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The anthocyanin content in leaves can provide valuable information about a plant’s
physiological status and its responses to stress. Therefore, it is of great value to determine
anthocyanin content in leaves accurately and efficiently. Meanwhile the selection of
calibration method is one of the main factors which influence the measurement accuracy
with visible and near infrared (NIR) spectroscopy. Three multivariate calibrations including
principal component regression (PCR), partial least squares regression (PLSR), and back
propagation neural network (BPNN) were adopted for development of determination
models of leaf anthocyanin content from reflectance spectra (450-600 nm) in Prunus
cerasifera and compared the performance of three multivariate calibrations. Certain
principal components (PCs) and latent variables (LVs) were used as the input for back
propagation neural network (BPNN) models. The results showed that the best PCR and
PLSR models were obtained by standard normal variate (SNV) and the BPNN models
outperformed the PCR and PLSR models. The coefficient of determination (R2) and the root
mean square error of prediction (RMSEP), and the residual prediction deviation (RPD) in
the validation set by BPNN-PCs and BPNN-LVs were 0.952, 0.205, 4.591 and 0.956, 0.197,
4.778, respectively. The visible spectroscopy combined with BPNN could be successfully
applied for the determination of leaf anthocyanin content in P. cerasifera and the
performance of the BPNN-LVs model was the best. It can be concluded that the prediction
power of BPNN-LVs model was the best and visible spectroscopy has significant potential
in the nondestructive determination of leaf anthocyanin content in plant.
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21 Abstract

22 The anthocyanin content in leaves can provide valuable information about a plant’s 

23 physiological status and its responses to stress. Therefore, it is of great value to determine 

24 anthocyanin content in leaves accurately and efficiently. Meanwhile the selection of calibration 

25 method is one of the main factors which influence the measurement accuracy with visible and 

26 near infrared (NIR) spectroscopy. Three multivariate calibrations including principal component 

27 regression (PCR), partial least squares regression (PLSR), and back propagation neural network 

28 (BPNN) were adopted for development of determination models of leaf anthocyanin content 

29 from reflectance spectra (450-600 nm) in Prunus cerasifera and compared the performance of 

30 three multivariate calibrations. Certain principal components (PCs) and latent variables (LVs) 

31 were used as the input for back propagation neural network (BPNN) models. The results showed 

32 that the best PCR and PLSR models were obtained by standard normal variate (SNV) and the 

33 BPNN models outperformed the PCR and PLSR models. The coefficient of determination (R2) 

34 and the root mean square error of prediction (RMSEP), and the residual prediction deviation 

35 (RPD) in the validation set by BPNN-PCs and BPNN-LVs were 0.952, 0.205, 4.591 and 0.956, 

36 0.197, 4.778, respectively. The visible spectroscopy combined with BPNN could be successfully 

37 applied for the determination of leaf anthocyanin content in P. cerasifera and the performance of 

38 the BPNN-LVs model was the best. It can be concluded that the prediction power of BPNN-LVs 

39 model was the best and visible spectroscopy has significant potential in the nondestructive 

40 determination of leaf anthocyanin content in plant. 

41
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46 INTRODUCTION

47 Anthocyanins are a specific and large group of water soluble flavonoid pigments (Strack, 

48 1997; Iwashina, 2000), the common pigments, that occur in all tissues of higher plants, including 

49 the leaves, stems, roots, flowers, and fruits. They are responsible for a wide range of plant colors, 

50 such as blue, purple, violet, magenta, red and orange (Fennema, 1998; Lai, 2019), but they often 

51 appear red (Gould et al., 1995; Van den Berg & Perkins, 2005; Gitelson et al., 2009). Moreover, 

52 anthocyanins serve many functions: in pollinator attraction, as protectants (Gould et al., 2009), 

53 antioxidants (Gould et al., 2002, Yang et al., 2017) and osmoprotectants (Chalker-Scott, 1999). 

