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ABSTRACT
We present a simple Python library to construct models of polypeptides from scratch.
The intended use case is the generation of peptide models with pre-specified back-
bone angles. For example, using our library, one can generate a model of a set of
amino acids in a specific conformation using just a few lines of python code. We do
not provide any tools for energy minimization or rotamer packing, since powerful
tools are available for these purposes. Instead, we provide a simple Python interface
that enables one to add residues to a peptide chain in any desired conformation. Bond
angles and bond lengths can be manipulated if so desired, and reasonable values are
used by default.

Subjects Biochemistry, Biophysics, Computational Biology, Computational Science
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INTRODUCTION
Researchers working in structural biology and related fields frequently have to create,

manipulate, or analyze protein crystal structures. To aid this work, many different

software tools have been developed. Examples include visualization (Schrödinger, 2013),

mutagenesis (Schrödinger, 2013; Leaver-Fay et al., 2011), high-throughput computational

analysis (Hamelryck & Manderick, 2003; Grant et al., 2006), ab-initio protein folding and

protein design (Leaver-Fay et al., 2011), and homology modeling and threading (Eswar et

al., 2006; Zhang, 2008). In comparison, a relatively simple task, the ab-initio creation of a

protein structure in a desired conformation, has received little attention. It is possible to

perform this task in PyRosetta (Chaudhury, Lyskov & Gray, 2010; Gray et al., 2013), but that

approach incurs the overhead of the entire Rosetta protein modeling package (Leaver-Fay

et al., 2011). One can also construct peptides manually in some graphical molecular

modeling packages, such as Swiss-PdbViewer (Guex & Peitsch, 1997). Finally, the Rose

lab has developed Ribosome (Srinivasan, 2013), a small program with the express purpose

of creating model peptides. However, Ribosome is implemented in Fortran, an outdated

programming language that integrates poorly with modern bioinformatics pipelines.

For a recent analysis by our group, we wanted to systematically enumerate GLY-X-GLY

tripeptides in all allowed conformations (Tien et al., 2012). After review of the available
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software packages, we determined that there was a need for a lightweight library,

implemented in a modern programming language, that would allow us to construct

arbitrary peptides in any desired conformation. We decided to write this library in the

language Python (Python Sofware Foundation, 2013), as this language is widely used in

scientific computing. Specifically, many tools suitable for computational biology and

bioinformatics are available (Cock et al., 2009), including tools to read, manipulate, and

write PDB (Protein Data Bank) files (Hamelryck & Manderick, 2003). This effort resulted in

the Python library PeptideBuilder, which we describe here. The library consists of two

Python files comprising a total of approximately 2000 lines of code. Both files are provided

as Supplemental Information 1. The entire PeptideBuilder package is also available online

at https://github.com/mtien/PeptideBuilder.

CONCEPTUAL OVERVIEW
The key function our library provides is to add a residue at the C terminus of an existing

polypeptide model, using arbitrary backbone angles. Our library also allows a user to

generate an individual amino acid residue and place it into an otherwise empty model. In

combination, these two functions enable the construction of arbitrary polypeptide chains.

The generated models are stored as structure objects using the PDB module of Biopython

(Bio.PDB, Hamelryck & Manderick 2003). The seemless integration with Biopython’s PDB

module means that we can leverage a wide range of existing functionality, such as writing

structures to PDB files or measuring distances between atoms.

Adding a residue to an existing polypeptide chain involves two separate steps. First,

we have to establish the desired geometric arrangement of all atoms in the residue to be

added. This means we have to determine all bond lengths and angles. In practice, we will

usually want to specify the dihedral backbone angles φ and ψ , and possibly the rotamers,

whereas all other bond lengths and angles should be set to reasonable defaults for the

amino acid under consideration. Once we have determined the desired geometry, we

have to calculate the actual position of all atoms in 3-space and then add the atoms to the

structure object. The exact calculations required to convert bond lengths and angles into

3D atom coordinates are given in the supporting text of Tien et al. (2012). Our library

places all heavy atoms for each residue, but it does not place hydrogens.

