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ABSTRACT
Elucidating the genomic diversity of CD209 gene promoter polymorphism could
assist in clarifying disease pathophysiology as well as contribution to co-morbidities.
CD209 gene promoter polymorphism has been shown to be associated with suscep-
tibility to infection. We hypothesize that CD209 mutant variants occur at a higher
frequency among Africans and in sickle cell disease. We analyzed the frequency of
the CD209 gene (rs4804803) in healthy control and sickle cell disease (SCD) popu-
lations and determined association with disease. Genomic DNA was extracted from
blood samples collected from 145 SCD and 231 control Africans (from Mali), 331
SCD and 379 control African Americans and 159 Caucasians. Comparative analysis
among and between groups was carried out by polymerase chain reaction-restriction
fragment length polymorphism (PCR-RFLP). Per ethnic diversification, we found
significant disparity in genotypic (23.4% versus 16.9% versus 3.2%) and allelic fre-
quencies (48.7% versus 42.1% versus 19.8%) of the homozygote mutant variant of
the CD209 (snp 309A/G) gene promoter between Africans, African Americans and
Caucasians respectively. Comparative evaluation between disease and control groups
reveal a significant difference in genotypic (10.4% versus 23.4%; p = 0.002) and
allelic frequencies (39.7% versus 48.7%; p = 0.02) of the homozygote mutant variant
in African SCD and healthy controls respectively, an observation that is completely
absent among Americans. Comparing disease groups, we found no difference in the
genotypic (p = 0.19) or allelic (p = 0.72) frequencies of CD209 homozygote mutant
variant between Africans and Americans with sickle cell disease. The higher fre-
quency of CD209 homozygote mutant variants in the African control group reveals a
potential impairment of the capacity to mount an immune response to infectious dis-
eases, and possibly delineate susceptibility to or severity of infectious co-morbidities
within and between groups.
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INTRODUCTION
Sickle cell disease (SCD) is an inherited multisystem disorder, characterized by chronic

hemolytic anemia, vaso-occlusive crises and several other disease outcomes such as acute

chest syndrome, bacteremia, leg ulcers and priapism (Bunn, 1997; Benkerrou et al., 2002).

SCD has shown marked variability in severity between individuals, with evidence of

extensive differences in both clinical and disease haplotypes, with a global distribution,

especially in sub-Saharan Africa, Middle East, parts of the Indian subcontinent, and

Americans with an African or Caribbean descent (Hassell, 2010; Piel et al., 2013; Bandeira

et al., 2014; Saraf et al., 2014; Thakur et al., 2014). SCD occurs in patients that are

homozygous for the hemoglobin S gene, produced by a defective β-globin gene on

chromosome 11 and has also been defined as resulting from compound heterozygosity

for hemoglobin S and another β-globin chain abnormality (typically hemoglobin C or

β-thalassemia), with α-thalassemia serving as a modifier of the clinical manifestations

(Weatherall, 2010; Saraf et al., 2014). Patients commonly require red cell transfusions to

manage complications, with alloimmunization a common occurrence (Charache, Bleecker

& Bross, 1983; Rosse, Gallagher & Kinney, 1990; Tatari-Calderone et al., 2013) leaving such

multiply transfused patients at risk for delayed hemolytic transfusion reactions (Piomelli,

1985; Petz et al., 1997; Taylor et al., 2008; Yazdanbakhsh, Ware & Noizat-Pirenne, 2012),

development of autoimmune hemolytic anemia.

Infectious pathogens are a threat to those individuals with SCD, particularly children,

that are prone to frequent and severe attacks (Overturf, 1999; Halasa et al., 2007; Szczepanek

et al., 2013). For children in endemic countries, with very high circulating immune

complexes due to constant exposure to multiple pathogenic stimuli, the added burden

of these co-morbidities can severely impact immune response and survival (Thomas et

al., 2012a). Recent reports showing high mortality rates post-vaccination in transgenic

animals demonstrates that a dysregulated immune response might be responsible for such

mortality and could be a major drawback to the current push to vaccinate (Adamkiewicz

et al., 2003; McCavit et al., 2011; Szczepanek et al., 2013). In fact, other reports have

shown that there is an over-stimulation of pro-inflammatory cytokines in sickle cell

disease patients, which might be be related to vaso-occlusion (Makis, Hatzimichael &