54 They also play a photo-protective role (Liakopoulos et al., 2006), and act as optical barriers 

55 (Close & Beadle, 2003; Solovchenko & Merzlyak, 2008). A number of environmental stresses, 

56 such as strong light, low temperature, UV-B irradiation, wounding, drought, bacterial and fungal 

57 infections, deficiencies in nitrogen, phosphorus and potassium, and certain herbicides and 

58 pollutants can result in the significant accumulation of anthocyanins (Saure, 1990; Garriga et al., 

59 2014; Zhang et al., 2018), which are thus often referred to as “stress pigments” (Chalker-Scott, 

60 1999). In addition, anthocyanins accumulate transiently in juvenile and senescing leaves of many 

61 plant species under unfavorable conditions (Karageorgou & Manetas, 2006; Merzlyak et al., 

62 2008; Zeliou et al., 2009; Garriga et al., 2014). Thus, anthocyanin content can serve as an 

63 indicator of leaf senescence and environmental stresses in many plant species (Neill & Gould, 

64 1999; Gitelson & Merzlyak, 2004), and its detection and quantitative assessment can provide 

65 important and valuable information about physiological response and adaptation of plants to 

66 environmental stresses (Gamon & Surfus, 1999; Gitelson et al., 2009; Ustin et al., 2009).
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67 The traditional method for determining anthocyanin content has been the wet-chemical 

68 method (Gitelson & Merzlyak, 2004; Gitelson et al., 2001; Steele et al., 2009). This method has 

69 the shortcoming of being laborious, time-consuming, expensive, and destructive to leaves 

70 (Solovchenko et al., 2001; Merzlyak et al., 2003; Steel et al., 2009). In addition, this way of 

71 measuring does not allow measurement of changes in pigments over time in a single leaf 

72 (Garriga et al., 2014). As anthocyanins can readily be estimated with absorption and reflectance 

73 spectroscopy, spectral reflectance measurements have been developed which provide a non-

74 destructive, rapid, and inexpensive technique for assessing anthocyanin content (Gitelson et al., 

75 2001; Sims and Gamon, 2002; Merzlyak et al., 2003). Moreover, this technique can be used at 

76 different spatial scales and in a large number of samples (Viña & Gitelson, 2005; Lobos et al., 

77 2014). Various models (vegetation indices) have been developed for determining anthocyanin 

78 content of leaves in various plants (e.g. Gitelson et al., 2001; Gitelson & Merzlyak, 2004; 

79 Gitelson et al., 2006; Gitelson et al., 2009; Van den Berg & Perkins, 2005; Merzlyak et al., 2008; 

80 Steele et al., 2009; Garriga et al., 2014; Liu et al.,2015; Manjunath et al., 2016 ). 

81 Prunus cerasifera (P. cerasifera) is Prunus deciduous small trees, natives to western Asia 

82 and the Caucasus, commonly called cherry plum. Its leaves contain rich anthocyanins which 

83 make them appear purple. It has become a very popular ornamental landscape tree in large part 

84 because its showy purple foliage retains excellent color throughout the growing season. The 

85 leaves of P. cerasifera have a wide range of anthocyanin contents, so P. cerasifera is a good 

86 object to study leaf anthocyanins content of plant. To the best of our knowledge, there is at 

87 present no research in the literature that explores the combination of PLSR or PCR with ANN for 
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88 the analysis of leaf anthocyanin content of P. cerasifera using visible spectroscopy (450–600 

89 nm).

90 In this paper, the leaf anthocyanin content of P. cerasifera is investigated with visible 

91 spectroscopy based on three multivariate calibrations. The objectives of the present work are: (1) 

92 to investigate the feasibility of using visible spectroscopy to determine anthocyanin content in P. 

