Invasions of gladiolus rust are caused by a widely-distributed clone of *Uromyces transversalis* (#38564)

First submission

Guidance from your Editor

Please submit by 4 Jul 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 1 Figure file(s)
- 5 Table file(s)
- 1 Other file(s)

DNA data checks

- Have you checked the authors <u>data deposition statement</u>?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Invasions of gladiolus rust are caused by a widely-distributed clone of *Uromyces transversalis*

Jeffery DeLong¹, Jane Stewart^{1,2}, Alberto Valencia-Botin³, Kerry Pedley⁴, James Buck⁵, Marin T Brewer^{Corresp, 1}

Corresponding Author: Marin T Brewer Email address: mtbrewer@uga.edu

Uromyces transversalis, the causal agent of Gladiolus rust, is an invasive plant pathogen in the United States and is regulated as a quarantine pathogen in Europe. The aim of this research was to: (i) determine the origin of introductions of *U. transversalis* to the United States, (ii) track the movement of genotypes, and (iii) understand the worldwide genetic diversity of the species. To develop molecular markers for genotyping, whole genome sequencing was performed on three isolates collected in the United States. Genomes were assembled *de novo* and searched for microsatellite regions. Primers were developed and tested on ten isolates from the United States resulting in the identification of 24 polymorphic markers. Among 92 isolates collected from Costa Rica, Mexico, New Zealand, Australia, and the United States there were polymorphisms within isolates with no genotypic diversity detected among isolates. The microsatellite loci and flanking regions showed high diversity and two divergent genomes within dikaryotic individuals, yet no diversity among individuals, suggesting that the invasive *U. transversalis* populations from a widely studied geographic area are strictly clonal.

¹ Department of Plant Pathology, University of Georgia, Athens, Georgia, United States

² Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States

³ Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico

⁴ Foreign Disease-Weed Science Research Unit, United States Department of Agriculture Agricultural Research Service, Fort Detrick, Maryland, United States

⁵ Department of Plant Pathology, University of Georgia, Griffin, Georgia, United States

30

Invasions of Gladiolus Rust are Caused by a Widely-

2 Distributed Clone of *Uromyces transversalis*

3	
4	Jeffery A. DeLong ¹ , Jane E. Stewart ^{1,2} , Alberto Valencia-Botin ³ , Kerry F. Pedley ⁴ , James W.
5	Buck ⁵ , Marin T. Brewer ^{1*}
6	
7	¹ Department of Plant Pathology, University of Georgia, Athens, GA 3, USA
8	² Current address: Department of Bioagricultural Sciences and Pest Management, Colorado State
9	University, Fort Collins, CO, USA
10	³ Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, México
11	⁴ Foreign Disease-Weed Science Research Unit, United States Department of Agriculture
12	Agricultural Research Service (USDA-ARS), Fort Detrick, MD, USA
13	⁵ Department of Plant Pathology, University of Georgia, Griffin, GA, USA
14	
15	Corresponding Author:
16	Marin T. Brewer*
17	2105 Miller Plant Sciences, Athens, GA, 30602, USA
18	Email address: mtbrewer@uga.edu
19	
20	<u>Commercial Endorsement Disclaimer</u> – Mention of trade names or commercial products in this
21	publication is solely for the purpose of providing specific information and does not imply
22	recommendation or endorsement by the U.S. Department of Agriculture.
23	
24	<u>Equal Opportunity/Non-Discrimination Statement</u> – The U.S. Department of Agriculture
25	(USDA) prohibits discrimination in all its programs and activities on the basis of race, color,
26	national origin, age, disability, and where applicable, sex, marital status, familial status, parental
27	status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all
28	or a part of an individual's income is derived from any public assistance program. (Not all

prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact

- USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of
 discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue,
 SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD).
- 34 USDA is an equal opportunity provider and employer.

36

Abstract

37 Uromyces transversalis, the causal agent of Gladiolus rust, is an invasive plant pathogen in the 38 United States and is regulated as a quarantine pathogen in Europe. The aim of this research was 39 to: (i) determine the origin of introductions of *U. transversalis* to the United States, (ii) track the 40 movement of genotypes, and (iii) understand the worldwide genetic diversity of the species. To 41 develop molecular markers for genotyping, whole genome sequencing was performed on three 42 isolates collected in the United States. Genomes were assembled de novo and searched for 43 microsatellite regions. Primers were developed and tested on ten isolates from the United States 44 resulting in the identification of 24 polymorphic markers. Among 92 isolates collected from 45 Costa Rica, Mexico, New Zealand, Australia, and the United States there were polymorphisms 46 within isolates with no genotypic diversity detected among isolates. The microsatellite loci and 47 flanking regions showed high diversity and two divergent genomes within dikaryotic individuals, 48 yet no diversity among individuals, suggesting that the invasive *U. transversalis* populations

50

51

49

Introduction

- Gladiolus rust, caused by the fungus *Uromyces transversalis*, was first identified in South Africa
- by von Thümen in 1876; however, little is known about the genetic diversity, center of origin, or
- 54 historical dispersal patterns of U. transversalis. It was not until about a century after it was
- initially described that the fungus invaded northern Africa and then southern Europe in 1966
- 56 (Fig. 1), reaching England by 1996 (Beilharz et al., 2001). Subsequently, Gladiolus rust was
- 57 detected in Argentina in 1979 (Lindquist et al., 1979), Brazil in 1981 (Pita et al., 1981), Australia
- 58 in 1994 (Beilharz et al., 2001), New Zealand in 1998 (McKenzie, 2000), Mexico in 2004
- 59 (Rodríguez-Alvarado et al., 2006), the United States (USA) in 2006 (Blomquist et al., 2007),
- 60 Cuba in 2010 (Martínez-de la Parte et al., 2011) and Venezuela in 2016 (Mohali and Aime,

from a widely studied geographic area are strictly clonal.

61	2018). <i>Uromyces transversalis</i> , the causal agent of Gladiolus rust, can be devastating to species
62	of Gladiolus and is difficult to eradicate once established.
63	
64	The fungus <i>U. transversalis</i> is an obligate biotrophic pathogen that grows and reproduces on
65	members of the family Iridaceae in arid, Mediterranean, and tropical climates (Garibaldi and
66	Aloj, 1980; Hernández, 2004; Peterson and Berner, 2009; Rizvi et al., 2007). In regions where
67	Gladiolus rust is established the disease can cause crop losses of 10-100%, unless fungicide
68	applications are used (Beilharz et al., 2001; Ferreira and Nevill, 1989; Hernández, 2004;
69	Littlejohn and Blomerus, 1997; Valencia-Botin et al., 2013). As a consequence, the pathogen is
70	considered of quarantine significance in Europe and was regulated in the USA from 2007 to
71	2015 (Peterson and Berner, 2009; Rizvi et al., 2007).
72	
73	Gladiolus flowers are imported into the USA from multiple countries including Mexico, where
74	U. transversalis is prevalent in Gladiolus production areas (Valencia-Botin et al., 2013).
75	Shipments of Gladiolus flowers infected with U. transversalis arriving to the United States from
76	Mexico have been repeatedly intercepted at border stations in California and Texas (Brown,
77	2005; Hernández, 2004; Rizvi et al., 2007; Valencia-Botin et al., 2013), and at a Florida border
78	station with imports arriving from Mexico and Brazil (Schubert et al., 2007). A quarantine and
79	national management plan strategy was followed by both federal and state quarantine officials in
80	an attempt to contain and manage U . $transversalis$ in the USA (Rizvi et al. 2007; Valencia-Botin
81	et al. 2013). Despite quarantine measures, severe outbreaks of Gladiolus rust occurred in 2014 in
82	the United States, leading the U.S. Department of Agriculture, Animal and Plant Health
83	Inspection Services (USDA-APHIS) to revise its response requirements in 2015 (USDA-APHIS,
84	2015).
85	
86	Uromyces transversalis primarily infects the leaves and stem of its host; however, under heavy
87	inoculum pressure it can also infect the flowers (Ferreira and Nevill, 1989). Visibly infected
88	plants lose economic value as an ornamental cut flower (Valencia-Botin et al., 2013). Infection
89	by the rust fungus reduces the plant's vigor, resulting in reduced flower production (Wise et al.,
90	2004). The initial symptoms of <i>U. transversalis</i> on Gladiolus leaves are small chlorotic spots,
91	which eventually break the leaf surface to reveal small yellow-orange uredinia. The uredinia