Bourantas, 2000; Pathare et al., 2004; Steinberg, 2006; Conran, Franco-Penteado & Costa,

2009; Qari, Dier & Mousa, 2012; Bandeira et al., 2014). In fact, this hyperstimulation has

been associated with sickle cell haplotype in Brazil, and as such is the obvious consequence

of worsening immune response to secondary infectious pathogens or co-morbidities of

infection.

Recently published data have shown that there are wide differences in Plasmodium

falciparum infection rates and multiplicity of infection between children who are carriers

of the sickle cell trait (hemoglobin AS) and those patients that possess the normal

hemoglobin (HbAA) gene (Williams et al., 2005; Kreuels et al., 2010; Gong et al., 2012;

Taylor, Parobek & Fairhurst, 2012; Gong et al., 2013). In addition, extensive differences

in genomic diversity of endothelial nitric oxide synthase (eNOS) genes, that had been

reported to bear clinical significance on sickle cell pathogenesis, has been reported
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between Africans and African Americans (Thomas et al., 2013). These polymorphisms

have been shown to be potential modifiers of clinical disease, with significant differences

reported between Indian and African sickle cell disease patients (Nishank et al., 2013;

Thakur et al., 2014), and these differences could be potentially linked to disease haplotype.

These interethnic differences can be attributed to the introduction of single nucleotide

polymorphisms over a very long period, which can ultimately influence gene expression,

protein structure and potentially function. Therefore, single nucleotide polymorphisms

located in certain promoter regions can affect transcription thereby altering variability

in the immune response, and contributing to disease susceptibility or host resistance

(Sakuntabhai et al., 2005). Despite the fact that African Americans can trace their ancestry

to sub-Saharan Africa, recombination and genetic diversity in the African American

gene pool has facilitated the introduction of single nucleotide polymorphisms leading

to differing immune response to infectious pathogens, such as malaria and tuberculosis

(Thomas et al., 2005; Jallow et al., 2009; Thomas et al., 2012b; Noumsi et al., 2011;

Hansson et al., 2013), and demonstrated in an Afro-Brazilian population (Covas et al.,

2007; Dettogni et al., 2013) sharing phenotypic and genotypic similarity with African

Americans. In addition, they are exposed to different groups of infectious agents compared

to their African counterparts, which in turn directs immune system development,

as shown in complement receptor-1 (CR1) polymorphisms in malaria-endemic and

non-endemic populations (Thomas et al., 2005). These phenomena would undergo a

similar diversification in the sickle cell disease population as well.

One of the most common immunogenetic markers, usually evaluated for immune

system response and susceptibility to infectious pathogens is dendritic cell-specific

ICAM-3 grabbing non-integrin (DC-SIGN) encoded by CD209. It assists in the migration

dendritic cells on endothelium as well as enabling the activation of signal transduction

pathways (Rappocciolo, Jenkins & Hensler, 2006; Dettogni et al., 2013). They are targets

for pathogens, seeking to impair the immune response in early infection, and are known

to recognize diverse pathogens, with reports showing association between CD209 gene

polymorphisms and infectious agents (Mummidi et al., 2001; Martin et al., 2004).

The guanine (G) to adenine (A) transition within the gene promoter (SNP-336 A/G;

rs4804803) polymorphism has shown the most significance, demonstrating association

with susceptibility to HIV, tuberculosis, leishmaniasis and dengue (Tailleux, Schwartz &

Herrmann, 2003; Tassaneetrithep, Burgess & Granelli-Piperno, 2003; Van Kooyk, Appelmelk

& Geijtenbeek, 2003; Martin et al., 2004; Sakuntabhai et al., 2005; Barreiro, Neyrolles &

