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ABSTRACT
Noroviruses are positive-sense single-stranded RNA viruses. They encode an NS6
protease that cleaves a viral polyprotein at specific sites to produce mature viral
proteins. In an earlier study we obtained crystals of murine norovirus (MNV)
NS6 protease in which crystal contacts were mediated by specific insertion of
the C-terminus of one protein (which contains residues P5-P1 of the NS6-7
cleavage junction) into the peptide binding site of an adjacent molecule, forming
an adventitious protease-product complex. We sought to reproduce this crystal form
to investigate protease–substrate complexes by extending the C-terminus of NS6
construct to include residues on the C-terminal (P′) side of the cleavage junction.
We report the crystallization and crystal structure determination of inactive mutants
of murine norovirus NS6 protease with C-terminal extensions of one, two and four
residues from the N-terminus of the adjacent NS7 protein (NS6 1′, NS6 2′, NS6 4′).
We also determined the structure of a chimeric extended NS6 protease in which
the P4-P4′ sequence of the NS6-7 cleavage site was replaced with the corresponding
sequence from the NS2-3 cleavage junction (NS6 4′ 2|3).The constructs NS6 1′

and NS6 2′ yielded crystals that diffracted anisotropically. We found that, although
the uncorrected data could be phased by molecular replacement, refinement of the
structures stalled unless the data were ellipsoidally truncated and corrected with
anisotropic B-factors. These corrections significantly improved phasing by molecular
replacement and subsequent refinement.The refined structures of all four extended
NS6 proteases are very similar in structure to the mature MNV NS6—and in one
case reveal additional details of a surface loop. Although the packing arrangement
observed showed some similarities to those observed in the adventitious protease-
product crystals reported previously, in no case were specific protease–substrate
interactions observed.
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INTRODUCTION
Noroviruses are responsible for over half of the outbreaks of gastroenteritis worldwide

(Karst, 2010). They belong to the Caliciviridae, a family of positive-sense, single-stranded

RNA viruses with a ∼7.5 kb genome that generally contains three open reading frames

(ORF) (Jiang et al., 1993; Lambden et al., 1993; Glass et al., 2000); a novel fourth ORF

was recently identified in Murine norovirus (MNV) (McFadden et al., 2011). Whereas

ORF2, ORF3 and ORF4 each encode single proteins, ORF1 codes for a large polyprotein

(∼190 kDa) that is processed by the virally-encoded protease at five specific sites to

release the six ‘mature’ non-structural proteins (NS1/2–NS7)—and an array of functional

precursors—that are required for virus replication (Belliot et al., 2003; Sosnovtsev et al.,

2006; Muhaxhiri et al., 2013). The viral NS6 protease present within the C-terminal half of

the polyprotein performs all the processing, including its own autocatalytic release from

the precursor (Liu, Clarke & Lambden, 1996; Belliot et al., 2003; Sosnovtsev et al., 2006;

Scheffler et al., 2007).

Crystal structures have been determined for the NS6 proteases from several norovirus

strains (Chiba virus, Murine norovirus, Norwalk virus, Southampton norovirus)

(Nakamura et al., 2005; Zeitler, Estes & Prasad, 2006; Hussey et al., 2011; Kim et al., 2012;

Leen, Baeza & Curry, 2012; Muhaxhiri et al., 2013). The solution structure and dynamics of

Norwalk virus NS6 have also been analysed by NMR spectroscopy (Takahashi et al., 2013).

Norovirus NS6 is a cysteine protease with a chymotrypsin-like fold: two β-barrel domains

separated by a cleft that contains a Cys-His-Asp/Glu catalytic triad similar in arrangement

to the Ser-His-Asp triad characteristic of serine proteases (Allaire et al., 1994; Matthews

et al., 1994). Calicivirus NS6 is related in sequence and structure to the picornavirus 3C

proteases, which have the same role in polyprotein processing for these single-stranded

RNA viruses (Leen, Baeza & Curry, 2012).

Previously our lab determined the structure of full-length Murine norovirus NS6

(residues 1-183) (Leen, Baeza & Curry, 2012). Strikingly, adventitious crystal contacts

placed the C-terminus of one molecule in the active site of another, thereby generating the

structure of a protease-product complex that plausibly represents the final step of the trans

cleavage by NS6 at the NS6–NS7 junction. An almost identical packing arrangement

was obtained in a different space-group with crystals of Norwalk virus NS6 protease

(Muhaxhiri et al., 2013). These structures, together with the structures of di-, tri- and

penta-peptidyl substrate analogues bound to human norovirus NS6 structures (Hussey et

al., 2011; Kim et al., 2012; Muhaxhiri et al., 2013) revealed details of the specific contacts

made by the P5-P1 residues of peptidyl products of the protease (Fig. 1); in particular

they showed the anchoring of P1-Gln by specific H-bond interactions with Thr 134 and

His 157 (Fig. 1A), and the accommodation of the hydrophobic side-chains of P2–Phe

and P4-Leu in apolar pockets (Fig. 1B). However, to date there are no structural data on

protease–substrate complexes that might uncover details of the interactions made by the

protease with the C-terminal, prime side of noroviral peptide cleavage junctions (residues

P1′-P4′).
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Figure 1 Specific protease-product interactions observed in the original crystals of MNV NS6pro. (A)
The N- and C-terminal domains of one protease molecule are coloured green and orange respectively.
The C-terminus of an adjacent protease that is accommodated specifically in the substrate-binding site
(residues P1-P5) is shown as a stick model with grey carbon atoms. Hydrogen-bonds are indicated as
dashed lines. (B) Same view as in (A) but with the protease surface shown to illustrate the binding pockets
involved in substrate recognition. This figure is a modified version of Fig. 3 from Leen, Baeza & Curry
(2012) which was published under a Creative Commons CC-BY license. All structural figures were made
with PyMOL (Schrodinger LLC , 2010).