92	coalesce to form large lesions (3-/ mm) laterally across the leaf surface (Beilharz et al., 2001;
93	Martínez-de la Parte et al., 2011; Rizvi et al., 2007; Rodríguez-Alvarado et al., 2006; Valencia-
94	Botin et al., 2013). <i>U. transversalis</i> produces urediniospores and teliospores, but has no known
95	alternate host (Hernández 2004) or other spore types (Hernández 2004; Rizvi et al. 2007). This
96	suggests that sexual reproduction does not occur in <i>U. transversalis</i> due to an incomplete life
97	cycle. As with many rusts, the urediniospores are the dispersal and infection spores. U .
98	transversalis spores may be disseminated locally by wind or water splash (Hernandez, 2004).
99	Long-distance dispersal of urediniospores may occur naturally by wind, but it is primarily
100	attributed to human-mediated movement of infected plants, including potted flowers, cut flowers
101	and corms (Beilharz et al., 2001; Wise et al., 2004).
102	
103	Molecular markers for genotyping isolates are necessary to understand the genetic diversity and
104	historical dispersal patterns of <i>U. transversalis</i> . Due to the high variability, multiplexing
105	capacity, ease of reproducibility, and relatively low cost associated with processing a large
106	number of isolates (Frenkel et al., 2012; Leclercq et al., 2007), microsatellite markers are the
107	ideal marker choice for determining the genetic diversity and population structure of U .
108	transversalis. The objectives of this research were to: i) develop microsatellite markers to
109	genotype isolates of <i>U. transversalis</i> , ii) determine the geographic origin and track the movement
110	of introduced genotypes of <i>U. transversalis</i> in the USA, and iii) understand the genetic diversity
111	of U. transversalis collected from a wide geographical area in order to understand historical
112	dispersal patterns of this invasive fungus. We hypothesize that U . $transversalis$ was introduced
113	into the USA from Mexico, and that the invasive populations have low genetic diversity.
114	
115	Materials & Methods
116	Isolate collection and DNA extraction
117	DNA was extracted from a total of 92 samples of <i>Uromyces transversalis</i> (Table 1) in dried leaf
118	tissue obtained from Australia ($n = 7$), New Zealand ($n = 10$), Mexico ($n = 60$), or as fresh,
119	infected leaf tissue collected within the USA ($n = 10$) or from border interceptions from Costa
120	Rica ($n = 5$). From each preserved leaf tissue sample, DNA was extracted using a modified
121	genomic DNA mini-prep protocol (Lee et al., 1988). Briefly, multiple uredinia were scraped to
122	remove urediniospores (0.02-0.04 g) using a sterilized scalpel and transferred into 1.5 mL

123 reaction tubes containing 246.9 µL lysis buffer (150 µL sddH₂O, 25 µL 0.5 M EDTA (pH 8), 25 uL 1.0 M Tris, 43.75 uL 20% SDS solution, 3.15 uL 20 mg/L proteinase K and 0.0025 g 124 125 NaHSO₃) (Thermo Fisher Scientific, Watham, MA). Sample tubes were vortexed for 1 min, incubated at 65 °C for 15 min, and centrifuged (13,978 \times g for 5 min). The precipitates were 126 discarded and the supernatants transferred to new 1.5 µL microcentrifuge tubes. A solution of 50 127 μL 7.5 M NH₄OAc (Sigma-Aldrich, St. Louis, MO) was added to each tube, vortexed for 10 s, 128 and tubes were chilled on ice for 15 min. Samples were then centrifuged (13,978 \times g for 3 129 130 min). The supernatants were again transferred to new 1.5 mL microcentrifuge tubes and 175 μL isopropanol was added, tubes were mixed and centrifuged (13.978 \times g for 5 min), and the 131 supernatant was discarded. The pellets were rinsed twice with 250 uL of 70% ethanol solution. 132 dried and re-suspended with 25 uL sddH₂O, then incubated at 30 °C for 10 min. All samples 133 134 were stored at -20 °C until further use. DNA extractions from fresh, infected leaf tissue was performed using a modified hexadecyltrimethylammonium bromide (CTAB) protocol (Rogers 135 136 and Bendich, 1985). Briefly, one to three 1 cm² excised pieces of infected leaf tissue were frozen and using a mortar and pestle, ground to a fine powder in liquid nitrogen. DNA extraction buffer 137 138 (100 mM Tris, pH 7.5; 1% CTAB; 0.7 M NaCl; 10 mM EDTA; 1% 2-mercaptoethanol; 0.3 mg/ml proteinase K) was added to the ground tissue and incubated at 65°C for 30 min, followed 139 140 by two rounds of chloroform: isoamyl alcohol (1:1) extraction, and precipitated with 2-propanol. DNA was resuspended in TE buffer containing 1 mg/ml RNase. 141 142 143 Three *U. transversalis* isolates collected in the USA were maintained at the USDA Agricultural 144 Research Service, Foreign Disease-Weed Science Research Unit, biosafety level-3 plant disease 145 containment facility at Ft. Detrick, Maryland. These samples were propagated from U. transversalis-infected Gladiolus plants collected from California and Florida commercial fields 146 147 in 2011 and 2014 (Table 1). Prior to extraction using the modified CTAB protocol described above, urediniospores were harvested from infected Gladiolus plants with a microcyclone spore 148 149 collector (Cheery and Peet 1966; Peterson and Berner 2009; Tervet et al. 1951). Spores were germinated by placing 300 mg of freshly harvested spores in a 23 cm × 33 cm glass container 150 that contained 300 mL of sterile water with 15 µg ampicillin. A sterile wooden applicator stick 151 was used to break up clumps of spores, so that the spores were evenly distributed across the 152 153 surface of the water. The container was covered and left in the dark overnight (16-18 hours). The