93 cerasifera leaves; (2) to determine the optimal spectral pretreatments after the comparison of 

94 Savitzky-Golay (SG) smoothing, standard normal variate (SNV), multiplicative scattering 

95 correction (MSC), first derivative(1-Der), standard normal variate in combination with 

96 transformed baseline (SNV+TB), Savitzky-Golay smoothing in combination with first derivative 

97 (SG+1-Der), and multiplicative scattering correction in combination with first derivative 

98 (MSC+1-Der); (3) to develop the best calibration models for estimation the leaf anthocyanin 

99 content in P. cerasifera after the comparing prediction power of principal component regression 

100 (PCR), partial least squares regression (PLSR), and back-propagation neural network (BPNN). 

101 The present study was a preliminary step to monitor the growing status and biological parameters 

102 of the plants using spectroscopic techniques in the field.
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103 Materials and methods

104 Leaf samples

105 In total, 456 pieces of P. cerasifera leaves were collected from the Northwest Agriculture & 

106 Forestry University campus between March and May of 2015. These leaves, ranging in color 

107 from dark green with little red to completely red, were detached from the P. cerasifera of 

108 different ages and different directions from the stem. After detachment, the leaves were 

109 immediately sealed in plastic bags with a small amount of water, labeled as different samples, 

110 and then placed in an ice box. Healthy and homogeneously colored leaves without visible 

111 symptoms of damage were used in the experiments.

112 Laboratory analyses of anthocyanin content

113 The anthocyanin content was quantitatively determined from the same leaf samples used for 

114 reflectance measurement. Several pieces were cut from the leaves and weighed, and then 

115 anthocyanin extracted with 0.1 mol L ‒1 hydrochloric acid methanol solution by the soaking 

116 extraction method. The resulting extracts were immediately assayed spectrophotometrically. 

117 Anthocyanin content was expressed as a function of leaf quality (i.e., mol g ‒1). The methods 

118 we used are described in detail in the literature (Xiong et al., 2003).

119 Spectrum measurement and pretreatment

120 The reflectance spectra of the leaves were measured with a SVC HR-1024i 

121 spectrophotometer (Spectra Vista Corporation, USA) equipped with a SVC reflectance probe and 

122 interfaced to a personal computer. During measuring, artificial illumination was provided by an 

123 internal tungsten halogen lamp. The HR-1024i spectrophotometer measures radiance with a 
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124 spectral resolution of 3.5 nm in a wavelength range of 350 to 1000 nm. Before the reflectance 

125 spectra of the leaves were measured, reference measurements were made by rotating the sample 

126 holder plate so that the white reference panel was facing the probe window. Target 

127 measurements were then taken by inserting a leaf between the sample holder plate and window. 

128 For accurate representation of the reflectance of the leaves, three reflectance measurements were 

129 acquired for each leaf; each sample included four leaves of same color. Thus, the average of 

130 twelve spectra per sample was calculated to establish a single representative reflectance spectrum. 

131

132 The anthocyanin absorption peaks in situ were around 540–550 nm in the visible/near-

133 infrared（Vir/NIR）band (Gitelson et al., 2001; Merzlyaket et al., 2008). Furthermore, the 

134 results of correlation analysis showed that a high correlation between total anthocyanin content 

135 and reflectance spectra presented between 350 and 600 nm, and relative low correlation at the 

136 other wavebands. The first 100 nm were removed to avoid a low signal-to-noise ratio. Finally, 

137 only the wavelength bands between 450 and 600 nm, which avoided the effect of leaf structure 

138 and the strongest absorption of chlorophyll and water, were employed for the calculations.