Babb, 2006). Due to the interaction between malaria and sickle cell disease, the possibility

of imposing selection pressures, leading to changes in allele frequencies that can exacerbate

or ameliorate outcome of disease co-morbidities exists (Thomas et al., 2012a; Thomas

et al., 2012b). We have shown that there is an extensive diversity in the ethnogenomic

distribution of endothelial nitric oxide synthase (eNOS) polymorphisms (Thomas et

al., 2013). Despite reports to the contrary, we have also demonstrated that endothelin-1

polymorphisms, rather than eNOS, are the most important in African SCD (Thakur et

al., 2014). Therefore, since infections are common occurrences in SCD, there is a need
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to characterize the genomic diversity as well as haplotype frequency of immunogenetic

markers, thereby clarifying their contributions to infectious disease susceptibility or

co-morbidities. To this end, we examined the genotypic and allelic frequency of CD209

gene promoter polymorphism (SNP-336 A/G; rs4804803) in control groups (Africans

versus African Americans versus Caucasians) and between sickle cell disease populations

(African versus American). We conducted our analyses using a polymerase chain

reaction-restriction fragment length polymorphism (PCR-RFLP) assay.

MATERIALS AND METHODS
Subjects
This study encompasses sickle cell disease patients (cases) and control groups (Africans

versus African Americans), as well as diverse ethnic groups (Africans, African Americans

and Caucasians). The African portion was conducted at the Centre de Recherche et de

Lutte contre la Drepanocytose (CRLD), a sickle cell disease treatment and referral center in

Bamako, Mali. This study was approved by the Institutional Review Board (IRB), Rochester

Institute of Technology in addition to the original approval granted by the National Ethical

Review Board in Mali. Inclusion criteria include diagnosis with sickle cell disease and

presentation during crisis or during regular follow-up. Sickle cell disease and control group

demographic data has been described previously (Thakur et al., 2014). Briefly, African

sickle cell disease group consists of 51.5% males and 48.4% females (mean age: 21 years;

range: 1-51 years), and predominantly of the Bambaran tribe. Healthy population controls

comprised of family members or those recruited by word of mouth, able to provide

informed consent and without a diagnosis of sickle cell disease. In the United States,

control groups are African American and Caucasian self-identified individuals, recruited

from Shreveport, Louisiana. African American sickle cell disease patients were recruited as

part of the National Institute of Health-funded Cooperative Study of Sickle Cell Disease

(CSSCD).

Samples and genomic DNA extraction
Discarded EDTA-anticoagulated blood samples, from 376 subjects (145 sickle cell disease

patients and 231 controls) were spotted onto filter papers (GE Healthcare Sciences,

Piscataway, New Jersey, USA) and genomic DNA samples extracted from the dried, spotted

samples with the Qiagen Blood Mini Kit (Qiagen Inc., Valencia, California, USA), with

some changes to the manufacturer’s instruction (Thakur et al., 2014). Final elution volume

was 100 µl and DNA samples were stored at −20 ◦C until further analysis. Genomic DNA

samples from African American sickle cell disease patients as well as African American and

Caucasian controls were gratefully provided (Betty Pace, Georgia Regents University and

Joann Moulds, Grifols USA respectively).

Genotyping for CD209 single nucleotide polymorphism
To genotype for the single nucleotide polymorphisms of the CD209 gene promoter,

we utilized a previously published mis-matched primer, designed to artificially introduce

a restriction site (Sakuntabhai et al., 2005) and PCR assay (Dettogni et al., 2013),
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with a slight modification to the protocol. The primer sequences are 5′-GGATGGTCTGG

GGTTGACAG-3 (forward reaction) and 5′-ACTGGGGGTGCTACCTGGC-3′ (reverse

reaction). One µl of genomic DNA served as the template for PCR amplification, with

conditions optimized to 25 µl final volume and amplified using the Lucigen EconoTaq Plus

Green 2X Master Mix PCR system (Lucigen Corporation, Middleton WI), as described

previously (Thomas et al., 2012a), and PCR cycling parameters as published (Sakuntabhai

et al., 2005). Amplified PCR products (5 µl) was examined on a 2% (w/v) agarose gel and

photographed. Positive amplification yielded products of 150 bp, with size estimated with a

TriDye 100 bp DNA ladder (New England Biolabs, Boston, Massachusetts, USA).