154	germinated spores were then scraped from the surface of the water, blotted dry with sterile-paper
155	towels and stored in -20 °C.
156	
157	Genome sequencing and assembly
158	Genomic DNA obtained from three isolates (CA11-1, FL11-1, and FL11-2) was standardized to
159	$50.0 \text{ ng/}\mu\text{L}$ using a nanodrop and sent to the Georgia Genomics Facility (GGF) (University of
160	Georgia, Athens, GA) for library preparation and sequencing using the Illumina MiSeq platform
161	as 300-bp paired ends reads using a 600 cycle cartridge with a NGS library preparation method.
162	The raw forward and reverse reads of each isolate was observed using FASTQC v.11.2
163	(Babraham Bioinformatics Institute). Quality control was performed using FASTX-
164	Toolkit v.3.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/). All reads with a phred score below
165	Q=22 were removed prior to assembly BySS v.1.3.6 (Simpson et al., 2009) was used for <i>de</i>
166	novo assembly of forward and reverse reads into contiguous sequences (contigs) for each isolate,
167	using an optimal K-mer value of 64 determined with multiple assembly trials enerated contigs
168	were then imported into Geneious v.6.1.8 (Kearse et al., 2012).
169	
170	Microsatellite discovery and marker development
171	To increase the potential for successful microsatellite marker development, only contigs 200 bp
172	or greater in size with matched pair reads were considered. Contigs and singletons were searched
173	for at least five perfect repeats of trimeric, tetrameric, pentameric, and hexameric motifs in
174	Geneious v.6.1.8 using Phobos v.3.3.12 (Kearse et al., 2012; Mayer, 2006). Mono and
175	dinucleotide repeats were eliminated due to the difficulty of scoring allele differences. Contigs
176	
	with microsatellites identified using our criteria were aligned using Geneious Align v.6.1.8.
177	with microsatellites identified using our criteria were aligned using Geneious Align v.6.1.8. default parameter dicrosatellites shared among the three isolates were visually assessed for
177	default parameter dicrosatellites shared among the three isolates were visually assessed for
177 178	default parameter dicrosatellites shared among the three isolates were visually assessed for sequence variation. Those that showed microsatellite repeat number variation among isolates and
177 178 179	default parameter in Aicrosatellites shared among the three isolates were visually assessed for sequence variation. Those that showed microsatellite repeat number variation among isolates and had at least 50 bp flanking each side of the repeat were considered acceptable for primer design.
177 178 179 180	default parameter in Aicrosatellites shared among the three isolates were visually assessed for sequence variation. Those that showed microsatellite repeat number variation among isolates and had at least 50 bp flanking each side of the repeat were considered acceptable for primer design. Primers for amplification of microsatellite loci were designed with Primer3web v.4.0 (Koressaar

84	Sixty primer pairs for candidate microsatellite loci were initially evaluated on the three
85	sequenced isolates CA11-1, FL11-1, and FL11-2 to verify that the PCR worked with the
86	designed primers and that the PCR amplicons were the expected size. PCR was carried out in 10
87	μL reactions with 1 μL of 10 \times ExTaq buffer (Takara Bio Inc., Mountain View, CA), 1 μL of
88	2.5 mM dNTPs (Takara Bio Inc.), $0.25~\mu L$ of 10 μM forward primer, $0.25~\mu L$ of 10 μM reverse
89	primer (Integrated DNA Technologies, Coralville, IA), 0.1 µL of ExTaq polymerase (Takara Bio
90	Inc.), 6.9 μL of sterile distilled H_20 , and 0.5 μL of 50.0 $ng/\mu L$ DNA template. Reaction
91	conditions were 94 °C for 2 min followed by 35 cycles of denaturation at 94 °C for 30 s,
92	annealing at 59 °C for 30 s and extension at 72 °C for 30 s, followed by a final extension of 72
93	°C for 5 min. Amplification of PCR products within the expected size range was confirmed by
94	electrophoresis run at 95 V (4.75 V/cm) on a 2% (wt/vol) agarose gel (Alfa Aesar, Haver Hill,
95	MA) for 2.5 hours using a 100 bp size standard (New England Biolabs Inc., Ipswich, MA).
96	
97	Twenty-five primer sets (Table 2) that successfully amplified the three sequenced isolates were
98	screened for polymorphism on a panel of <i>U. transversalis</i> that included seven additional isolates
99	from California (Table 1). A three-primer method (Schuelke 2000) was used in this round of
200	marker evaluation. The forward primer for each candidate marker had a CAG tag (5'-
201	CAGTCGGGCGTCATCA-3') (Hauswaldt and Glenn, 2003) added to the 5' end. The third
202	primer consisted of the CAG tag, labeled with a 6FAM fluorescent dye (Invitrogen Inc.,
203	Carlsbad, CA) on the 5' end. PCR was carried out in 12 μ L reactions with 1.2 μ L of 10 \times ExTaq
204	buffer (Takara Bio Inc., Mountain View, CA), 1.2 μL of 2.5 mM dNTPs (Takara Bio Inc.), 0.1
205	μL of 10 μM forward primer, 0.5 μL of 10 μM reverse primer (Integrated DNA Technologies,
206	Coralville, IA), 0.5 μ L of 10 μ M 5' 6FAM-labeled CAG tag primer (Invitrogen Inc.), 0.1 μ L of
207	ExTaq polymerase (Takara Bio Inc.), 7.9 μ L of sterile distilled H ₂ 0, and 0.5 μ L of approximately
208	$50.0 \text{ ng/}\mu\text{L}$ DNA template. Reaction conditions were 94 °C for 2 min followed by 35 cycles of
209	denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s and extension at 72 °C for 30 s,
210	followed by a final extension of 72 °C for 5 min. Amplification of individual PCR products
211	within the expected size range was confirmed by electrophoresis.
212	
213	One microliter of a 1:10 dilution of PCR product was added to 0.1 μL of GeneScan 500 LIZ-
214	labeled size standard and 9.9 μL of Hi-Di formamide (Applied Biosystems Inc., Foster City,

215	CA). Amplicons were denatured by incubation at 95 °C for 5 min and immediately placed on ice.
216	Fragment analysis was conducted at the GGF on an Applied Biosystems 3730xl 96-capillary
217	DNA Analyzer. GeneMapper v.4.0 (Applied Biosystems Inc.) and Geneious v.6.1.8 (Kearse et
218	al. 2012) were used to determine allele sizes based on electropherograms.
219	
220	Multiplex PCR
221	Eight primer sets (Table 2, see loci with asterisks) that consistently produced peaks within the
222	expected size range for the 10 isolates were optimized for multiplex PCR. Two multiplex
223	reactions (multiplex 1 – <i>Ut513</i> , <i>UtCA759</i> , <i>Ut2648</i> and <i>Ut3161</i> ; multiplex 2 – <i>Ut497</i> , <i>Ut1841</i> ,
224	Ut1908 and Ut2048) were developed to increase efficiency and decrease cost for genotyping a
225	large panel of isolates. The forward primers of the microsatellite markers selected for multiplex
226	PCR were labeled at the 5' end with one of the fluorescent dyes from the DS-33 dye set: 6-FAM
227	(Integrated DNA Technologies), VIC, PET, or NED (Applied Biosystems Inc.). Multiplex
228	reactions were optimized so that loci with alleles of similar size ranges were labeled with
229	different dyes. All 92 samples were genotyped with the eight markers in the multiplex reactions.
230	
231	Multiplex PCR was conducted using a modified protocol of the Type-it Microsatellite PCR kit
232	(Qiagen, Hilden, Germany) in 10 μL reactions with 5 μL of 2 \times Type-it Master Mix buffer, 1 μL
233	of 10 \times primer mix (2 μ M of each primer in the multiplex), 3 μ L of sterile distilled H ₂ 0, and 1
234	μL of approximately 50.0 ng/ μL DNA template. Reaction conditions were 94 °C for 2 min
235	followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s and extension
236	at 72 °C for 30 s, followed by a final extension of 72 °C for 5 min. Amplification of PCR
237	products within the expected size range was confirmed by electrophoresis. The PCR products
238	were prepared as described above and sent to GGF for fragment analysis.
239	
240	Results
241	Whole genome sequencing and assembly
242	The Illumina MiSeq PE 300 sequencing platform generated 32,461,280 reads with an average
243	insertion size of 575 bp and read lengths of 301 bp. Sequence quality was assessed by phred
244	score and signal purity filter values resulting in a total of 25,452,492 reads with a PF of 99.26%,