We obtained default values for bond lengths and angles by measuring these quantities

in a large collection of published crystal structures and recording the average for each

quantity, as described (Tien et al., 2012). We set the default for the backbone dihedral

angles to the extended conformation (φ = −120◦, ψ = 140◦, ω = 180◦). We based the

default rotamer angles of each individual amino acid on the rotamer library of Shapovalov

& Dunbrack (2011). For each amino acid, the rotamer library provided the frequency of

each combination of rotamer angles given the backbone conformation. We analyzed this

library at the extended backbone conformation (φ =−120◦,ψ = 140◦) and used the most

likely rotamer conformation at that backbone conformation as default. For amino acids

with multiple χ1 or χ2 angles (such as Ile or Leu) we used the most likely and the second

most likely angles from the rotamer library.
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EVALUATION
We did extensive testing on our library to verify that we were placing atoms at the correct

locations given the bond lengths and angles we specified. First, we collected tri-peptides

from published PDB structures, extracted all bond lengths and angles, reconstructed

the tri-peptides using our library, and verified that the original tri-peptide and the

reconstructed one aligned with an RMSD of zero. Next, we wanted to know how our

library would fare in reconstructing longer peptides, in particular when using the default

parameter values we used for bond lengths and angles. For this analysis, we focused on

the peptide backbone, since the evaluation of tripeptides had shown that our library was

capable of placing side-chains correctly if it was given the correct bond lengths and angles.

We selected ten proteins with solved crystal structure. The proteins were chosen to

represent a diverse group of common folds. For each protein, we then attempted to

reconstruct the backbone of either the first 50 residues in the structure, the first 150

residues in the structure, or the entire structure. In all cases, we extracted backbone

bond lengths and angles at each residue, and then reconstructed the protein using four

different methods. When placing each residue, we either (i) adjusted only the extracted φ

andψ dihedral angles, (ii) adjusted φ,ψ , and ω dihedral angles, (iii) adjusted all dihedral

and planar bond angles, or (iv) adjusted all bond lengths and angles exactly to the values

measured in the structure we were reconstructing. In each case, any remaining parameters

were left at their default values.

As expected, when we set all bond lengths and angles to exactly the values observed in

the reference crystal structure, we could reconstruct the entire backbone with an RMSD

close to zero. We did see an accumulation of rounding errors in longer proteins, but these

rounding errors amounted to an RMSD of less than 0.01 Å even for a protein of over 600

residues. Hence they are negligible in practice. By contrast, reconstructions relying on just

backbone dihedral angles performed poorly. We found that we had to adjust all backbone

bond angles, inlcuding planar angles, to obtain accurate reconstructions. Bond lengths, on

the other hand, could be left at their default values. Table 1 summarizes our findings for all

10 structures, and Fig. 1 shows the results of the four different methods of reconstruction

for one example structure. The python script to generate these reconstructions is provided

as part of Supplemental Information 1.

Our results show that the PeptideBuilder software correctly places all atoms at the

desired locations. However, they also demonstrate that one needs to be careful when

constructing longer peptides. It is not possible to construct an entire protein structure just

from backbone dihedral angles and expect the structure to look approximately correct. In

particular in tight turns and unstructured loops, small deviations in backbone bond angles

can have a major impact on where in 3D space downstream secondary structure elements

are located. Hence these angles cannot be neglected when reconstructing backbones.

USAGE
The PeptideBuilder software consists of two libraries, Geometry and

PeptideBuilder. The Geometry library contains functions that can set up the proper

Tien et al. (2013), PeerJ, DOI 10.7717/peerj.80 3/10

https://peerj.com
http://dx.doi.org/10.7717/peerj.80
http://dx.doi.org/10.7717/peerj.80


Figure 1 Reconstruction of protein backbone using varying degrees of modeling accuracy. The gray
backbone corresponds to chain A of crystal structure 1gfl (green fluorescent protein), and the rainbow-
colored backbone corresponds to the reconstructed version thereof. (A) Only φ and ψ dihedral angles
are adjusted to match those in the reference structure. (B) All dihedral backbone angles (φ,ψ , and ω) are
adjusted to match those in the reference structure. (C) All backbone bond angles are adjusted to match
those in the reference structure. (D) All backbone bond lengths and angles are adjusted to match those
in the reference structure. RMSD values are given in Table 1. Part (D) shows perfect overlap between the
reference and the reconstructed backbone.

three-dimensional geometry of all 20 amino acids. The PeptideBuilder library contains

functions that use this geometry information to construct actual peptides.

PeptideBuilder has one dependency beyond a default python installation, the

Biopython package (Cock et al. 2009, http://biopython.org/), which provides the module

Bio.
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Table 1 Root mean square deviation (RMSD) between reference crystal structures and reconstructions of
these structures using varying amounts of modeling detail. Reconstructions using just dihedral backbone
angles tend to deviate substantially from the reference structures, whereas reconstructions using all bond
angles tend to perform well, even if bond lengths are kept at default values.