139 It was determined that, to remove system noises and external disturbances and to select the 

140 best pretreatment method, some of the aforementioned pretreatments should be performed on the 

141 spectra (Liu et al., 2008; Liu & Liu, 2013). First, the reflectance spectra were imported into the 

142 SVC HR-1024i software (Spectra Vista Corporation, USA). The overlapping detector data were 

143 removed, and then resampling in 1nm intervals was performed. Second, for this study seven 

144 types of pretreatments were applied and compared, namely, standard normal variate (SNV), 
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145 multiplicative scattering correction (MSC), Savitzky-Golay smoothing (SG), first derivative (1-

146 Der), standard normal variate combined with transformed baseline (SNV+TB), multiplicative 

147 scattering correction combined with first derivative(MSC+1-Der), and Savitzky-Golay 

148 smoothing combined with first derivative (SG+1-Der). SNV, MSC, and SG smoothing were 

149 applied to remove the multiplicative effects of scattering, random noise, and spectral baseline 

150 shift (Chu et al., 2004; Zhao, Qu & Cheng 2004; Liu et al., 2008; Bao et al., 2012). The first 

151 derivative pretreatment method was used to decrease the baseline shift (Liu et al., 2008). The raw 

152 reflectance spectra and preprocessed spectra of P. cerasifera leaves are shown in Figures 1a–h. 

153 All pre-processing steps were implemented using the Unscrambler 9.7 (Camo Inc., Oslo, 

154 Norway).

155 Establishment of calibration models

156 Three different chemometric techniques (PCR, PLSR and BPNN) were used to compare the 

157 prediction of anthocyanin content in P. cerasifera leaves. The optimal number of principal 

158 components (PCs) of PCR and latent variables (LVs) of PLSR for a model was determined by 

159 examining a plot of leave-one-out cross-validation residual variance against the number of 

160 loadings, or latent variables, obtained from PCR and PLSR, respectively (Mouazen et al., 2010). 

161 For example, the number of latent variables of the first minimum value of residual variance was 

162 selected (Brown et al., 2005). Hence, the selected PCs and LVs represented the most information 

163 about the spectra and were used as the inputs of the artificial neural network (ANN).

164 The most popular neural network is BPNN, which is a type of nonlinear neural network 

165 used to solve several types of classification and regression problems. It usually leads to a better 
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166 result than traditional statistical methods. BPNN analyses are based on LVs obtained from PLSR 

167 (BPNN-LVs) and PCs obtained from PCA (BPNN-PCs). A standard three-layer feed-forward 

168 network composed of one input layer (PCs or LVs), one hidden layer (initially ten nodes) and 

169 one output layer (one node) was used (Mouazen et al., 2010). All calculations of the BPNN were 

170 implemented based on JMP 10 (SAS Institute Inc., USA). 

171 In order to ensure that the calibration or validation set included samples that covered the 

172 whole range of each chemical parameter, the 114 sample data (456 pieces of leaves, four leaves 

173 per sample) were arranged in ascending order according to anthocyanin content. From the lowest 

174 to the highest, two of every three samples were selected for inclusion in the calibration set. As a 

175 result, two-thirds of the samples were assigned to the calibration set (76), and the remaining 

176 samples served as the validation set (38). No single sample was used in the calibration and 

177 validation sets at the same time. In order to compare the performances of different calibration 

178 models, the samples in the calibration and validation sets were unchanged for all of the models, 

179 and this was set as a basic condition in this paper. The performance of a model was evaluated by 

180 the following indices: the coefficient of determination of calibration (R2
cal) and validation (R2

val), 

181 the root mean square error of calibration (RMSEC) and validation (RMSEP), the residual 

182 prediction deviation of calibration (RPDcal) and validation (RPDval). The detailed formulas of 

183 these indices can be found in the literature (Hu, 2013). Based on experience and previous reports 

184 (Viscarra Rossel et al., 2006; Saeys et al., 2005), the R2 and RPD values are classified as follows: 

185 R2<0.5 with 1.0≤RPD<1.4 indicates poor models/predictions where only high and low values are 

186 distinguishable; 0.5≤R2<0.65, 1.4≤RPD<1.8 indicates fair models/predictions which can be used 
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187 for assessment and correlation; 0.65≤R2<0.80, 1.8≤RPD<2.0 indicates good models/predictions 

188 where quantitative predictions are possible; 0.80≤R2<0.90, 2.0≤RPD<2.5 indicates very good 

189 quantitative models/predictions, and R2≥0.90, RPD≥2.5 indicates excellent models/predictions. 