We reasoned that catalytically inactive MNV NS6 constructs extended at the C-terminus

might be able to crystallise with the same packing contacts as we had observed for the

full-length protein, and that this could therefore give us a convenient way to investigate

the structures of NS6-substrate complexes. To this end we extended an inactive MNV NS6

construct (which incorporates a C139A mutation to knock out the active site nucleophile)

by adding residues from NS7, which is immediately downstream in the polyprotein. We

made three constructs, NS6 1′, NS6 2′ and NS6 4′, which were extended by 1, 2 and

4 residues respectively, generating proteases that contain substrates that correspond to

P4–P1′, P4-P2′ and P4-P4′ of the NS6–NS7 cleavage junction. To investigate the structural

variation in substrate recognition we also made an NS6 chimera which interchanged the

residues P4-P4′ of the NS6-7 cleavage junction with the sequence of the NS2-3 junction

from MNV (NS6 4′ 2|3).

Proteins expressed from all four constructs were crystallised and their structures deter-

mined at high resolution by X-ray crystallography. The diffraction patterns from crystals

of NS6 1′ and NS6 2′ exhibited marked anisotropy, which stalled the crystallographic

refinement at high R-factors. However, this was overcome by the successful application of

an anisotropic data correction procedure (Sawaya, 2014).

The modified MNV NS6 constructs all crystallised with packing arrangements that

were distinct from that observed in crystals we previously obtained with the mature NS6

protease—the final 183-residue protein released after processing of the viral polyprotein

(Leen, Baeza & Curry, 2012; Muhaxhiri et al., 2013). Unfortunately, in no case did the
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packing arrangements involve insertion of the cleavage junction in the extended

C-terminus into the active site of an adjacent protein in a way that allowed the formation

of specific protease–substrate interactions. The four new structures reported here therefore

do not provide any new information on the mode of binding of the P1′-P4′ residues of

junctions cleaved by MNV NS6. However they do confirm the MNV NS6 protease struc-

ture and, in at least one case, reveal the structure for the loop connecting β-strands cII and

dII that was disordered in the previously reported structure (Leen, Baeza & Curry, 2012).

MATERIALS AND METHODS
Cloning and purification of MNV NS6 variants
C-terminally extended constructs of the murine norovirus NS6 protease (UniProt

accession no. Q80J95; residues 995-1177), inactivated by mutation of the active site

Cys 139 to Ala (C139A) were generated by the polymerase chain reaction using the inactive

full length MNV NS6 as a template (Leen, Baeza & Curry, 2012). The same forward

primer was used throughout (5′-CATCATGGATCCGCCCCAGTCTCCATCTGG).

To create constructs extended by one (Gly; NS6 1′), two (Gly-Pro; NS6 2′) or four

residues (Gly-Pro-Pro-Met; NS6 4′) beyond the natural C-terminus of NS6, we used

the reverse primers, 5′-ATGATGAAGCTTAGCCCTGGAACTCCAGAGCCTCAA,

5′-CATCATAAGCTTACGGGCCCTGGAACTCCAGAGCCTCAAGTGTGGGTTCT-

CCGTGAGT and 5′-CATCATAAGCTTACATCGGCGGGCCCTGGAACTCCAG-

AGCCTCAAGTG respectively. To generate the chimera with the P4-P4′ cleavage site

of NS2-3 (NS6 4′ 2|3) the reverse primer 5′-TACTACAAGCTTAATCAAACGGG-

CCTTCCGCCTGCCAAGCCTCAAGTGTGGGTTCTCCGTGAGT was used. PCR

products were digested with BamHI and HindIII and ligated into the pETM-11 vector

as described previously for full-length NS6 (Leen, Baeza & Curry, 2012). The expressed

MNV NS6 variants thus contain a thrombin-cleavable N-terminal His6 tag; processing

by thrombin leaves a Gly-Ser di-peptide preceding the Ala1 residue at the N-terminus

of our constructs. All plasmid insert sequences were confirmed by DNA sequencing

(Eurofins MWG Operon). NS6 1′ and NS6 2′ constructs were transformed into E. coli

BL21-CodonPlus (Stratagene) and grown in lysogeny broth (LB) supplemented with

25 µg/mL kanamycin and 35 µg/mL chloramphenicol, while NS6 4′ and NS6 4′ 2|3

constructs were transformed into E. coli BL21(DE3) pLysS (Promega) and grown in LB

supplemented with 25 µg/mL kanmycin and 35 µg/mL chloramphenicol. For large-scale

protein expression, 1 L of LB was inoculated with overnight cultures. The cultures were

incubated at 37 ◦C with shaking at 220 RPM and protein expression was induced for 3 to

4 h by addition of 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) once the cultures

had attained an OD at 600 nm of 1.0. Cells were harvested by centrifugation at 4,000 g for

10 min, and pellets frozen at −80 ◦C.