245	which corresponds to 6.0 to 9.9 million reads for CA11-1, FL11-1, and FL11-2 respectively
246	(Table 3).
247	
248	The de novo draft assemblies resulted in 5,706,372, 4,305,978, and 7,444,849 total assembled
249	reads (contigs) for CA11, FL11-1, and FL11-2, respectively. This Whole Genome Shotgun
250	project has been deposited at DDBJ/ENA/GenBank under the accessions PTJR00000000,
251	PTJQ00000000, and PTJP00000000 for CA11, FL11-1, and FL11-2, respectively. Using
252	Geneious v.6.1.8 (Kearse et al., 2012), contigs for each isolate were filtered to select only those
253	200 bp in length or greater. This resulted in 466,181, 548,017, and 645,533 contigs for CA11,
254	FL11-1, and FL11-2, respectively, which were subsequently used to search for microsatellite
255	repeats (Table 3).
256	
257	Microsatellite marker development
258	An alignment of the 18,950 contigs produced 4,296 contigs with potentially informative
259	microsatellite loci shared among the three microsatellite containing isolates. Microsatellite loci
260	shared by at least two of the three isolates were observed in 2,754 for the aligned contigs.
261	Microsatellites were identified in 0.98%, 1.03%, and 1.34% of the contigs, showing that the
262	discovery rate of microsatellites was consistent among isolates.
263	
264	Sixty sets of primers were developed and screened by PCR on the three isolates of U .
265	transversalis. Of the 60 putative markers, 25 were successfully amplified by PCR and evaluated
266	for polymorphism on the panel of ten isolates from the United States (Table 1, Table 2). Isolate
267	CA14-7 consistently resulted in electropherogram peak sizes below our scoring criteria peak
268	height of 500; however, there were peaks at the expected allele size ranges. It is possible that
269	there were PCR inhibitors in the DNA extract or that the DNA was of lower quality than the
270	other samples. Of the 25 markers, seven were monomorphic, with only one allele each, and 18
271	were polymorphic, with two alleles each (Table 2). All 10 isolates from the United States were
272	the same genotype based on the 25 markers. The polymorphism was identified among alleles
273	within each locus, rather than among individuals. Overall, the microsatellite markers showed
274	allelic diversity, but no genotypic diversity among the isolates from the United States. There was

a high heterozygosity within individuals with each isolate having both alleles for the
polymorphic loci (Table 2).
Genotypic analyses
When using the eight microsatellite markers in two multiplex reactions, samples from the USA,
Costa Rica and Mexico consistently produced PCR products of the expected size. Samples from
New Zealand and Australia produced inconsistently sized PCR products despite duplicate
reactions. Using the same eight markers, we attempted to genotype 16 leaf samples from South
Africa, but these repeatedly failed to produce PCR products. Only one isolate, PREM 57128,
which was sampled in 1998 (Table 1) produced a faint PCR product; however, no peaks were
detected in the fragment analysis.
Fragment analysis showed allelic variation within individuals, but no genotypic variation was
observed among the isolates from Australia, Costa Rica, Mexico, New Zealand, and the USA. In
all cases where peaks were observed and were above the scoring threshold peak size 500, the
genotypes were identical to each other and to all isolates from the USA (Table 2). In some cases
where the peaks were below the threshold, there was a peak for only one of the alleles or the
alleles were a slightly different size; however, these results were not reliable (data not shown).
Marker Ut497 consistently failed to produce peaks or peaks above the acceptable threshold for
almost all isolates where DNA was obtained from preserved leaf tissue. The six remaining
markers (Ut513, Ut1841, Ut1908, Ut2048, Ut2648 and Ut3161) were polymorphic with only two
allele sizes observed for each marker, while one marker (UtCA759) was monomorphic,
producing only one allele size.
Sequence divergence
Visual assessment of the aligned contigs for the three sequenced isolates revealed that there were
two distinct haplotypes (nucleotide sequence patterns) for each isolate occurring at nearly all
microsatellite loci (Table 4, Supplemental Fig. Sharthe variation in repeat number occurred
between alleles or haplotypes of the same isolate. Additionally, there were numerous single
nucleotide polymorphisms (SNPs) detected in the regions flanking the microsatellite repeats. The
two haplotypes within each of the three isolates sequenced were identical to the haplotypes

306	among all three isolates for the loci compared, including microsatellite loci that were
307	monomorphic based on sequence length. Variation in the microsatellite-flanking sequences
308	between haplotypes was estimated for loci with complete data sets for the three isolates. The two
309	alleles differed in nucleotide sequence by 1.6% to 6.9% (Table 4).
310	
311	Discussion
312	There was no genotypic diversity observed among the <i>U. transversalis</i> isolates from Australia,
313	Costa Rica, New Zealand, Mexico, and the USA based on the eight microsatellite loci developed
314	in the present study. For the ten isolates from the USA genotyped with all 25 microsatellite loci,
315	eight of the markers were monomorphic and 16 were polymorphic, with all polymorphism
316	observed within each of the isolates. Additionally, we genotyped some of the other isolates (five
317	isolates from Costa Rica, one isolate from New Zealand, and three isolates from Mexico) at all
318	25 loci (data not shown) and still found no genotypic diversity. Since no genetic differences were
319	observed among isolates, it is not possible to track individuals or introductions of individuals
320	from other populations that may have occurred (McDonald and Linde, 2002; Milgroom and
321	Peever, 2003). It may be possible to detect genotypic diversity within <i>U. transversalis</i> using
322	different genotyping methods, such as genotyping-by-sequencing; however, the high
323	heterozygosity present within individuals may obscure the detection of genotypic diversity
324	among individuals (Elshire et al., 2011) different member of the Pucciniales, <i>Phakopsora</i>
325	pachyrhizi, for which only clonal reproduction has been observed, has some genotypic diversity
326	both in the USA where it has been introduced and in Asia, where it is native (Zhang et al., 2012).
327	Nonetheless, the microsatellite markers developed for <i>U. transversalis</i> may be useful for
328	diagnostic purposes or detection of <i>U. transversalis</i> in asymptomatic plant material.
329	
330	In this study, all of the genetic diversity identified in <i>U. transversalis</i> occurred as allelic diversity
331	within individuals. Most of the microsatellite markers and all of the repeat-flanking sequence
332	that were compared showed two alleles or two distinct haplotypes at each locus, indicative of
333	very high heterozygosity. This level of allelic variation within each individual is suggestive of
334	divergent genomes between the nuclei of the dikaryon across the invasive population. The
335	flanking sequences from each locus showed approximately 97% sequence similarity (Table 4). In
336	some cases, the two genomes of the dikaryon are more divergent than what is usually observed