Restriction fragment length polymorphism assay
We utilized the MscI (New England Biolabs, Boston, Massachusetts, USA) restriction

endonuclease for restriction fragment length polymorphism analysis of CD209 (DC-SIGN

336A/G) gene promoter variants. 10 µl of PCR product was mixed with 0.5 µl of enzyme

(5,000 U/ml), 5 µl of 1X CutSmart buffer and incubated at 37 ◦C for 1 h. Digested

products were analyzed on an ethidium bromide-stained agarose gel, and band analysis

carried out with a Doc-It LS Image Analysis Software (UVP Life Sciences, Upland,

California, USA). Restriction analysis was conducted by two investigators anonymously

and 50% of amplified products subjected to repeat digestion (3rd investigator), with 100%

concordance. Homozygote wild type variants (−336A/A) were undigested (150 bp) while

homozygote mutant variants (−336G/G) produced bands of 131 and 19 bp (Supplemental

Information 1).

Statistical analysis
Genotypic and allelic frequencies were determined with a simple PERL script, as described

previously (Thakur et al., 2014). Differences in genotype and allele frequencies between

populations were assessed by chi-square tests, while differences between sickle cell disease

and controls were assessed by odds ratio. Tests for deviation from Hardy-Weinberg

equilibrium (HWE) were performed, with SNP’s rejected based on the recommended

threshold of p < 0.05 in control individuals. Briefly, we calculated the number of alleles

and observed genotypes, and compared observed numbers of genotypes with that expected

under HWE, where the latter are computed on the basis of allele frequencies estimated

from the genotype frequencies (null hypothesis, H0). For observed numbers, the relative

cell frequencies are the estimates of the genotype probabilities (alternative hypothesis, H1).

For the comparison between observed and expected numbers of genotypes, likelihood

ratio chi-square is computed. Power calculations were computed using the Vanderbilt

University PS program http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize.

RESULTS
We found a significant difference in the genetic diversity of the promoter variant of CD209

(DC-SIGN1-336A/G; rs4804803) gene polymorphism in different populations. Genotypic

frequencies of 23.4%, 16.9% and 3.2% were observed for the homozygote mutant variant

between Africans, African Americans and Caucasians respectively (Table 1). Similar
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Table 1 Genotypic and allelic frequency of CD209 gene promoter polymorphism in diverse populations. Genotypic and allelic frequencies of the
CD209 gene promoter (rs4803803) polymorphism, determined among African (n = 244), African American (n = 379) and Caucasian (n = 159)

healthy controls. Healthy control populations are individuals without sickle cell disease (HbAA). Africans were recruited from Bamako, Mali; African
American and Caucasian populations were recruited from Shreveport, Louisiana. Odds ratio was calculated by Fisher’s two-tailed exact test. P value
<0.05 was considered significant.

Polymorphism Genotype Ethnic groups Chi square P-value

African
n = 231 (%)

African American
n = 379 (%)

Caucasian
n = 159 (%)

CD209 (rs4084803) A/A 60 (26.0) 124 (32.7) 101 (63.5) 62.97 2.12E−14

A/G 117 (50.6) 191 (50.4) 53 (33.3) 14.91 5.78E−04

G/G 54 (23.4) 64 (16.9) 5 (3.2) 29.13 4.72E−07

Allelic diversity

Allele n = 462 (%) n = 758 (%) n = 318 (%) Chi square P-value

CD209 (rs4804803) A 237 (51.3) 439 (57.9) 255 (80.2) 70.09 6.03E−16

G 225 (48.7) 319 (42.1) 63 (19.8) 70.09 6.03E−16

findings were made for the allelic frequencies of the homozygote mutant variants (48.7%,

42.1% and 19.8% respectively), with a significant difference in the genotypic and allelic

frequencies (P < 0.05) of CD209 gene promoter variant between all population groups.

Surprisingly, the homozygote mutant variant (GG) is almost absent among Caucasians

(3.2%; Fig. 1). The genotypic and allelic frequencies of the homozygote mutant variant

(snp-336GG) had the highest frequency among Africans (23.4% and 48.7% respectively).