PDBa Lengthb φ,ψc φ,ψ , ωd All bond angles All bond lengths
and angles

50e 150f fullg 50e 150f fullg 50e 150f fullg 50e 150f fullg

1aq7 223 5.8 10.4 11.6 5.0 8.9 10.1 0.0 0.1 0.1 0.0 0.0 0.0

1gfl 230 3.9 21.3 22.4 4.0 7.4 9.0 0.1 0.1 0.1 0.0 0.0 0.0

1nbw 606 4.9 8.5 29.1 4.3 7.4 25.6 0.0 0.1 0.2 0.0 0.0 0.0

1vca 199 6.2 20.1 23.9 2.8 8.7 11.7 0.1 0.2 0.2 0.0 0.0 0.0

2o6r 177 3.6 12.7 14.9 3.0 10.4 12.1 0.1 0.1 0.1 0.0 0.0 0.0

2r83 279 7.1 14.4 17.1 5.6 11.7 15.9 0.0 0.1 0.1 0.0 0.0 0.0

3cap 326 3.9 7.6 10.6 2.0 6.1 9.4 0.0 0.1 0.1 0.0 0.0 0.0

3cuq 219 5.2 9.9 9.3 3.2 5.2 5.2 0.1 0.1 0.2 0.0 0.0 0.0

3vni 289 5.0 12.7 16.7 3.2 6.6 7.1 0.1 0.2 0.2 0.0 0.0 0.0

7tim 247 5.3 6.7 10.3 4.8 6.2 7.6 0.1 0.2 0.3 0.0 0.0 0.0

Notes.
a PDB ID of the reference structure. In all cases, chain A of the structure was used.
b Length of reference structure, in amino acids.
c Only dihedral backbone angles φ and ψ have been adjusted to match the reference structure.
d Only dihedral backbone angles φ, ψ , and ω have been adjusted to match the reference structure.
e RMSD (in Å) over the first 50 residues.
f RMSD (in Å) over the first 150 residues.
g RMSD (in Å) over the entire structure.

Basic construction of peptides
Let us consider a simple program that places 5 glycines into an extended conformation.

First, we need to generate the glycine geometry, which we do using the function

Geometry.geometry(). This function takes as argument a single character indicating

the desired amino acid. Using the resulting geometry, we can then intialize a structure

object with this amino acid, using the function PeptideBuilder.initialize res().

The complete code to perform these functions looks like this:

1 import Geometry , PeptideBuilder
2 geo = Geometry.geometry("G")
3 structure = PeptideBuilder.initialize_res(geo)

We now add four more glycines using the function PeptideBuilder.add residue().

The default geometry object specifies an extended conformation (φ =−120◦,ψ = 140◦).

If this is the conformation we want to generate, we can simply reuse the previously

generated geometry object and write:

4 f o r i i n range (4):
5 structure = PeptideBuilder.add_residue(structure , geo)

Because PeptideBuilder stores the generated peptides in the format of Bio.PDB

structure objects, we can use existing Bio.PDB functionality to write the resulting

structure into a PDB file:
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Table 2 Overview of functions provided by PeptideBuilder.

Function name Description

add residue Adds a single residue to a structure.

initialize res Creates a new structure containing a single amino acid.

make structure Builds an entire peptide with specified amino acid sequence
and backbone angles.

make extended structure Builds an entire peptide in the extended conformation.

make structure from geos Builds an entire peptide from a list of geometry objects.

6 import Bio.PDB # import Biopython ’s PDB module.
7 out = Bio.PDB.PDBIO()
8 out.set_structure(structure)
9 out.save( "example.pdb" )

If we want to generate a peptide that is not in the extended conformation, we have to adjust

the backbone dihedral angles accordingly. For example, we could place the five glycines

into an alpha helix by setting φ = −60◦ and ψ = −40◦. We do this by manipulating the

phi and psi im1 members of the geometry object. (We are not actually specifying the

ψ angle of the residue to be added, but the corresponding angle of the previous residue,

ψi−1. Hence the member name psi im1. See the Detailed adjustment of residue geometry

Section for details.) The code example looks as follows:

1 geo = Geometry.geometry("G")
2 geo.phi=-60
3 geo.psi_im1 =-40
4 structure = PeptideBuilder.initialize_res(geo)

5 f o r i i n range (4):
6 structure = PeptideBuilder.add_residue(structure , geo)

Several convenience functions exist that simplify common tasks. For example, if we simply

want to add a residue at specific backbone angles, we can use an overloaded version of

the function add residue() that takes as arguments the structure to which the residue

should be added, the amino acid in single-character code, and the φ andψi−1 angles:

1 # add an arginine , setting phi=-60 and psi_im1 =-40
2 structure = PeptideBuilder.add_residue(structure , "R", -60, -40)

If we want to place an arbitrary sequence of amino acids into an extended structure, we can

use the function make extended structure(), which takes as its sole argument a string

holding the desired amino-acid sequence:

1 # construct a peptide corresponding to the
2 # sequence "MGGLTR" in extended conformation
3 structure = PeptideBuilder.make_extended_structure("MGGLTR")

Table 2 summarizes all functions provided by PeptideBuilder. All these functions are

documented in the source code using standard Python self-documentation methods.