337	within a single fungal species (Hibbett, 2016). The lack of genotypic diversity among isolates
338	and the distinct sequences and microsatellite alleles within individuals suggests that U .
339	transversalis samples from Australia, Costa Rica, Mexico, New Zealand and the USA are
340	asexually reproducing populations that are not recombining through sexual reproduction
341	(Milgroom, 1996). Clonal invasions are common among plants pathogens (Milgroom et al. 2008;
342	Goss et al., 2009). In dikaryotic organisms and diploids, the absence of sexual reproduction will
343	increase the divergence between sequences in each genome as random mutations will occur over
344	time (Birky, 1996). Thus, low genotypic diversity combined with high allelic diversity within
345	individuals is suggestive of strict clonal reproduction for an extensive period of time (Balloux et
346	al., 2003; Birky, 1996). Our results provide support for clonal reproduction of <i>U. transversalis</i> in
347	the USA, Mexico, New Zealand, and Australia, which is consistent with the observed research
348	on reproductive biology of <i>U. transversalis</i> . However, the extent of sequence divergence
349	indicates that these populations have been clonal for possibly hundreds to thousands of years
350	
351	To our knowledge this is the first study on the genetic diversity of <i>U. transversalis</i> . Since <i>U.</i>
352	transversalis urediniospores are dikaryotic, development of codominant, sequence-specific
353	microsatellite markers would be appropriate in addressing our questions of genetic diversity,
354	origin, and sources of introductions for this rust fungus. Traditionally, microsatellite
355	development required the construction of a genomic library enriched for repeated motifs,
356	isolation, and sequencing clones; primer design and optimization; and testing for polymorphism
357	on a few unrelated individuals (Abdelkrim et al., 2009; Frenkel et al., 2012; Santana et al., 2009;
358	Zhong et al., 2009). As an alternate approach, the microsatellite markers in the present study
359	were developed using whole genome sequencing of multiple isolates. This approach not only
360	increased our chances of identifying polymorphic alleles within <i>U. transversalis</i> , but also
361	supplied genomic sequence, which could be used for comparative analyses or other purposes.
362	However, the main focus of this study was not the whole genome sequencing and assembly, but
363	to use these data to develop markers. Although useful for marker development, the three draft
364	genomes were highly fragmented $(4.3 - 7.4 \text{ million})$ assembled reads or contigs compared to 6.0
365	– 9.9 million unassembled), which could be the result of repetitive DNA and a large genome,
366	which are common among rust fungi (Ramos et al., 2015; Tavares et al., 2014).
367	

000	A1/1 1 11 / 1 / / / 11 1/ / CTT / Tr
368	Although we were unable to detect genetic diversity among isolates of <i>U. transversalis</i> across a
369	wide geographic range, the genome sequences will serve as a resource for further studies on this
370	destructive fungal pathogen of Gladiolus, Since all isolates sampled exhibited limited diversity
371	and were genetically similar, this demonstrates that disease management strategies both current
372	and future, should work for all locations and current hosts for Uromyces transversalis as concern
373	for the development of fungicide resistant strains seems unlikely. Future studies will help us to
374	determine the usefulness of the microsatellite markers in diagnosis and detection.
375	
376	Conclusions
377	There was no genotypic diversity observed among the invasive <i>U. transversalis</i> populations from
378	Australia, Costa Rica, New Zealand, Mexico, and the USA based on the eight microsatellite loci
379	developed in the present study. The lack of genotypic diversity among isolates and the distinct
380	sequences and microsatellite alleles within individuals suggests that <i>U. transversalis</i> samples in
381	introduced ranges are asexually reproducing populations that are not recombining through sexual
382	reproduction. Our results provide support for clonal reproduction of <i>U. transversalis</i> in the USA,
383	Mexico, New Zealand, and Australia, which is consistent with the observed research on
384	reproductive biology of <i>U. transversalis</i> and other invasive plant pathogens.
385	
386	Acknowledgements
387	We thank A. Ruck for her technical assistance in propagating isolates and preparing DNA
388	extracts.
389	
390	References
391	Abdelkrim, J., Robertson, B.C., Stanton, J.A.L., Gemmell, N.J., 2009. Fast, cost-effective
392	development of species-specific microsatellite markers by genomic sequencing.
393	Biotechniques 46, 185.
394	Balloux, F., Lehmann, L., de Meeûs, T., 2003. The population genetics of clonal and partially
395	clonal diploids. Genetics 164, 1635-1644.
396	Beilharz, V., Parbery, D.G., Pascoe, I.G., 2001. Gladiolus rust (caused by <i>Uromyces</i>
397	transversalis) in eastern Australia. Australas. Plant Pathol. 30, 267-270.

398 Birky, C.W., 1996. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. 399 Genetics 144, 427-437. 400 Blomquist, C.L., Thomas, S.L., McKemy, J.M., Nolan, P.A., Luque-Williams, M., 2007. First report of *Uromyces transversalis*, causal agent of Gladiolus rust, in San Diego County, 401 California. Plant Dis. 91, 1202-1202. 402 403 Brown, L., 2005. Uromyces transversalis Assessment of the Risk of Introduction 404 Recommendations for risk mitigation for *Gladiolus* spp. Cut Flowers and Propagative Material from México. online USDA Plant Protection and Quarantine. 405 Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., Mitchell, S.E., 406 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity 407 species. PLoS ONE 6, e19379. 408 Ferreira, J.F., Nevill, W.G., 1989. Evaluation of bitertanol and triadimefon for the control of 409 Gladiolus rust caused by *Uromyces transversalis*. Plant Dis. 73, 987-990. 410 Frenkel, O., Portillo, I., Brewer, M.T., Peros, J. P., Cadle-Davidson, L., Milgroom, M.G., 2012. 411 Development of microsatellite markers from the transcriptome of *Ervsiphe necator* for 412 413 analysing population structure in North America and Europe. Plant Pathol. 61, 106-119. 414 Garibaldi, A., Aloj, B., 1980. Observations on biology and control of *Uromyces transversalis* 415 (Thum.) Winter on Gladiolus in southern Italy. International Symposium on Flower 416 Bulbs 109, 409-414. 417 Goss, E.M., Carbone, I., Grünwald, N.J., 2009. Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen *Phytophthora* 418 ramorum. Mol. Ecol., 18, 1161-1174. 419 Haridas, S., Breuill, C., Bohlmann, J., Hsiang, T., 2011. A biologist's guide to de novo genome 420 421 assembly using next-generation sequence data: a test with fungal genomes. J. Microbiol. 422 Methods 86, 368-375. Hauswaldt, J.S., Glenn, T.C., 2003. Microsatellite DNA loci from the diamondback terrapin 423 424 (Malaclemys terrapin). Mol. Ecol. Notes 3, 174-176. Hernández, J., 2004. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Invasive 425 426 Fungi: Gladiolus Rust. Retrieved April 21, 2009.