The wild type and heterozygote variants (AA and AG), that are necessary to facilitate

dendritic cell activation and function during immune response, occurred at higher

frequencies among Caucasians (96.8%) and African Americans (83.1%), compared to

the 76% among healthy African controls.

We also examined the diversity of CD209 (snp 336A/G) gene promoter polymorphisms

between sickle cell disease and healthy control groups in Africa and United States. There

was an extensive and significant difference in the genotypic (Fig. 2 and Table 2) frequency

of the CD209 mutant variant (snp 336G/G) between sickle cell disease and control

populations in Africa (P = 0.002). Surprisingly, this was not the case between sickle cell

disease and control populations recruited from the United States (Fig. 3) (P = 0.54). In

addition, the mutant variant has a higher frequency among healthy control groups than

sickle cell patients (23.4% versus 10.4% respectively) in Africa, but no difference in the

United States (16.9% versus 15.1% for controls and cases respectively). Similar observation

was made for the allelic frequencies between controls and cases in Africa and United States

(Table 3). The SNP effect is insignificant between American sickle cell disease and controls,

but significant among Africans, with a 40% power from our analysis.

Since clinical manifestation of sickle cell disease varies greatly within an individual,

across individuals of the same population and those of different populations, we evaluated

the diversity of CD209 (snp 336A/G) gene promoter polymorphisms between sickle cell

groups recruited from Africa and United States. Surprisingly, there was no difference either

in genotypic (P = 0.19) or allelic frequencies (P = 0.72) of mutant variants (snp 336G/G)

Noble et al. (2015), PeerJ, DOI 10.7717/peerj.799 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.799


Figure 1 Genotypic distribution of CD209 gene promoter polymorphism (SNP-336 A/G; rs4804803)
in Caucasian, African American and African healthy controls. Amplified PCR products were digested
with MscI restriction endonuclease (Fisher Scientific, Waltham, Massachusetts, USA), and expressed
on a 2% ethidium bromide-stained agarose gel. Homozygote wild type variant (snp-336A) showed no
digestion (150 bp); homozygote mutant variant (snp-336G) produced two bands (131 and 19 bp) on
digestion (lower band size not shown). Marker: 100 bp ladder, where the 500 bp band stains most
intensely (New England Biolabs, Ipswich, Massachusetts, USA). Black bars: Africans; blue bars: African
Americans; red bars: Caucasians.

Table 2 Genotypic frequency of CD209 polymorphisms between sickle cell and control groups. Genotypic frequencies of the CD209 gene
promoter (rs4803803) polymorphism, determined among African and American sickle cell disease and control groups. Sickle cell disease (HbSS)
populations were recruited from Bamako, Mali (African) and Augusta GA (American). Control populations are individuals without sickle cell
disease, and were recruited from Mali (African) and Shreveport LA (American). A/G denotes the alleles at the CD209 locus. Odds ratio was calculated
by Fisher’s two-tailed exact test. P value <0.05 was considered significant.

African

Polymorphism Genotype SCD:
n = 145 (%)

Controls:
n = 231 (%)

Odds ratio
(95% CI)

P-value

CD209 (rs4804803) A/A 45 (31.0) 60 (26.0) 1.28 (0.79-2.08) 0.29

A/G 85 (58.6) 117 (50.6) 1.38 (0.89-2.15) 0.14

G/G 15 (10.4) 54 (23.4) 0.38 (0.19-0.72) 0.002

African American

SCD:
n = 331 (%)

Controls:
n = 379 (%)

Odds ratio
(95% CI)

P-value

CD209 (rs4804803) A/A 110 (33.2) 124 (32.7) 1.02 (0.74–1.42) 0.94

A/G 171 (51.7) 191 (50.4) 1.05 (0.77–1.43) 0.76

G/G 50 (15.1) 64 (16.9) 0.88 (0.57–1.33) 0.54
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Figure 2 Genotypic frequency of CD209 gene promoter polymorphism (SNP-336 A/G; rs4804803)
among African sickle cell disease and control groups. Amplified PCR products were digested with
MscI restriction endonuclease (Fisher Scientific, Waltham, Massachusetts, USA), and expressed on a 2%
ethidium bromide-stained agarose gel. Homozygote wild type variant (snp-336A) showed no digestion
(150 bp); homozygote mutant variant (snp-336G) produced two bands (131 and 19 bp) on digestion
(lower band size not shown). Marker: 100 bp ladder, where the 500 bp band stains most intensely (New
England Biolabs). Blue bars-sickle cell disease; red bars-control groups.