E. coli pellets containing over-expressed NS6 1′ and NS6 2′ were re-suspended in lysis

buffer (50 mM Tris pH 8.0, 300 mM NaCl, 1 mM dithiothreitol (DTT)) supplemented with

0.5 mM PMSF, 2 mg/mL lysozyme, and 0.1% (v/v) Triton X-100 and the cells disrupted

by sonication. Cell debris was removed by centrifugation of the bacteria lysate at 29,000 g
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for 1 h. Clarified lysates were incubated with 1 mg/mL protamine sulphate for 20 min at

4 ◦C to precipitate nucleic acid contaminants, which were removed by re-centrifugation

at 29,000 g for 20 min. The lysate was loaded onto TALON metal affinity resin (Clontech,

Mountain View, California, USA) in a gravity flow column. After washing with 25 volumes

of lysis buffer, 25 volumes of lysis buffer containing 5 mM imidazole, and finally a further

25 volumes of lysis buffer containing 10 mM imidazole, the MNV NS6 proteins were

eluted with a step gradient to 100 mM imidazole. The His6 tag was removed during

overnight dialysis in lysis buffer in the presence 2 mM CaCl2, and 10 units of thrombin

(Sigma-Aldrich, St. Louis, Missouri, USA) per mg of MNV NS6 protein. Following

dialysis, uncleaved material and cleaved tags were removed in a second round of TALON

purification. As a final polishing step, the unbound fractions containing cleaved MNV

NS6 variants were pooled, concentrated and loaded onto a Superdex-75 size-exclusion

column (mounted on AKTA FPLC; GE Healthcare, Little Chalfont, Buckinghamshire, UK)

equilibrated with 50 mM Tris pH 8.0, 100 mM NaCl, 1 mM DTT (SEC buffer).

In the case of NS6 4′ and NS6 4′ 2|3 constructs the above protocol (and additives) were

used but the lysis buffer was composed instead of 50 mM HEPES pH 6.5, 300 mM NaCl,

1 mM DTT. Size-exclusion chromatography was performed in 25 mM Tris pH 8.0, 200 mM

NaCl, 5 mM DTT.

Crystallisation of MNV NS6 variants
All crystallisation experiments were performed with a protein concentrations of

10–14.5 mg/mL in the SEC buffer used for the final purification step. Efforts to use the

original crystallisation conditions to reproduce the MNV NS6 protein crystals with the

packing arrangement that would place the C-terminus of one molecule in the active

site of a neighbour (Leen, Baeza & Curry, 2012) failed for the four extended constructs

generated in this study. Seeding equilibrated drops with fragments from extant NS6

crystals generated very small crystals that appeared similar in habit to the original crystals

of MNV NS6 but they did not diffract appreciably.

We therefore widened the search for crystallisation conditions, carrying out screening

on a sub-microlitre scale by sitting-drop vapour-diffusion. A 100 nL amount of protein

solution at 14 mg/mL was mixed with 100 nL reservoir solution and equilibrated against

90 µL of reservoir solution using a Mosquito automated pipetting system (TTP LabTech,

Cambridge, UK) and the following commercial crystallisation screens: Wizard 1 & 2

(Emerald Biosystems, Bainbridge Island, Washington, USA), PACT Premier, JCSG+,

Morpheus and PGAScreen (Molecular Dimensions, Altamonte Springs, Florida, USA).

Larger crystals were grown from initial hits by sitting-drop vapour diffusion at 18 ◦C in

CompactClover Plates EBS-XPT (Jena Bioscience, Jena, Germany).

Useable crystals of MNV NS6 1′ were obtained by mixing 1 µL of protein with 1 µL

mother liquor consisting of 10% (v/v) poly-ethylene glycol (PEG) 10000, 20% (v/v)

ethylene glycol, 0.1 M MES/Imidazole pH 6.3. Crystals with cuboid shape appeared

between 2 and 5 days and grew to full size (80 × 50 × 50 µm) in about 15 days and

were flash-cooled in liquid nitrogen prior to data collection without any additional

cryo-protectant.
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Crystals of MNV NS6 2′ were obtained in 15% (v/v) PEG 3350, 0.1 M glycine,

0.1 M Na-citrate pH 7.0. They grew as long rods in 1–2 days and achieved full size

(400 × 30 × 30 µm) in 5–10 days. The crystals were cryo-protected in mother liquor

supplemented with 15% (v/v) PEG 200 and flash-cooled in liquid nitrogen.

Crystals of NS6 4′ and NS6 4′ 2|3 grew from 0.2 M KSCN, 0.1 M Bis-Tris propane

pH 6.5–7.5, 20% w/v PEG 3350. They were cryo-protected adjusting the mother liquor

solution to a final concentration of 30% (v/v) PEG 3350.

X-ray data collection and processing
X-ray diffraction data from crystals of NS6 1′ and NS6 2′ were collected on a Pilatus 6M-F

detector at the I03 beamline at the Diamond Light Source (Didcot, UK). For the MNV NS6

1′ crystals a 2.3 Å data set of 200 frames was collected with an oscillation width of 1◦ per

frame. Diffraction images were integrated and scaled using the CCP4 program suite (Winn

et al., 2011). Data-collection statistics are summarized in Table 1.

