs. 3) showing the genetic separation
between the individuals in the five Pinus cembroides seed stands: Mesa Azul (PC-MA): grey diamond,
Baquiriachi (PC-BQ): black square, Los Adobe (PC-AD): grey circle, Mesa de la Majada (PC-MM):
white diamond and Cordón del Toro (PC-CT): grey triangle.

Full-size DOI: 10.7717/peerj.8002/fig-4

et al. (2017) found no SGS and smaller mean Tanimoto distances (mean 0.52) in three
small (≤12.1 ha), closely spaced (≤10 km) seed stands.

These results can be explained by the random patterns and large distances over which
pollen and seeds are dispersed (Ennos, 1994), alongwith a breeding systemwith a low selfing
rate, non-significant local genetic drift and selection, and lowpopulation density supporting
larger gene dispersal distances (Vekemans & Hardy, 2004). This particularly applies to P.
cembroides, a species with wind-dispersed pollen, animal-dispersed seed and generally low
population density (Little Jr, 1977; McCune, 1988; Tomback & Linhart, 1990), all of which
favour gene flow (Vekemans & Hardy, 2004). This explanation is supported by the almost
always negative pairwise kinship coefficients (Fij) (Tables 3 and 4) and greater genetic
diversity than in other Mexican pine species (Wehenkel et al., 2015); (Hernández-Velasco
et al., 2017). Furthermore, the overlapping seed shadows and demographic mortality
may also result in non-significant SGS (Hamrick, Murawski & Nason, 1993; Epperson &
Alvarez-Buylla, 1997; Parker et al., 2001; Fuchs & Hamrick, 2010). In our study, the trees
sampled in each stand were heath, adult, dominant and occurred in the older age group;
it is possible that SGS would have been revealed if other (younger) age classes had been
sampled, as with Cecropia obtusifolia (Epperson & Alvarez-Buylla, 1997). Moreover, the
sampling strategy may also be a decisive factor (see below).

Significant spatial autocorrelation alongwith almost always positiveFij was only observed
in the first distance classes in the 0–100 to 0–200 m class widths. The autocorrelation was
also almost significant (together with a positive Fij) in the 0–75 m distance class, indicating
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family structure (in these distance classes). However, the first classes in the smallest widths
tested (0–25 and 0–50 m) showed no significant SGS along with the two most negative
Fij in this study (Table 3). However, the lack of significance may have been due to an
insufficient number of tree pairs (i.e., insufficient repetitions) in these small class sizes. We
therefore assumed that there was no significant family structure in smaller groups of adult,
dominant and older P. cembroides in PC-MA. However, in the first classes in larger distance
class widths (i.e., 0–225 to 0–700 m) in PC-MA, also with sufficient tree pairs for statistical
analysis, this index became more and more negative (Table 3). Thus, the P. cembroides tree
pairs became more and more genetically different and larger from a distance of 200 m,
indicating weakened gene flow, probably caused by isolation by distance gene dispersal.

The significant SGS, detected only in PC-MA, may have been caused by the range
of spatial scales and the sampling strategy in this stand. In contrast to the other four
stands, PC-MA was linear and had the longest linear expansion (2,300 m rather than
<1,300 m) (Fig. 5), i.e., the range of spatial scale encompassed by the sample was the largest
in this study. In addition, the larger the range, the better the regression performance in
the SGS analysis (Heuertz et al., 2003; Vekemans & Hardy, 2004). Moreover, the sampling
strategy was similar to a line-transect scheme, which may perform slightly better than the
simple-random scheme used in our study (Zeng et al., 2010). The significant pattern of SGS
in PC-MA is equal to that observed in the vast majority of studies which have often detected
SGS only at the smallest spatial scales studied. This finding has usually been interpreted as a
consequence of an isolation-by-distance process with restricted seed dispersal within plant
populations (e.g., Sokal & Wartenberg, 1983; Streiff et al., 1998; Sork et al., 2002; Vekemans
& Hardy, 2004).

Significant SGS was observed (Table 5) at the landscape scale (among the five seed
stands), supporting the theory of isolation by distance as a consequence of restricted pollen
and seed dispersal (Wright, 1938). However, the lack of outlier AFLP loci indicated that
local selection was not an important factor in relation to SGS in this study (Epperson, 1992).

The biological meaning of the spatial genetic patterns can easily be misinterpreted
without highly variable markers, appropriate sampling or detailed ecological data such as
the age, sex and social status of the individuals sampled (Double et al., 2005). We used (i)
stable markers, but with many loci (281 AFLP) (Vekemans & Hardy, 2004; Cavers et al.,
2005), (ii) the social status (dominant trees), (iii) sex (monoecious) and (iv) proximate
age (the higher age-group) of the individuals sampled. However, the sampling number
and structure may represent two of the weakest points in this study. More than 35 samples
per stand and a larger range of spatial scale are probably needed to detect weak SGS,
which is expected in tree species with wind-dispersed pollen and animal-dispersed seed
(Hamrick, Murawski & Nason, 1993; Vekemans & Hardy, 2004), such as the wingless seed
of P. cembroides (Richardson, 2000). The line-transect schememay also be the best sampling
strategy (Zeng et al., 2010).

Although we detected SGS at landscape (among seed stands) level, our study is not
strong enough in relation to coverage of the study site and intermediate distance intervals,
as only five stands were studied. In addition, the range of spatial scales included in the
sample was not maximized (Vekemans & Hardy, 2004). Moreover, if genetic variation is
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Figure 5 Map of the Pinus cembroides seed standMesa Azul (PC-MA) and the positions of the 34 sam-
ple trees genetically analyzed (black circles). Source: ESRI Inc. (1999–2012). ArcGIS for Desktop 10.
USDA Natural Resources Conservation Service.

Full-size DOI: 10.7717/peerj.8002/fig-5

arranged clinally, then sampling only at well-separated stands in this continuummay create
an artificial set of ‘‘isolated populations’’ that nevertheless are connected by the unsampled
trees in between. Furthermore, if the distance classes are set exactly to the distances that
separate the sampling points, this effect may be exaggerated.
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CONCLUSIONS
On the basis of the SGS analysis at the local scale and also assuming that SGS was weak, we
concluded that seed stands of P. cembroides may represent small-scale units. However, a
minimum width of 225 m is required in these stands to produce seeds without significant
loss of genetic variation, because all classes with distance class size 225 m or larger did not
show significant SGS and Fij was negative. Indeed, the Mexican norm for forest germplasm
(NMX-AA-SC-169-2016) requires a minimum stand size of two hectares (e.g., 141 × 141
m), which, however, may be too small.

On the basis of the SGS analysis, we conclude that establishment of a close network
of PC seed stands separated by a maximum distance of 6 km can prevent greater loss of
local genetic variants and alteration of SGS. However, we estimate that establishing such a
high density of seed stands would not be economically feasible in forest management and
conservation plans.

In addition, all of the AFLP loci identified are probably neutral markers. They may
consequently be more variable and more differentiated than adaptive markers, as a result
of isolation and genetic drift (Petit et al., 2001; McKay & Latta, 2002). Definition of seed
collection zones by differences in genetic adaptation could therefore result in an overly
dense network of seed stands.
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