Figure 3 Genotypic frequency of CD209 gene promoter polymorphisms (SNP-336 A/G; rs4804803)
among African American sickle cell disease and control groups.
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Table 3 Allelic frequency of CD209 polymorphisms between sickle cell and control groups. Allelic frequencies of the CD209 gene promoter
(rs4803803) polymorphism, determined among African and American sickle cell disease and control groups. Sickle cell disease (HbSS) populations
were recruited from Bamako, Mali (African) and Augusta GA (American). Control populations are individuals without sickle cell disease, and were
recruited from Mali (African) and Shreveport LA (American). A/G denotes the alleles at the CD209 locus. Odds ratio was calculated by Fisher’s
two-tailed exact test. P value <0.05 was considered significant.

African

Polymorphism Allele SCD:
n = 290 (%)

Controls:
n = 462 (%)

Odds ratio
(95% CI)

P-value

CD209 (rs4804803) A 175 (60.3) 237 (51.3) 1.44 (1.60–1.97) 0.02

G 115 (39.7) 225 (48.7) 0.69 (0.51–0.94) 0.02

African American

SCD:
n = 662 (%)

Controls:
n = 758 (%)

Odds ratio
(95% CI)

P-value

CD209 (rs4804803) A 391 (59.1) 439 (57.9) 1.05 (0.84–1.30) 0.67

G 271 (40.9) 319 (42.1) 0.95 (0.77–1.19) 0.67

Notes.
SCD, sickle cell disease; CI, confidence interval.

Table 4 Genotypic and allelic frequency of CD209 polymorphisms between sickle cell disease groups. Genotypic and allelic frequencies of the
CD209 gene promoter (rs4803803) polymorphism between African and American sickle cell disease groups. Sickle cell disease (HbSS) populations
were recruited from Bamako, Mali (African) and Augusta GA (American). A/G denotes the alleles at the CD209 locus. Odds ratio was calculated by
Fisher’s two-tailed exact test. P value <0.05 was considered significant.

Genotypic frequency

Polymorphism Genotype Mali:
n = 145 (%)

USA:
n = 331 (%)

Odds ratio
(95% CI)

P-value

CD209 (rs4804803) A/A 45 (31.0) 110 (33.2) 0.90 (0.59–1.40) 0.67

A/G 85 (58.6) 171 (51.7) 1.32 (0.87–2.00) 0.16

G/G 15 (10.4) 50 (15.1) 0.65 (0.33–1.23) 0.19

Allelic frequency

Polymorphism Allele Mali:
n = 290 (%)

USA:
n = 662 (%)

Odds ratio
(95% CI)

P-value

CD209 (rs4804803) A 175 (60.3) 391 (59.1) 1.05 (0.79–1.41) 0.72

G 115 (39.7) 271 (40.9) 0.95 (0.71–1.27) 0.72

Notes.
SCD, sickle cell disease; CI, confidence interval.

between sickle cell disease groups (Table 4). The similarities in the genotypic and allelic

frequencies (10.4% versus 15.1% and 39.7% versus 40.9% for genotypes and alleles

respectively) of the homozygote mutant variants were statistically insignificant.