190 In all, a good model should have higher R2 and RPD, and lower RMSE values.

191 Results 

192 Features of spectra

193 The raw reflectance spectra of P. cerasifera leaves are shown in Figure 1a. The processed 

194 spectra, SG, SNV, MSC, and 1-Der, SNV+TB, SG+1-Der, and MSC+1-Der are shown in 

195 Figures1b-h, respectively. That the raw spectra are homogeneous is seen by visual inspection in 

196 Figure 1a. As shown in Figure 1a, between 450 and 500 nm the spectral curves are relatively flat, 

197 however, the raw spectra between 500 and 600 nm show largely different features and notably 

198 decrease in the green range around 550 nm with the increase of anthocyanin content. 

199 Statistical values of properties of interest

200 The basic statistics of anthocyanin content for the 114 P. cerasifera leaf samples used in 

201 this study are listed in Table 1. Thus, the minimum, maximum, mean, standard deviation (S.D.) 

202 and number of samples for the different data sets are summarized in the table. The reference 

203 values of anthocyanin content had a broad range of variation, a result which was helpful for the 

204 calibrations. 

205 PCR models

206 PCR analysis was applied to the calibration and prediction of anthocyanin content. Eight 

207 different models with different spectra were developed for anthocyanin content. Different PCs 
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208 were applied to build the optimal calibration models. The prediction results of the calibration and 

209 validation sets are shown in Table 2. With a comparison of these models, the spectra 

210 preprocessed by SNV displayed the best performance for prediction of the anthocyanin content. 

211 The values of R2
val, RMSEP, RPDval in the validation set from the optimal PCR model were 

212 0.888, 0.315, and 2.988, respectively. This prediction accuracy was therefore classified as very 

213 good. The performances using SG and Raw were poor, the R2
val and RPDval for both were lower 

214 than 0.80 and 2.0, respectively. According to the aforementioned criteria, we can only say that 

215 these two models might be of some value in quantitatively predicting anthocyanin content. But 

216 the RPDval values above 2.5 and the R2
val values below 0.9 for the other 5 PCR models indicated 

217 that very good quantitative predictions could be made for leaf anthocyanin content by using them. 

218 Figure 2a shows the reference versus predicted value plots for anthocyanin content for the 

219 optimal PCR model. The closer the sample plots were to this solid line, the better was the 

220 predicted result. As indicated in Figure 2a, the sample plots in the calibration and validation sets 

221 were distributed near, but not tightly close to the ideal line. Also, there are several dots far from 

222 the ideal line, which shows a large predictive error. 

223 PLSR models

224 Partial least squares regression (PLSR) models using the pretreatment spectra are shown in 

225 Table 3. According to the results, the optimal preprocessing for anthocyanin content also was 

226 SNV, based on the prediction performance evaluation indices (including R2, RMSEP and RPD). 

227 The values of the optimal determination coefficients R2
val, RMSEP, and RPDval for the validation 

228 set were respectively 0.901, 0.259 and 3.191. This prediction accuracy was classified as excellent. 
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229 The performance using MSC+1-Der was worst relatively, the predicted R2
val and RPDval was the 

230 smallest and RMSEP was the largest of all the models. In all, the RPDval values above 2.0 and 

231 the R2
val values above 0.8 for all of PLSR models indicated that very good quantitative 

232 predictions could be made for leaf anthocyanin content by using them. The reference versus 

233 predicted values plots for anthocyanin content by the optimal PLSR model is shown in Figure 2b. 

234 The sample plots in the calibration and validation sets are distributed much close to the ideal line 

235 in Figures. But there was still big error between the predicted values and the actual value in the 

236 PLSR models. According to the evaluation criteria, the optimal PLSR model was an excellent 

237 model/predictor in theory, but would not be ideal for use in practical analysis.