For the MNV NS6 2′ crystals, 720 frames with a 0.5◦ oscillation were collected. A

3.1 Å dataset was integrated and scaled as described above; see Table 1 for data collection

statistics.

MNV NS6 4′ and NS6 4′ 2|3 crystals data was collected in-house using a Rigaku

MicroMax-007 HF-M X-ray generator and a Saturn 944+ CCD detector. Data sets of

316 and 344 0.5◦ oscillation frames were collected for NS6 4′ and NS6 4′ 2|3 crystals at 2.47

and 2.42 Å respectively. The data were processed and scaled as described above.

All four datasets were submitted to the UCLA MBI Diffraction Anisotropic Server

(http://services.mbi.ucla.edu/anisoscale) for anisotropic analysis. Following the server

indication of severe anisotropy diffraction of the MNV NS6 1′ and NS6 2′ crystals both

data sets were truncated/scaled using the server default values, in particular using a 3.0

cut-off for F/sigma (Strong et al., 2006; Sawaya, 2014).

Phasing, model building and refinement
Molecular-replacement phasing was performed in Phaser (McCoy et al., 2007) using the

crystal structure of full-length MNV NS6 (PDB entry 4ASH) (Leen, Baeza & Curry, 2012)

pruned of double conformations and the initial 6 and terminal 11 residues to avoid biasing

the conformations of the termini.

The MNV NS6 1′ and NS6 2′ structures obtained from molecular replacement were

subjected to restrained refinement using REFMAC (Murshudov et al., 2011), in the

CCP4 program suite (Collaborative Computational Project , 1994). Molecular replacement

solutions of NS6 4′ and NS6 4′ 2|3 were refined using Phenix refine (Adams et al., 2010). All

manual model adjustments were made in Coot (Emsley & Cowtan, 2004).

RESULTS AND DISCUSSION
Structure determination
Datasets collected for MNV NS6 1′ and NS6 2′ were initially scaled and truncated—at 2.3 Å

and 3.1 Å respectively—with the assumption in each case that the diffraction was isotropic

even though some anisotropy was evident in the diffraction images. This approach resulted
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Table 1 Data-collection and model refinement statistics.

MNV NS6 1′ MNV NS6 2′ MNV NS6 4′ MNV NS6 4′ 2|3

Data collection

Radiation source Diamond I03 Diamond I03 Rigaku MicroMax-007
HF-M

Rigaku MicroMax-007
HF-M

Wavelength (Å) 1.000 1.000 1.54 1.54

Detector Pilatus 6M-F Pilatus 6M-F Saturn 944+ CCD Saturn 944+ CCD

Resolution limitsa(Å) 70.93–2.3
(2.42–2.3)

68.02–3.1
(3.31–3.1)

38.11–2.472
(2.561–2.472)

19.27–2.417
(2.503–2.417)

Space group C2 P6122 C2 P1

Unit-cell parameters (Å,◦) a = 99.64
b = 111.86
c = 81.29
β = 119.24

a = 136.04
c = 82.39

a = 88.19
b = 35.36
c = 52.81
β = 105.98

a = 35.52
b = 47.32
c = 53.07
α = 104.45
β = 91.53
γ = 110.61

Mosaicity (◦) 0.42 0.70 0.67 1.11

Number of unique reflection 34,593 8,555 5,711 10,817

Multiplicity 3.5 (3.6) 5.7 (6.0) 3.0 (2.3) 1.8 (1.8)

⟨ I/σ (I)⟩b 6.7 (1.2) 10.9 (2.1) 19.63 (6.94) 6.7 (2.31)

Completeness (%) 99.7 (99.8) 99.8 (99.6) 99.03 (92.44) 91.14 (66.47)

Rmerge (%)c 8.4 (8.6) 8.5 (91.5) 3.4 (10.6) 9.3 (27.1)

Overall B factor (Å2
) 54.4 94.3 27.1 24.9

Model refinement

Number of non-hydrogen
atoms/waters

5,356/93 2,563/0 1,218/22 2,562/107

Rwork (%)d 23.0 25.4 20.9 (27.2) 21.0 (28.3)

Rfree(%)e 27.8 30.3 25.2 (37.1) 26.2 (36.8)

RMSD bonds (Å)f 0.012 0.012 0.009 0.003

RMSD bond angles (◦) 1.605 1.610 1.08 0.67

Ramachandran plot (%
favoured/allowed)

89.3/10.7 88.8/11.2 97.5/2.5 96.1/3.9

PDB identifier 4x2v 4x2w 4x2x 4x2y

Notes.
a Values in parentheses refer to the highest resolution shell of data.
b ⟨I/σ(I)⟩ is the mean signal-to-noise ratio, where I is the integrated intensity of a measured reflection and σ(I) is the estimated error in the measurement.
c Rmerge = 100 × Σhkl|Ij(hkl) − ⟨Ij(hkl)⟩|/ΣhklΣjI(hkl), where Ij(hkl) and ⟨Ij(hkl)⟩ are the intensity of measurement j and the mean intensity for the reflection with

indices hkl, respectively.
d Rwork = 100 × Σhkl ∥ Fobs| − |Fcalc ∥ /Σhkl|Fobs|.
e Rfree is the Rwork calculated using a randomly selected 5% sample of reflection data that were omitted from the refinement.
f RMSD, root-mean-squared deviations (from ideality).