DISCUSSION
Sickle cell disease is the most commonly inherited hemoglobinopathy with a worldwide

distribution. It is a major disease represented in populations of sub-Saharan Africa, the

Middle East and several parts of India; it remains a significant health burden borne by the

African American population in the United States, as well as in several Caribbean island

nations, whose populations are dominated by ethnicities of African origin. It has recently
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been classified as a disease that would create a global challenge to the population of three

major countries (Piel et al., 2013), therefore requiring a need to clarify and decipher the

various parameters contributing to its severity and diverse clinical pathophysiology among

and between individuals from different populations. To our understanding, this is the

first report to elucidate the genomic diversity of CD209 gene promoter (snp-336A/G)

polymorphisms in sickle cell disease, with the potential to clarify its role or otherwise in

susceptibility to infectious pathogens between sickle cell disease and control groups. We

chose three ethnically distinct populations (Bambarans from Mali, African Americans

from Shreveport, Louisiana and Augusta, Georgia, and Caucasians from Shreveport

Louisiana), and as such permits conclusive inferences based on our finding. African case

and controls were all from the Bambaran tribe in Mali, thereby facilitating analysis from

an ethnically homogeneous population in comparison to the genetic heterogeneity of the

African American group.

Our observation that the CD209 gene promoter homozygous wild-type variant

(snp-336A/A) occurred at a lower frequency among Africans compared to African

Americans and Caucasians is significant, though not unexpected considering the degree

of genetic admixture in the African American population. This is similar to our previous

finding while examining the genomic diversity of endothelial nitric oxide synthase gene

polymorphisms in differing populations (Thomas et al., 2013). Though both populations

share a common ancestry, the many years of genetic admixture and the legacies of slavery

would affect the genetic contribution of African genes into the African American genome.

The homozygote wild type variant is necessary for dendritic cell activation and initiation of

adaptive immune response. Therefore, the reduced frequency of this allele among Africans

might be a probable contributory factor to the susceptibility to infectious pathogens. On

the other hand, selective pressure would favor those with adapting mechanisms, leading

to them becoming adapted to other types of infections, diseases or conditions. A very

good example is the hypothesis that sickle cell disease is highly prevalent in malaria

endemic areas because of selection pressure that favors individuals with hemoglobin S,

believed to be a contributor to malaria resistance in this group (Gong et al., 2012; Gong

et al., 2013). Unfortunately, sub-Saharan Africa is blessed with a geographic and weather

pattern that sustains the endemicity of many neglected diseases, and could potentially

explain the often-encountered cases of multiple co-morbidities in a single host. This

could be a disadvantage in the African continent, whereby immune response is limited,

contributing to preponderance of infections. The possibility that these infectious agents

might have contributed to the imposition of selection pressure (presenting as an advantage

among sickle cell disease cases in Mali) is of potential significance and deserves further

analysis. One approach to clarify this would be to generate monocyte-derived dendritic

cells from peripheral blood mononuclear cells, collected from healthy controls that

are CD209 homozygote wild type and homozygote mutant, and between sickle cell

disease groups, and evaluate the differential expression of CD14 (monocyte/macrophage

marker) or DC-SIGN (dendritic cell marker). A decrease in CD209 expression in the

homozygote mutant variant of DC-SIGN in sickle cell disease patients resulting in lower
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susceptibility to infectious stimulus, with the reverse the case among control groups with

the homozygote wild type variant would be a confirmatory outcome. Similar observation

has been reported in dengue virus infection (Sakuntabhai et al., 2005; Wang et al., 2011).

An additional mechanism for our observation could be that there is an increased

mortality of sickle cell disease patients that are also carriers of the CD209 ‘G’ allele,

especially homozygotes, and are therefore missing from the Malian SCD cohort. Such

phenomenon might not be the case in Western industrialized countries, where early sickle

cell disease mortality is prevented by antibiotics and other prophylactic measures. An

alternative approach to decipher the present observation would be to replicate this study

in newborns or children with sickle cell disease recruited during the first year of life, before

the expected mortality.