Hibbett, D., 2016. The invisible dimension of fungal diversity. Science 351, 1150-1151.

- 428 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S.,
- Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond,
- 430 A., 2012. Geneious Basic: an integrated and extendable desktop software platform for the
- organization and analysis of sequence data. Bioinformatics 28, 1647-1649.
- 432 Koressaar, T., Remm, M., 2007. Enhancements and modifications of primer design program
- 433 Primer3. Bioinformatics 23, 1289-1291.
- 434 Leclercq, S., Rivals, E., Jarne, P., 2007. Detecting microsatellites within genomes: significant
- variation among algorithms. BMC Bioinformatics 8, 125.
- Lee, S.B., Milgroom, M.G., Taylor, J., 1988. A rapid, high yield mini-prep method for isolation
- of total genomic DNA from fungi. Fungal Genetics Newsletter 35, 23-24.
- Lindquist, J., Alippi, H., Medera, C., 1979. A serious epiphytotic of Gladiolus rust (*Uromyces*
- 439 *gladioli*) in Santa Fe province (Republic of Argentina). III Jornada Fitosanitaria
- 440 Argentina 2, 717-724.
- Littlejohn, G., Blomerus, L., 1997. Studies on Gladiolus resistance to transverse rust. Acta
- 442 Hortic. 430, 509-516.
- 443 Martínez-de la Parte, E., Pérez-Vicente, L., Cantillo-Pérez, T., Guerrero-Barriel, D., Ramos, A.,
- 444 2011. First report of Gladiolus rust caused by *Uromyces transversalis* in Cuba. New
- Disease Reports 23, 20.
- Mayer, C., 2006. Phobos http://www.rub.de/spezzoo/cm/cm_phobos.htm.
- 447 McDonald, B.A., Linde, C., 2002. Pathogen population genetics, evolutionary potential, and
- durable resistance. Annu. Rev. Phytopathol. 40, 349-379.
- 449 McKenzie, E., 2000. Uromyces transversalis, rust fungus found infecting Iridaceae in New
- 450 Zealand. N. Z. J. Crop Hortic. Sci. 28, 289-291.
- 451 Milgroom, M.G., 1996. Recombination and the multilocus structure of fungal populations. Annu.
- 452 Rev. Phytopathol. 34, 457-477.
- 453 Milgroom, M.G., 2015. Population Biology of Plant Pathogens: Genetics, Ecology and
- *Evolution.* American Phytopathological Society Press, St. Paul, MN.
- 455 Milgroom, M.G., Peever, T.L., 2003. Population biology of plant pathogens: the synthesis of
- plant disease epidemiology and population genetics. Plant Dis. 87, 608-617.

457 Milgroom, M.G., Sotirovski, K., Risteski, Brewer, M.T., 2009. Heterokaryons and parasexual recombinants of Cryphonectria parasitica in two clonal populations in southeastern 458 459 Europe. Fungal Genet. Biol. 46, 849-854. Mohali, R.S., Aime, M.C., 2018. First report of Gladiolus rust caused by *Uromyces transversalis* 460 in Merida, Venezuela. Plant Dis. 102, 444-445 461 Niazmand, A.R., Choobineh, D., Hajmansoor, S.H., 2013. A Simple and rapid method to extract 462 genomic DNA from urediniospores of rust diseases for molecular analysis. Staphia 99, 463 235-238 464 Peterson, G.L., Berner, D.K., 2009. Effects of temperature and humidity on the survival of 465 urediniospores of Gladiolus rust (*Uromyces transversalis*). Eur. J. Plant Pathol. 125, 509-466 513. 467 Pita, G., Figueiredo, M., Cardoso, R., Hennen, J., 1981. Ferrugem (*Uromyces transversalis* 468 469 (Thuemen) Winter, uma nova doenca do gladiolo (*Gladiolus* spp), no Brasil). Biologico 47, 323-328. 470 Ramos, A.P., Tavares, S., Tavares, D., Silva, M.D.C., Loureiro, J., Talhinhas, P., 2015. Flow 471 472 cytometry reveals that the rust fungus, Uromyces Bidentis (Pucciniales), posseses the largest fungal genome reported - 2489Mbp. Mol. Plant Pathol. 16, 1006-1010. 473 474 Rizvi, A., Man-Son-Hing, A., Jackson, A., Parra, G., Schartzburg, K., Brown, L., Sullivan, M., 475 Duffie, L., Kosta, K., Clark, R., 2007. Gladiolus rust (Uromyces transversalis): A 476 national management plan for exclusion and eradication. USDA APHIS PPQ, Retrieved February 10, 2009. 477 478 Rodríguez-Alvarado, G., Fernández-Pavía, S., Valenzuela-Vázquez, M., Loya-Ramírez, J., 2006. First report of Gladiolus rust caused by *Uromyces transversalis* in Michoacán, México. 479 480 Plant Dis. 90, 687-687. 481 Rodgers, S.O., Bendich, A.J., 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. Rep. 5, 69-76. 482 Rozen, S., Skaletsky, H., 1999. Primer3 on the WWW for general users and for biologist 483 484 programmers. Bioinformatics Methods and Protocols 132, 365-386. 485 Santana, Q.C., Coetzee, M.P., Steenkamp, E.T., Mlonyeni, O.X., Hammond, G.N., Wingfield, M.J., Wingfield, B.D., 2009. Microsatellite discovery by deep sequencing of enriched 486 487 genomic libraries. Biotechniques 46, 217-223.

- 488 Schubert, T.S., Leahy, R.M., Davison, D.A., Silagyi, A.J., Killgore, E.M., 2007. Gladiolus rust
- caused by *Uromyces transversalis* makes first nearctic appearance in Florida. Plant Dis.
- 490 91, 1202.
- 491 Schuelke, M., 2000. An economic method for the fluorescent labeling of PCR fragments. Nature
- 492 Biotechnol. 18, 233-234.
- 493 Schwessinger, B., Rathjen, J.P., 2017. Extraction of High Molecular Weight DNA from Fungal
- 494 Rust Spores for Long Read Sequencing. Wheat Rust Diseases. *Methods in Molecular*
- 495 *Biology*, vol 1659. Humana Press, New York, NY
- 496 Selkoe, K.A., Toonen, R.J., 2006. Microsatellites for ecologists: a practical guide to using and
- 497 evaluating microsatellite markers. Ecol. Lett. 9, 615-629.
- 498 Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., Birol, I., 2009. ABySS: a
- 499 parallel assembler for short read sequence data. Genome Res. 19, 1117-1123.
- Tavares, S., Ramos, A.P., Pires, A.S., Azinheira, H.G., Caldeirinha, P., Link, T., Abranches, R.,
- 501 Silva, M.C, Voegele, R.T., Loureiro, J., Talhinhas, P., 2014. Genome size analyses of
- Pucciniales reveal the largest fungal genomes. Front. Plant Sci. 5, 422.
- Tervet, I., Rawson, A., Cherry, E., Saxon, R., 1951. A method for the collection of microscopic
- particles. Phytopathology 41, 282-285.
- 505 U.S. Department of Agriculture APHIS. 2015.
- 506 https://www.aphis.usda.gov/plant_health/plant_pest_info/gladiolus_rust/downloads/DA-
- 507 2015-20.pdf
- 508 Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G.,
- 509 2012. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115.
- Valencia-Botin, A., Jeffers, S., Palmer, C., Buck, J.W. 2013. Fungicides used alone, in
- combinations, and in rotations for managing Gladiolus rust in Mexico. Plant Dis. 97,
- **512** 1491-1496.
- Walsh, P.S., Metzger, D.A., Higuchi, R., 1991. Chelex 100 as a medium for simple extraction of
- 514 DNA for PCR-based typing of forensic material. BioTechniques 54, 134-139.
- 515 Wise, K., Mueller, D., Buck, J.W., 2004. Quarantines and ornamental rusts. Online publication.
- APSnet Features. doi:10.1094/APSnetFeature-2004-0204
- 517 Zhang, Y., Zhang, S., Liu, X., Wen, H., Wang, M., 2010. A simple method of genomic DNA
- extraction suitable for analysis of bulk fungal strains. Lett. Appl. Microbiol. 51, 114-118.