in data sets with relatively high values of Rmerge and low signal-to-noise ratios [I/σ(I)] for

the highest-resolution shells of data (Table 1). The MNV NS6 1′ crystals were determined

to be composed of four molecules in the asymmetric unit of the C2 unit cell, which is

consistent with a solvent content of 50.3% (Matthews, 1968). MNV NS6 2′ crystals belong

to space-group P6122 and were determined to contain two molecules in the asymmetric

unit, with slightly higher solvent content of 55.3%.
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Figure 2 Analysis and correction of the anisotropic diffraction observed for crystals of NS6 1′ and
NS6 2′. F/sigma versus Bragg spacings for each of the cell directions for (A) NS6 1′ and (B) NS6 2′

respectively. Pseudo-precession images of the anisotropy in the a∗c∗ (h0l) plane for NS6 1′ (C) before
and (D) after correction. 2Fo-Fc electron density maps contoured at 2σ after one round of refinement of
the molecular replacement solutions obtained with Phaser (McCoy et al., 2007) for NS6 1′ (E) before and
(F) after anisotropic correction.

Initial structural factors (processed isotropically) were used for molecular replacement,

and in the case of MNV NS6 1′ produced four possible solutions with a highest LLG of

2,723 and TFZ of 19.7. However, initial refinement of the model obtained by molecular

replacement stalled at relatively high values of Rwork (∼33%) and Rfree (∼39%). A similar

problem was encountered with initial attempts to refine the MNV NS6 2′ model.

At this stage we re-visited the processed data to determine if the anisotropy was at the

root of the refinement problems. Plots of F/sigma against resolution for each of the 3

principal axes revealed the severity of the anisotropy of the diffraction from both crystals

(Figs. 2A, 2B); when truncated at F/sigma <3.0 along each axis, the spread of data was

ellipsoidal in appearance. The server identified the c∗ axis as stronger diffracting than

the a∗ and b∗ directions in each case, and detected anisotropic ΔB values of 68.6 Å2

and 51.0 Å2 for MNV NS6 1′ and NS6 2′, respectively. Anisotropic ΔB reports the

directionality dependence of the intensity falloff with resolution (http://services.mbi.ucla.

edu/anisoscale/). Following the F/sigma analysis, the MNV NS6 1′ data were truncated to

3.1 Å, 2.3 Å, and 2.1 Å along a∗, b∗ and c∗, respectively. To create a nominally isotropic data

set, B-factor corrections of 39.2, −9.8 and −29.4 Å2 were applied to the observed structure

factors along the a∗, b∗ and c∗ directions respectively. The reduction in the anisotropy of

the corrected data in the a∗c∗ (h0l) plane can been seen by comparing Figs. 2C and 2D.
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Following anisotropy analysis the MNV NS6 2′ data were truncated to 3.2 Å, 3.2 Å, and

2.7 Å along a∗, b∗ and c∗ directions. To generate the nominally isotropic data set, B-factor

correction of 17.0, 17.0 and −34.0 Å2 along the same axes were applied to the observed

structure factors. The anisotropic truncation of the data, with the new limit of 2.7 Å along

the c∗ axis, resulted in a dramatic increase in the number of unique reflections from 8,555

in the “pre-treated” data to 12,786.

MNV NS6 4′ or NS6 4′ 2|3 data sets plots of F/sigma against resolution for each

of the 3 principal axes revealed only mild anisotropy of the diffraction from both

crystals (anisotropic ΔB values of 13.3 Å2 and 15.4 Å2 for MNV NS6 4′ and NS6 4′ 2|3,

respectively). In these cases, no directional-dependent truncation of the data was applied.

After taking account of the anisotropy of the data, the axes-dependent truncated and

corrected structure factors were then used to repeat the molecular replacement phasing

of the NS6 1′ data and resulted in significantly better solutions. The best solution had an

LLG of 3051 and TFZ of 32.3. Moreover, the model showed immediate improvement in the

early cycles of refinement (Rwork ∼31%; Rfree ∼36%) and yielded electron density maps

that were much more interpretable (Figs 2E and 2F). Multiple cycles of refinement and

model building lead to a structure characterized by Rwork of 23.0% and Rfree of 27.8%.

Anisotropic treatment of the MNV NS6 2′ data also improved the molecular replace-

ment outcome, with a unique solution found by Phaser in contrast with the two possible

solutions of the uncorrected data. The LLG value increased markedly from 385 to 887 while

there was a slight drop in the value of TFZ (from 19.2 to 18.8). Nevertheless, this resulted in

immediate improvements in refinement: Rwork dropped from 32.5 to 30.3% while Rfree was

reduced from 42.0 to 39.0%. These statistics were further improved to Rwork of 25.4% and

Rfree of 30.3% in the final structure.

The translation Z-scores and LLG’s for the Phaser molecular replacement solutions for

MNV NS6 4′ are 13.8 and 1,042, respectively, and for MNV NS6 4′ 2|3 27.1 and 1,394,

respectively. The crystals structures of NS6 4′ and NS6 4′ 2|3 were refined to R factors

(Rwork/Rfree) of 20.9/25.2 and 21.0/26.2%, respectively.