238 BPNN models

239 PCs or LVs were selected as inputs for BPNN in order to reduce computational resources 

240 and improve the robustness of ANN calibration (Janik et al., 2007). The first five PCs (spectra 

241 preprocessed by SNV) were considered as input in this study, since they could explain nearly 95% 

242 of the variance. The first five LVs (spectra preprocessed by SNV) also were applied as the input 

243 variables of the BPNN model, as the residual variance was the first minimum value (Brown et al., 

244 2005). In order to compare the performances of different calibration models, the validation 

245 method selected “excluded rows” (the excluded rows were validation samples which were the 

246 same with the PCR and PLSR method). The optimal number of nodes of the hidden layer was 

247 determined based on experience and previous reports (Shao et al., 2007). In the process of 

248 training, the number of nodes in the hidden layer was constantly readjusted. When the number of 

249 nodes of the hidden layer was set at 5, a very good result was achieved. Thus, the BPNN model 
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250 for anthocyanin content was obtained; the structure was one input layer with 5 modes, and the 

251 hidden layer with 5 nodes and one output node.

252 The performance of BPNN models was validated by the samples in the validation sets. The 

253 prediction results are shown in Table 4 and Figure 3. As shown in Table 4, the values of R2
val, 

254 RMSEP and RPDval in the validation set for the BPNN-LVs model and the BPNN-PCs model 

255 were 0.956, 0.197, 4.778 and 0.952, 0.205, 4.591, respectively. The prediction accuracy of both 

256 models was classified as excellent. The very small differences in R2, RMSEP and RPD values 

257 were observed between the BPNN-LVs model and the BPNN-PCs model. The performance of 

258 the BPNN-LVs was a little better than that of BPNN-PCs model. The reference versus predicted 

259 values plots for anthocyanin content by the BPNN models are shown in Figure 3. The sample 

260 plots were tighter about the ideal line than those obtained by the PCR and PLSR models (see in 

261 Figure 2). The results show that BPNN models outperformed the PCR and PLSR models. The 

262 fact indicated that there was a very good agreement between the predicted values and the actual 

263 value in the BPNN models. The prediction precision could satisfy the accuracy standards for 

264 practical applications. These results should be supportive of further research of in-field detection 

265 of anthocyanin content of plant leaves.

266 Discussion

267 The raw spectra of P. cerasifera leaves between 500 and 600 nm show notably decrease in 

268 the green range around 550 nm with the increase of anthocyanin content. The reason for this 

269 might be that the main spectral feature of anthocyanin absorption in vivo was a peak around 550 

270 nm; this result is consistent with the result of Gitelson et al. (2001) that the peak magnitude was 
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271 closely related to anthocyanin content. In the present study, three calibration methods used all of 

272 the spectral reflectance of the selected wavebands to build models. So the selected wavebands 

273 must be sensitive to the anthocyanin, and insensitive to chlorophyll and water and the effects of 

274 leaf structure. The wavebands between 450 and 600 nm just comply with the requirement. The 

275 study results also proved that spectral reflectance between 450 and 600 nm showed a significant 

276 contribution in predicting leaf anthocyanin content in P. cerasifera. Other studies have also used 

277 the visible bands to predict leaf anthocyanin content (e.g. Gitelson et al., 2001; Gitelson et al., 

278 2006; Steele et al., 2009; Garriga et al., 2014). 