PeerJ

519	Zhang, X., Freire, M., Le, M., Hartman, G.L., Upchurch, R.G., Pedley, K.F., Stacey, G., 2012.
520	Genetic diversity and origins of Phakopsora pachyrhizi isolates in the United States.
521	Asian J. Plant Pathology 6, 52-65.
522	

Figure 1

Figure 1: Invasion history of the Gladiolus rust fungus, *Uromyces transversalis*.

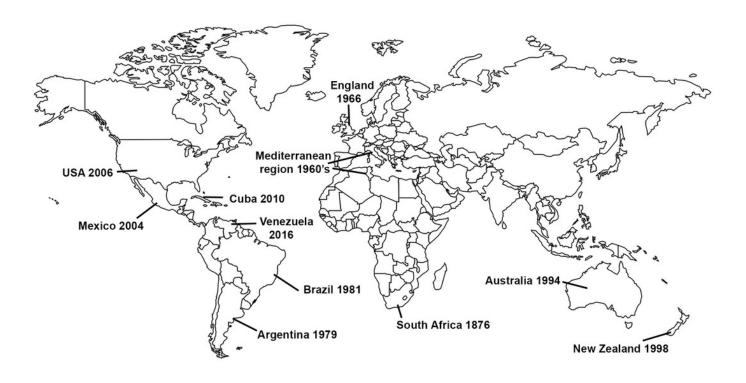


Table 1(on next page)

Table 1: Location and sources of *Uromyces transversalis* isolates used in this study

PeerJ

Table 1: Location and sources of *Uromyces transversalis* isolates used in this study

			Collection	Culture Collection	
Geographic origin	Original host species	Isolate identifier	date	(Collector)	
Costa Rica	Gladiolus sp.	CR497224, CR498594,	2012	USDA-ARS; Pedley, K.	
		CR498400, CR497666,			
		CR498457			
Wellington, New Zealand	Gladiolus sp.	NZ71109	2000	New Zealand Fungal	
				Herbarium (NZFB); Beever, R.	
Findelton, New Zealand	Gladiolus sp.	NZ87970	2006	NZFB; Close, R.	
Remuera, New Zealand	Anomatheca laxa	NZ69482	1998	NZFB; Dingley, J.M.	
Remuera, New Zealand	G. nanus	NZ69481	1998	NZFB; Heckler, R.	
Feilding, New Zealand	Gladiolus sp.	NZ71696	2000	NZFB; Hill, C.F.	
Mt. Albert, New Zealand	G. undulatus	NZ97335	2007	NZFB; Petley, M.	
Avondale, New Zealand	Melasphaerula	NZ69208	1998	NZFB; Wilkie, J.P.	
Mt. Albert, New Zealand	Gladiolus sp.	NZ99990	2011	NZFB; Wilkie, J.P.	
Mt. Albert, New Zealand	Tritonia	NZ88195	2004	NZFB; Wilkie, J.P.	
Mt. Albert, New Zealand	Tritonia	NZ69483	1998	NZFB; Beever, R.	
Australia	Gladiolus sp.	VPRI 20841, VPRI 20858, VPRI	Unknown	Victoria Plant Pathology	
		20881, VPRI 21344, VPRI		Herbarium (VPPH)	
		22299, VPRI 32661			
Mont Albert, Australia	Gladiolus sp.	VPRI 21238	1996	VPPH; Parbery, D.	
Tlapizalco, Zumpahuacán, Mexico (MX)	Gladiolus sp.	TLAP1, TLAP2, TLAP3	2011	Valencia-Botin. A.	
Atlixco, Puebla, MX	Gladiolus sp.	Atlix1, Atlix2, Atlix3	2011	Valencia-Botin. A.	
Cuautla, Morelos, MX	Gladiolus sp.	Cua1, Cua2, Cua3	2011	Valencia-Botin. A.	
Villa Guerrero, MX	Gladiolus sp.	Gro1, Gro2, Gro3	2011	Valencia-Botin. A.	
Atlatlahuacán, MX	Gladiolus sp.	Ten1, Ten2, Ten3	2011	Valencia-Botin. A.	

Irimbo, Michoacán, MX	Gladiolus sp.	Iri1, Iri2, Iri3	2010	Valencia-Botin. A.
"La Finca" Villa Guerrero, MX	Gladiolus sp.	LF1 1, LF1 2, LF1 3, LF2 1, LF2	2011	Valencia-Botin. A.
		2, LF2 3		
Cocoyoc Yautepec, Morelos, MX	Gladiolus sp.	M1 1, M1 2, M1 3	2010	Valencia-Botin. A.
Oacalco Yautepec, Morelos, MX	Gladiolus sp.	M2 1, M2 2, M2 3	2010	Valencia-Botin. A.
Yautepec Yautepec, Morelos, MX	Gladiolus sp.	M3 R1, M3 R2, M3 R3	2010	Valencia-Botin. A.
El Caracol Yautepec, Morelos, MX	Gladiolus sp.	M4 1, M4 2	2010	Valencia-Botin. A.
Villa Ayala, Morelos , MX	Gladiolus sp.	M5 R3, M6 R1, M6 R2, M6 R3,	2010	Valencia-Botin. A.
		M7 1, M7 2, M7 3, M8 R1, M8		
		R2, M8 R3		
Ejido Tlayacapan, Morelos, MX	Gladiolus sp.	M9 R1, M9 R2, M9 R3	2010	Valencia-Botin. A.
Huachinanitla Tepoztlán, Morelos, MX	Gladiolus sp.	M10 R1, M10 R2, M10 R3	2010	Valencia-Botin. A.
6.M. Texmel, Pue, MX	Gladiolus sp.	JB1	2010	Valencia-Botin. A.
Villa Guerrero, Estado de Mexico, MX	Gladiolus sp.	JB2, JB7	2010	Valencia-Botin. A.
Cuautla, Morelos, MX	Gladiolus sp.	JB3	2010	Valencia-Botin. A.
Atlixco, Puebla, MX	Gladiolus sp.	JB4, JB6	2010	Valencia-Botin, A.
TurpamMick, MX	Gladiolus sp.	JB5	2010	Valencia-Botin, A.
Irambo, Michoacan, MX	Gladiolus sp.	JB8	2010	Valencia-Botin, A.
Unknown, California, US	Gladiolus sp.	CA11-1	2011	K. Pedley
Carpenteria, California, US	Gladiolus sp.	CA14-1, CA14-3, CA14-4	2014	K. Pedley
Santa Maria, California, US	Gladiolus sp.	CA14-2	2014	K. Pedley
Santa Barbara, California, US	Gladiolus sp.	CA14-5	2014	K. Pedley
Goleta, California, US	Gladiolus sp.	CA14-6, CA14-7	2014	K. Pedley
Manatee County, Florida, US	Gladiolus sp.	FL11-1	2011	K. Pedley
Hendry County, Florida, US	Gladiolus sp.	FL11-2	2011	K. Pedley