Structure analysis
Overall, the structure of the protease core domains for NS6 1′, NS6 2′, NS6 4′ and

NS6 4′ 2|3 is very similar to that reported previously for MNV NS6 (Leen, Baeza & Curry,

2012)—(root mean squared differences are less than 1 Å) (Fig. 3). For three of the four

new structures (NS6 2′, NS6 4′ and NS6 4′ 2|3) it was possible to identify conserved crystal

contacts, involving a two-fold symmetric packing arrangement largely mediated by the

short N-terminal helix and the loop connecting β-strand aII and bII (Fig. 3B). In each case

the C-terminus of at least one protein molecule in the asymmetric unit was observed to

extend away from the body of the protease and to interact with a neighbouring molecule

in the crystal—as had been observed previously for MNV NS6. Moreover, the extended

C-terminus invariably inserted into the peptide-binding groove formed between loops

bII-cII and eII-fII loops (Fig. 4). Disappointingly, however, in no case did the extended

peptide make interactions that were consistent with specific contacts with the protease
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Figure 3 Structure and conserved packing interfaces of C-terminally extended NS6 proteases. (A)
Superposition of the four molecules in the asymmetric unit of crystals of NS6 1′ (coloured various
shades of blue). The β-strands are labelled, as are the N- and C-termini and the conserved side-chains of
catalytic triad. Note that the active site C139 has been replaced by A139 in all structures reported here.
(B) A conserved packing arrangement observed for the mature NS6 protease (NS6 1–183) (Leen, Baeza
& Curry, 2012) and three of the structures solved in the present work (NS6 2′, NS6 4′ and NS6 4′ 2|3). In
this panel the label for the N-terminus is adjacent to the N-terminal helix that is central to the packing
interface. This packing arrangement is not conserved in the NS6 1′ crystals but the B chain of NS6 1′

is included, superposed on the molecule on the left-hand side, to further illustrate the variation in the
C-termini of the different constructs. Key features are labelled to facilitate comparison of (A) and (B).

active site. We will briefly describe each of the four new structures before turning to the

question of why in no case a protease–substrate complex was obtained.

MNV NS6 1′ crystallised in space group C2 with four molecules in the asymmetric unit.

This structure is notable for the fact that, in contrast to the other three structures reported

here and the structures previously reported for Norwalk virus NS6 protease (Zeitler, Estes

& Prasad, 2006; Muhaxhiri et al., 2013), the electron density map was of sufficient quality in

all four molecules of the asymmetric unit to permit the incorporation of the loop between

the β-strands cII and dII (Fig. 3A). Superposition of the four copies of NS6 1′ indicates

some structural variation in this loop—the Cα positions vary by 1–2 Å—consistent with

the notion that it is rather flexible (Fig. 3A).

In three of the molecules in the asymmetric unit the C-terminus is disordered beyond

residue 173 (chains A and D) or residue 174 (chain C). The electron density for the last

four residues modelled in chain D (Ala 170 to Gly 173) is poor, presumably due to disorder.

Nevertheless, we included these residues in the final model because removal increased the

R-factor.

Although the full C-termini of chains A, C and D of the NS6 1′ could not be modelled,

the electron density map revealed additional features that could be built as short stretches

of polypeptide. These correspond to portions of the missing C-termini but, because of

discontinuities in the electron density, it is not possible to unambiguously ascribe which

monomer they belong to. These short segments were present in the asymmetric unit,

and were modelled as (i) a stretch of five residues (Chain E) that could be assigned

confidently as corresponding to residues Leu 180 to Gly 184 that lies near to the active

site of a neighbouring chain A; and (ii) an extended portion of electron density that

Fernandes et al. (2015), PeerJ, DOI 10.7717/peerj.798 10/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.798


Figure 4 Comparison of the packing arrangements of C-terminally extended NS6 proteases. (A)The
mature NS6 protease (NS6 1-183) (Leen, Baeza & Curry, 2012). Chains which interact via C-termini
are coloured blue and orange. This colour-scheme is maintained throughout the figure; note also that
the orientation of the blue chain is the same in each panel. In all panels the side-chains of the active site
residues/mutations C139A, H30 and D54 are shown as sticks; their locations are indicated by dotted ovals.
The presence of two-fold symmetry axes between interacting molecules are indicated by a solid black
oval, although the views shown are only approximately along these axes. (B) NS6 1′—the interaction is
between a pair of symmetry-related B chains. An additional pair of symmetry-related C chains, which
also contact the extended C-terminus of the B chains, is shown in white (continued on next page...)
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Figure 4 (...continued)

(C) NS6 2′. In this case the interaction is between the two chains in the asymmetric unit. (D) NS6 4′

—here there is only one chain in the asymmetric unit and the interaction is not symmetric. (E) NS6
4′ 2|3 —here again the interaction between chain B (blue) of one asymmetric unit and chain A (orange)
of another is not symmetric. (F) NS6 4′ 2|3—a second but very similar mode of interaction in these
crystals between chain A (blue) of one asymmetric unit and chain B (orange) of another.

was not of sufficient quality to identify the amino acid side chains and was built as a

seven-residue poly-Ala peptide (chain F), that lies between chains A and D and may be

part of a symmetry-related molecule of chain A. However, in neither case were specific

interactions with the putative active sites of neighbour monomers observed.