Detailed adjustment of residue geometry
Geometry objects contain all the bond lengths, bond angles, and dihedral angles necessary

to specify a given amino acid. These parameters are stored as member variables, and can be
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Figure 2 Illustration of backbone dihedral angles. When placing the atoms for residue i, we have to
specify the φ and ω dihedral angles for that residue (φi and ωi) and the ψ angle for the previous residue
(ψi−1). The ψ angle for residue i involves the nitrogen atom of residue i+ 1 and thus remains undefined
until residue i+ 1 is added.

changed by assignment (as in geo.phi=-60). We use a uniform naming scheme across all

amino acids. Member variables storing bond lengths end in length, those storing bond

angles end in angle, and those storing dihedral angles end in diangle. For example,

CA N length specifies the bond length between the α carbon and the backbone nitrogen,

and CA C O angle specifies the planar bond angle between the α carbon, the carbonyl

carbon, and the carbonyl oxygen. All bond lengths are specified in units of Å, and all angles

are specified in degrees.

Four backbone geometry parameters deviate from the uniform naming scheme: the

three backbone dihedral angles φ (phi), ψi−1 (psi im1), and ω (omega) and the length

of the peptide bond (peptide bond). Figure 2 visualizes the location of the backbone

dihedral angles in the peptide chain. The parameter phi places the carbonyl carbon of

the residue to be added relative to the previous amino acid in the peptide chain, so it

corresponds to the φ angle of the residue being placed (φi). The parameter psi im1 places

the nitrogen atom of the residue to be added, and hence corresponds to theψ angle of the

preceding residue in the chain (ψi−1). The parameter omega places the α carbon relative to

the preceding residue and hence corresponds to theω angle of the residue to be added (ωi).

The peptide bond length is specified relative to the previous residue in the peptide chain.

A geometry object stores the minimum set of bond lengths, bond angles, and dihedral

angles required to uniquely position every heavy atom in the residue. Additional bond

angles remain that are not used in our code; these bond angles are defined implicitly. The

simplest way to determine which bond lengths and angles are defined for a given amino

acid is to print the corresponding geometry object. For example, entering the command

print Geometry.geometry("G") on the python command line produces the following

output:
>>> p r i n t Geometry.geometry("G")
CA_C_N_angle = 116.642992978
CA_C_O_angle = 120.5117
CA_C_length = 1.52
CA_N_length = 1.46
C_N_CA_angle = 121.38221582
C_O_length = 1.23
N_CA_C_O_diangle = 180.0
N_CA_C_angle = 110.8914
omega = 180.0
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peptide_bond = 1.33
phi = -120
psi_im1 = 140
residue_name = G

The following code prints out the default geometries for all amino acids:

1 f o r aa i n "ACDEFGHIKLMNPQRSTVWY":
2 p r i n t Geometry.geometry(aa)

We can construct modified geometries simply by assigning new values to the appropriate

member variables. For example, the following code constructs a Gly for which some bond

lengths and angles deviate slightly from the default values:

1 geo = Geometry.geometry("G")
2 geo.phi=-119
3 geo.psi_im1 =141
4 geo.omega =179.0
5 geo.peptide_bond =1.3
6 geo.C_O_length =1.20
7 geo.CA_C_O_angle =121.6
8 geo.N_CA_C_O_diangle= 181.0

For amino acids whose side chains require specification of rotamer conformations,

there are two ways to specify them. First, we can set rotamers by directly assigning the

appropriate values to the correct dihedral angles:

1 geo = Geometry.geometry("L")
2 geo.N_CA_CB_CG_diangle =-60.0
3 geo.CA_CB_CG_CD1_diangle =-80.2
4 geo.CA_CB_CG_CD2_diangle =181.0

Second, we can set all rotamer angles at once, using the member function

inputRotamers():

1 geo = Geometry.geometry("L")
2 geo.inputRotamers ([-60.0, -80.2, 181.1])

In this function call, the angles are listed in order of standard biochemical convention, χ1,

χ2, χ3, and so on, for however many χ angles the amino-acid side chain has.

CONCLUSION
We have developed a Python library to construct model peptides. Our design goals were to

make the library simple, lightweight, and easy-to-use. Using our library, one can construct

model peptides in only a few lines of Python code, as long as default bond lengths and

angles are acceptable. At the same time, all bond-length and bond-angle parameters are

user-accessible and can be modified if so desired. We have verified that our library places

atoms correctly. As part of this verification effort, we have found that with increasing

peptide length it becomes increasingly important to adjust bond angles appropriately to

reconstruct biophysically accurate protein structures.
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