Table 2(on next page)

Table 2: Repeat motif, primer sequences, and number of alleles, allele sizes, and genotypes for *U. transversalis*

1 Table 2: Repeat motif, primer sequences, and number of alleles, allele sizes, and genotypes for *U. transversalis*

	Repeat		Number of observed alleles,
Locus ^a	motif	Primer sequence (5'→3') ^b	allele sizes (bp), and genotypes
Ut337	(AGG) ₇	F: CGGAAGAGATGAGTGGTCAAG	2 (195, 198)
		R: TCACATCATCCCCTCCCTA	
Ut397	$(TTG)_9$	F: TTCGATTCGATTCGTTT	1 (259)
		R: GGATGTTTTGATTCTGTTAGAGAGTG	
Ut447	$(ACC)_6$	F: TGCTTCAGCTTCCCAAAACT	2 (237, 240)
		R: TGGCTGTGAATTGTGAGACC	
Ut497*2	$(GAA)_{15}$	F: CTTGAAGGGGATCGAGAAGA (6FAM)	2 (232, 251)
		R: TGTTCTCCGGCAGAGGTTTA	
Ut513*1	$(TCA)_6$	F: TCCCAAACAAATCGTGAAGA (NED)	2 (200, 203)
		R: GCTCCCGTTAATGGTCACAG	
Ut542	$(GTT)_5$	F: GTCTTCTTTGCTGCGTTTCC	2 (204, 207)
		R: TCCTGGTTTTGAACCTCCTG	
Ut568	$(ACC)_6$	F: TCCCATGGGTTTGGTTGC	2 (178, 181)
		R: TCCTTAATCTGGGTTGACATTT	
Ut575	$(TTA)_5$	F: TGACGATCCTAACGAAGGGTA	2 (241, 244)
		R: CTTGGGGTACGAGAGCACTT	
Ut697	$(AAG)_5$	F: TAGGCGAAGTGGTACGAGGT	1 (224)
		R: AGGGAAGAAGAGGGTCAACA	
Ut752	$(ATC)_6$	F: AGTCTTGTGCTGGTCTTCGTC	2 (213, 216)
		R: TTTGCCGCCTTATATTGTCA	
Ut844	$(ACT)_8$	F: CTCCGTCAGCCAGTCAGTC	1 (310)
		R: GATGAGGTTGAGGGCGAGTA	
Ut981	$(TGA)_6$	F: GGGTCAAACAGGTCTTCTGG	1 (202)
		R: CTACTGAAATGGGCCACAAA	
Ut1272	$(AAG)_5$	F: TGAAGTTTTCCACCCTGGTT	2 (253, 256)
		R: ATCTTGGGCAAACTGACCAC	
Ut1289	(GAG) ₇	F: GGTCTTGAGAGAACGGAGGA	2 (254, 257)
		R: CTCTTCCAGATACCCCACCA	
Ut1841*2	(AGG) ₅	F: GAACCCTGCCTCACACCTTA (NED)	2 (345, 348)
		R: GCGGCTACCAGAGCTTTAGA	
Ut1908*2	$(GAT)_6$	F: TCCTCTCAGCCAATCCAATC (PET)	2 (200, 203)
		R: CTCTTGCCCATCAATCCAAC	
Ut2035	$(TTTA)_8$	F: GGATCGAGTCGGTCGATTTA	2 (229, 232)

		R: GCCGAACAGGACTAGCATTG	
Ut2048*2	$(GAA)_6$	F: CGAGCGATAAATTTTTGAACA (VIC)	2 (182, 185)
		R: TGTCCGGAGAATGTGAACTG	
Ut2443	$(GAA)_8$	F: AGAATTGGATGAAACAGGGAGA	1 (188)
		R: AAGGAGGAAGCCATCACTCA	
Ut2536	$(GAG)_5$	F: AGGGCTGGTAGACGTGACTG	2 (248, 251)
		R: TCATGTCTCTGACACCACCA	
Ut2648*1	$(CAG)_6$	F: GAACTGGTGCAACCGATACA (VIC)	2 (266, 269)
		R: CACAGCCTTGGCTCTTGAGT	
Ut3161*1	$(TCC)_6$	F: GAGTCTGGCCCAGCTGTTT (6FAM)	2 (192, 195)
		R: TCTGATCTTGCAGGGGATTC	
UtCA759*1	$(CAT)_7$	F: GATGGCCAGAAGAAGATGC (PET)	1 (296)
		R: TTAACCAGCGCGAGAGTCTT	
UtCA809	$(TTA)_7$	F: GCCACTTCTCCAAACGCTTA	1 (258)
		R: TCGCAAGATCAAGAAACAACC	
UtCA950	$(GTT)_9$	F: GGCAGAGGATGAGTCGTGTA	2 (272, 287)
		R: TCATCTCATCCCCACAATCA	

^aAsterisks indicate loci that were used for the multiplex reactions and the 1 or 2 indicate multiplex 1 or 2, respectively).

3

^bThe fluorescent dye used for multiplex reactions is listed in parentheses to the right of the forward primer.

^cGenotype of all 10 isolates from the United States. Allele sizes are listed based on the results of the multiplex reactions or what the length of the alleles would be without the 16 nucleotide CAGTAG.

Table 3(on next page)

Table 3: Genome assembly and microsatellite statistics

Table 3: Genome assembly and microsatellite statistics

	Unassembled	Assembled reads	# Contigs	Contigs w/	% Microsatellites
Isolates	readsa	(contigs)	> 200 bp	Microsatellites ^b	per assembly
CA11-1	6,023,634	5,706,372	466,181	4,599	0.98%
FL11-1	9,976,981	4,305,978	548,017	5,685	1.03%
FL11-2	9,262,312	7,444,849	645,533	8,666	1.34%

^aUnassembled reads based upon purity filter value of 99.26%.

³ bContigs with identified microsatellites based on the annotation criteria: repeat unit length = min: 3 max: 6, min.

⁴ length of 15. Mono and dinucleotide repeats not considered due to the difficulty of scoring alleles during fragment

⁵ analysis.

Table 4(on next page)

Table 4. Variation between alleles within sequenced genomes of *U. transversalis*

Table 4. Variation between alleles within sequenced genomes of *U. transversalis*

	No. Single nucleotide	No. Nucleotides in	
Microsatellite	polymorphisms	flanking regions	% Difference
Ut337	3	180	1.7
Ut513	7	291	2.4
Ut568	13	187	6.9
Ut575	3	187	1.6
Ut752	9	263	3.4
Ut1908	10	264	3.8