This observation in Africans is enhanced by the reverse observation in the Caucasian

population of the United States. The wild type variants (AA, AG) allele is 97% among

Caucasians and 83% among African Americans, with the mutant variant almost absent

in both groups (3.2% among Caucasians and 16% among African Americans). This

low genotypic frequency of the homozygote mutant variant is similar to results from

previous reports, which showed 0%, 3% and 5% in a Taiwanese, general Brazilian and

Sao Paulo populations respectively (Kashima et al., 2009; Wang et al., 2011; Dettogni et

al., 2013). In a study conducted among three groups of healthy control populations in

Thailand, a similar scenario was observed, with a genotypic frequency of 5%, 1% and

3% (Sakuntabhai et al., 2005). This observation confirms our hypothesis that this marker

may have undergone evolutionary change in extant populations outside of Africa Miller,

1994; Gibbons, 2001; Zimmer, 2001; Thomas et al., 2005. Populations with the homozygote

wild type variant are able to fight infections, hence the reduced prevalence of infectious

agents, while the reverse may be the case in Africa. Further studies are imperative, before a

definitive argument can be made, whereby other infectious diseases are examined viz-a-viz

genotypic and allelic diversities of CD209 gene promoter polymorphism in the African

population. The ancestral-susceptibility model, which states that disease susceptibility

alleles are ancestral while derived variants are protective, has been proposed and validated

(Di Rienzo & Hudson, 2005; Biswas & Akey, 2006), further emphasizing that ancestral alleles

previously adapted might become maladaptive due to dispersal into new environmental

niches (Biswas & Akey, 2006). Extensive reports of geographically restricted selection have

been found in genome-wide studies of humans and human diseases (Carlson et al., 2005;

Weir et al., 2005; Voight, Wen & Pritchard, 2006; Nakajima et al., 2004; Sakagami et al.,

2004; Di Rienzo & Hudson, 2005; Young et al., 2005), and seems clear therefore, that local

adaptation in extant populations is a major contributor (Fullerton et al., 2002; Rockman et

al., 2004; Thompson et al., 2004).

The lack of differences in genotypic and allelic frequencies of homozygote mutant

variants between sickle cell disease and control groups in the United States could be

due to the low frequency of the mutant allele (small proportion of individuals with the

mutant allele) in the US population. A proposed method to clarify this further would be

to study sickle cell disease patients from other regions of the United States, considering the
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known reports of sub-continental regional population substructure in African American

genetic makeup (Kayser et al., 2003; Lao et al., 2010) and different rates of Caucasian gene

contribution to the genomic ancestry of African Americans.

Based on our present observation, we conclude that the sickle cell gene (as confirmed for

malaria infection) probably confers protection against common infectious co-morbidities

in Africa. The higher frequency of CD209 gene promoter homozygote mutants in the

non-SCD group reveals an impaired capacity to mount an immune response to infectious

diseases, potentially a contributor to the dominance of infectious co-morbidities in

this population. The CD209 gene promoter polymorphism might be a major player in

susceptibility to common infectious pathogens among Africans, and a contributor to

diversity and severity of SCD that requires elucidation, while characterizing genetic risks

imposed by locale-specific allele frequencies (Mtatiro et al., 2014). The implication of

this finding for infectious co-morbidities or as modifiers of SCD pathophysiology, and its

significance in African Americans with SCD deserves further deconvolution. Determining

if this protection is regulated in any fashion by sickle cell disease haplotypes in Africa

(Benin, Bantu, Cameroon, Senegal) and evaluating plasma levels of immunoglobulin

E and eosinophilia, as markers of common helminthic infections, between disease and

control groups, is needed.

Finally, it is important to clarify the synergistic or pathogenic role of the sickle cell gene

in disparate disease and population groups. This report should be considered preliminary

because of sample size limitations, thereby advocating for expansive studies in other

population groups, as well as examination of other immunogenetic markers, especially

as it relates to clinical endpoints in sickle cell disease. Genetic ancestry studies that might

clarify the extent of admixture in the American sickle cell disease group and how this

impact our current finding would be imperative. Analyzing American sickle cell disease

groups, recruited from different regions (Northeast, Mid-Atlantic, Midwest etc.) under

same conditions as this report, would be very important, considering the richness and

diversity of the African American gene pool (Collins-Schramm et al., 2002; Kittles et al.,

2002; Kayser et al., 2003; Lind et al., 2007).

Abbreviations

SCD sickle cell disease

HbAA hemoglobin AA

HbSS hemoglobin SS;

PCR-RFLP polymerase chain reaction-restriction fragment length polymorphism

OR odds ratio
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