279 In addition, as shown in Tables 2 and 3, the results for the calibration set and predicted set 

280 of PCR and PLSR models were significant different and the results for the calibration set were 

281 better, which indicates that the calibration model was not very stable. The sample plots in the 

282 calibration and validation sets of the PLSR model are distributed much closer to the ideal line 

283 than those of the PCR model (Figures 2a and 2b). This indicates that the PLSR model 

284 outperformed the PCR model. Comparing to the prediction results of PCR and PLSR models, it 

285 also indicates that the performance of PLSR models was better than that of the PCR models, 

286 which is consistent with the results of another study (Vasques et al., 2008). The reason for the 

287 difference might be that PLSR can consider simultaneously the spectral data matrix (X) and the 

288 target chemical properties matrix (Y) (Liu and Liu, 2013). Among the BPNN models, the 

289 performance of the BPNN-LVs was a little better than that of BPNN-PCs model. Mouazen et al. 

290 (2010) reported similar results for the prediction of selected soil properties using Vis/NIR 

291 spectroscopy. 
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292 Both the leave-one-out cross-validation and predictive results showed that the BPNN model 

293 outperformed the PCR and PLSR models (Tables 2, 3 and 4, and Figures 2 and 3). The result is 

294 in conformity with the results in other study of VNIRS of predictions for total anthocyanin 

295 content in new-season red-grape homogenates with PLSR and ANN (Janik et al., 2007). Liu et al. 

296 (2008) reported similar results for the determination of acetolactate synthase activity and protein 

297 content of oilseed rape (Brassica napus L.) leaves using Vis/NIR spectroscopy. Janik et al. (2009) 

298 and Mouazen et al. (2010) also reported similar results for the prediction of selected soil 

299 chemical and physical properties using mid-infrared or Vis/NIR spectroscopy. The reason for the 

300 BPNN model’s outperformance might be that it can express the nonlinear relationship that 

301 usually exists in spectrum analysis, while PLSR and PCR, which are built upon a linear 

302 algorithm, cannot handle certain latent nonlinear information in the spectral data (Li and He, 

303 2010). Moreover, the performance of the BPNN-LVs was a little better than that of BPNN-PCs 

304 model according to the R2, RMSEP and RPD values. Mouazen et al. (2010) reported similar 

305 results for the prediction of selected soil properties using Vis/NIR spectroscopy. Otherwise, we 

306 have demonstrated the feasibility of using spectral reflectance between 450 and 600 nm to 

307 estimate leaf anthocyanin content in P. cerasifera under laboratory conditions. However, the 

308 canopy architecture of plants is very complex under field conditions. In future work, more and 

309 different species samples should be prepared for calibration based on laboratory and field 

310 condition, so that the BPNN-LVs model can be expanded, and thus also be more stable, as a way 

311 toward future practical applications. Moreover, chlorophyll’s interference should be taken into 

312 account for samples with low to moderate anthocyanin content (Gitelson et al., 2009). More 
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313 work could be done to discover the useful information or effective wavelength or wavebands for 

314 the non-destructive determination of anthocyanin content of plants.

315 Conclusions

316 The determination of anthocyanin content was successfully performed by spectral 

317 reflectance between 450 and 600 nm combined with chemometric methods. In the PCR and PLS 

318 models, the preprocessed spectra by way of SNV achieved the best performance for the 

319 prediction of anthocyanin content. An acceptable prediction accuracy was achieved by the PCR 

320 and PLS models but it may be not satisfactory for practical applications. BPNN models were 

321 developed for comparison. The performance of the PLSR models was better than that of the PCR 

322 models, but the BPNN models showed a greatly improved predictive capacity. The BPNN 

323 models were developed for the prediction of anthocyanin content, and the two BPNN models 

324 outperformed the PCR and PLSR models. The R2
val, RMSEP and RPDval in the validation set by 

325 the BPNN-LVs model and the BPNN-PCs model were 0.956, 0.197, 4.778 and 0.952, 0.205, 

326 4.591, respectively. The performance of the BPNN-LVs model was best. The results indicate that 

327 visible spectroscopy combined with BPNN calibrations can successfully detect and measure the 

328 leaf anthocyanin content in P. cerasifera. Based on the results achieved in this study, it is 

329 recommended to adopt BPNN-LVs analysis as the best modeling method for predicting leaf 

330 anthocyanin content of plant. Moreover, spectral reflectance between 450 and 600 nm here has 

331 made a significant contribution in the nondestructive determination of leaf total anthocyanin 

332 content in plant.