In contrast to chains A, C and D, the electron density for the B chain in the asymmetric

unit was sufficiently clear to permit inclusion of all 183 residues of NS6 and the extra first

residue of NS7 (here labelled Gly 184) in the refined model (Fig. 4B). The C-terminus

of Chain B of NS6 1′ beyond Gly 173 extends to make contacts with chain B from an

adjacent asymmetric unit to which it is related by a two-fold symmetry axis. This two-fold

symmetric packing arrangement is reminiscent of the inter-protein contacts previously

observed for the full length NS6 (Leen, Baeza & Curry, 2012) (Fig. 4A). However, although

the C-terminus of NS6 1′ comes close to the substrate-binding site of neighbouring

proteases in the crystal, it does not reach far enough and makes none of the specific

contacts needed to position the scissile bond (Gln 183-Gly 184) in the active site.

MNV NS6 2′ crystallised in space group P6122 with two molecules in the asymmetric

unit. The electron density indicates the positions of residues 3-181 in chain A and 4-181 in

chain B, but is not good enough to allow complete modelling of the N- or C-termini. The

two monomers found in the asymmetric unit are related by a quasi-2-fold symmetry axis

and form an apparent homodimer with an interface area of 1,097 Å2 (Fig. 4C). In addition

to neighbourly contacts made by the two C-termini, dimerization within the crystal is

stabilised by hydrogen bonds involving Ser 51, Ser 111 and Val 113 of chain A and Ser 51,

Ser 52, Ser 111 and Val 113 of chain B. Although the C-termini within the asymmetric unit

each embrace the other monomer, reaching into the groove formed between the bII-cII

and eII-fII loops, they are again not located within the substrate-binding site.

MNV NS6 4′ crystallised in space group C2 but in a unit cell that is very different from

the C2 crystals obtained with MNV NS6 1′ (Table 1) and that has only one molecule in

the asymmetric unit. The electron density was sufficient to build a model that starts at

residue 4 and ends at residue 179. Although the extended C-terminus of NS6 once again

reaches between loops bII-cII and eII-fII of its near neighbour, the relation between the two

molecules does not involve two-fold or quasi two-fold symmetry (Fig. 4D). However, no

specific contacts are made by the C-terminal peptide with the substrate binding site.

NS6 4′ 2|3 crystallised with two molecules in a P1 unit cell. The modelled monomers

start at residue 4 and end at residue 182; in contrast to the other structures reported here,

the A chain lack density for the tip of the eII-fII loop so residues 162–163 were omitted.

The A and B chains each extend their C-termini into the cleft formed between the bII-cII

and eII-fII loops of a neighbouring molecule (Figs. 4E and 4F). The packing arrangements
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are distinct but rather similar and, once again, lack specific contacts that are consistent with

productive substrate binding.

Implications of the structures
With the extended NS6 protease constructs designed for this study we aimed to exploit

our earlier finding that the mature protease crystallised with the C-terminus of one

molecule inserted into peptide binding site of a neighbouring protein in a way that revealed

specific protease-product interactions (Leen, Baeza & Curry, 2012). We had hoped to

obtain the same packing interaction with the C-terminally extended complexes in order to

determine the structures or protease–substrate complexes that would reveal the details of

the interactions made by the amino acids in positions P1′-P4′ of the substrate, but in each

of the four cases that we probed, extension of the C-terminus resulted in novel packing

arrangements, none of which captured a proper protease–substrate reaction.

Why did we not get the same crystal form as for the full-length protein? At present it is

difficult to give a definitive answer to this question. Although we screened extensively for

crystallisation conditions, we cannot claim to have searched exhaustively and it may be

that further efforts might yet succeed. Moreover, it is well known that even very modest

changes to protein constructs may alter substantially the way that they crystallise, though

it is worth noting that a similar strategy to explore the specific interactions of different

protease-product complexes was applied successfully to Norwalk virus NS6 (Muhaxhiri

et al., 2013). In preliminary investigations using nuclear magnetic resonance (NMR)

to investigate solution structures of extended MNV NS6 protease structures, we have

obtained evidence to suggest that their C-termini may have a propensity to fold into

the active site of the molecule that it belongs to, making a cis interaction (H Fernandes,

2015, unpublished data). This may explain why trans interactions were not observed

in our crystals but in turn raises a further question: why was this conformational state

not captured in the crystal form? One possibility is that the concentration of proteins

inevitably involved in crystallisation somehow destabilizes the cis interaction but does

not necessarily capture a catalytically competent trans interaction between the cleavage

junction within the extended C-terminus and a protease neighbour. Why this would be the

case, particularly when a protease–substrate complex would be expected to be a relatively

stable state, remains a mystery.

ACKNOWLEDGEMENTS
We thank staff at the Diamond Light Source (Didcot, UK) for assistance with data

collection.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported in part by grant funding from the Biotechnology and Biological

Sciences Research Council, UK (Ref: BB/J001708/1). The funders had no role in study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Fernandes et al. (2015), PeerJ, DOI 10.7717/peerj.798 13/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.798


Grant Disclosures
The following grant information was disclosed by the authors:

Biotechnology and Biological Sciences Research Council, UK: BB/J001708/1.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Humberto Fernandes and Eoin N. Leen conceived and designed the experiments,

performed the experiments, analyzed the data, contributed reagents/materials/analysis

tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.

• Hamlet Cromwell Jr and Marc-Philipp Pfeil performed the experiments, analyzed the

data, contributed reagents/materials/analysis tools, reviewed drafts of the paper.