333
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Figure 1(on next page)

Spectra of P. cerasifera leaves.

A: the raw spectra of P. cerasifera leaves; B: SNV; C: MSC; D: SG; E: 1‒Der; F: MSC+1‒Der; G:
SNV+TB; H: SG+1‒Der.
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Figure 2(on next page)

Measured vs. predicted values for anthocyanin content obtained by the best PCR model
(A) and PLSR model (B).

Black open circles represent calibration samples and solid circles represent validation
samples. The solid lines correspond to the ideal results which meant the predicted values
were equal to the reference values.
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Figure 3(on next page)

Measured vs. predicted values for anthocyanin content obtained by BPNN-PCs model (A)
and BPNN-LVs model (B).

Black open circles represent calibration samples and solid circles represent validation
samples. The solid lines correspond to the ideal results which meant the predicted values
were equal to the reference values.
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Table 1(on next page)

The statistical values of anthocyanin content.
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Data sets
Sample 

number
Minimum Maximum Mean Standard deviation

Calibration 76 0.36 4.61 1.99 0.98

Valibration 38 0.41 3.96 1.93 0.95

All samples 114 0.37 4.61 1.97 0.97

1
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Table 2(on next page)

Prediction results of anthocyanin content by PCR with different preprocessing in
calibration and validation sets.
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Calibration Validation
Pretreatment PCs

R2cal RMSEC RPDcal R
2
val RMSEP RPDval

Raw 5 0.777 0.462 2.117 0.743 0.477 1.973

SNV 5 0.934 0.250 3.911 0.888 0.315 2.988

MSC 7 0.915 0.286 3.419 0.844 0.372 2.530

SG 5 0.776 0.463 2.112 0.741 0.479 1.965

1‒Der 6 0.810 0.427 2.290 0.843 0.373 2.523

MSC+1‒Der 8 0.881 0.337 2.902 0.881 0.337 2.793

SNV+BS 5 0.933 0.253 3.865 0.864 0.347 2.712

SG+1‒Der 8 0.857 0.370 2.643 0.864 0.348 2.705

1
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Table 3(on next page)

Prediction results of anthocyanin content by PLSR with different preprocessing in
calibration and validation sets.

PeerJ reviewing PDF | (2019:07:39108:0:0:REVIEW 5 Jul 2019)

Manuscript to be reviewed



Calibration Validation
Pretreatment LVs

R2cal RMSEC RPDcal R
2
val RMSEP RPDval

Raw 9 0.933 0.254 3.850 0.873 0.336 2.801

SNV 5 0.943 0.233 4.197 0.901 0.295 3.191

MSC 4 0.894 0.318 3.075 0.847 0.368 2.558

SG 9 0.928 0.262 3.732 0.878 0.329 2.861

1‒Der 5 0.886 0.330 2.963 0.882 0.323 2.914

MSC+1‒Der 5 0.921 0.274 3.569 0.802 0.419 2.246

SNV+BS 5 0.943 0.234 4.179 0.891 0.311 3.026

SG+ 1‒Der 5 0.884 0.332 2.945 0.883 0.323 2.914

1
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Table 4(on next page)

Prediction results of anthocyanin content by BPNN models in calibration and validation
sets.

PeerJ reviewing PDF | (2019:07:39108:0:0:REVIEW 5 Jul 2019)

Manuscript to be reviewed



Calibration Validation
Model

R2cal RMSEC RPDcal R2val RMSEP RPDval

BPNN-PCs 0.971 0.167 5.816 0.952 0.205 4.591

BPNN-LVs 0.972 0.163 5.959 0.956 0.197 4.778

1
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