• Stephen Curry conceived and designed the experiments, analyzed the data, contributed

reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,

reviewed drafts of the paper.

Data Deposition
The following information was supplied regarding the deposition of related data:

RCSB protein data bank:

http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v

http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w

http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x

http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y

REFERENCES
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW,

Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ,
Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive
Python-based system for macromolecular structure solution. Acta Crystallographica Section D
Biological Crystallography 66:213–221 DOI 10.1107/S0907444909052925.

Allaire M, Chernaia MM, Malcolm BA, James MN. 1994. Picornaviral 3C cysteine proteinases
have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76
DOI 10.1038/369072a0.

Belliot G, Sosnovtsev SV, Mitra T, Hammer C, Garfield M, Green KY. 2003. In vitro proteolytic
processing of the MD145 norovirus ORF1 nonstructural polyprotein yields stable precursors
and products similar to those detected in calicivirus-infected cells. Journal of Virology
77:10957–10974 DOI 10.1128/JVI.77.20.10957-10974.2003.

Collaborative Computational Project. 1994. The CCP4 suite: programs for protein
crystallography. Acta Crystallographica Section D Biological Crystallography 50:760–763
DOI 10.1107/S0907444994003112.

Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallo-
graphica Section D Biological Crystallography 60:2126–2132 DOI 10.1107/S0907444904019158.

Fernandes et al. (2015), PeerJ, DOI 10.7717/peerj.798 14/16

https://peerj.com
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2v
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2w
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2x
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://www.rcsb.org/pdb/explore/explore.do?structureId=4x2y
http://dx.doi.org/10.1107/S0907444909052925
http://dx.doi.org/10.1038/369072a0
http://dx.doi.org/10.1128/JVI.77.20.10957-10974.2003
http://dx.doi.org/10.1107/S0907444994003112
http://dx.doi.org/10.1107/S0907444904019158
http://dx.doi.org/10.7717/peerj.798


Glass PJ, White LJ, Ball JM, Leparc-Goffart I, Hardy ME, Estes MK. 2000. Norwalk virus open
reading frame 3 encodes a minor structural protein. Journal of Virology 74:6581–6591
DOI 10.1128/JVI.74.14.6581-6591.2000.

Hussey RJ, Coates L, Gill RS, Erskine PT, Coker SF, Mitchell E, Cooper JB, Wood S,
Broadbridge R, Clarke IN, Lambden PR, Shoolingin-Jordan PM. 2011. A structural study
of norovirus 3C protease specificity: binding of a designed active site-directed peptide inhibitor.
Biochemistry 50:240–249 DOI 10.1021/bi1008497.

Jiang X, Wang M, Wang K, Estes MK. 1993. Sequence and genomic organization of Norwalk virus.
Virology 195:51–61 DOI 10.1006/viro.1993.1345.

Karst SM. 2010. Pathogenesis of noroviruses, emerging RNA viruses. Viruses 2:748–781
DOI 10.3390/v2030748.

Kim Y, Lovell S, Tiew KC, Mandadapu SR, Alliston KR, Battaile KP, Groutas WC, Chang KO.
2012. Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses,
and coronaviruses. Journal of Virology 86:11754–11762 DOI 10.1128/JVI.01348-12.

Lambden PR, Caul EO, Ashley CR, Clarke IN. 1993. Sequence and genome organization
of a human small round-structured (Norwalk-like) virus. Science 259:516–519
DOI 10.1126/science.8380940.

Leen EN, Baeza G, Curry S. 2012. Structure of a murine norovirus NS6 protease-product complex
revealed by adventitious crystallisation. PLoS ONE 7:e38723
DOI 10.1371/journal.pone.0038723.

Liu B, Clarke IN, Lambden PR. 1996. Polyprotein processing in Southampton virus: identification
of 3C-like protease cleavage sites by in vitro mutagenesis. Journal of Virology 70:2605–2610.

Matthews BW. 1968. Solvent content of protein crystals. Journal of Molecular Biology 33:491–497
DOI 10.1016/0022-2836(68)90205-2.

Matthews DA, Smith WW, Ferre RA, Condon B, Budahazi G, Sisson W, Villafranca JE,
Janson CA, McElroy HE, Gribskov CL, Worland S. 1994. Structure of human rhinovirus 3C
protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving
precursor polyprotein. Cell 77:761–771 DOI 10.1016/0092-8674(94)90059-0.

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007.
Phaser crystallographic software. Journal of Applied Crystallography 40:658–674
DOI 10.1107/S0021889807021206.

McFadden N, Bailey D, Carrara G, Benson A, Chaudhry Y, Shortland A, Heeney J, Yarovinsky F,
Simmonds P, Macdonald A, Goodfellow I. 2011. Norovirus regulation of the innate immune
response and apoptosis occurs via the product of the alternative open reading frame 4. PLoS
Pathogens 7:e1002413 DOI 10.1371/journal.ppat.1002413.

Muhaxhiri Z, Deng L, Shanker S, Sankaran B, Estes MK, Palzkill T, Song Y, Prasad BV. 2013.
Structural basis of substrate specificity and protease inhibition in Norwalk virus. Journal of
Virology 87:4281–4292 DOI 10.1128/JVI.02869-12.

Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD,
Long F, Vagin AA. 2011. REFMAC5 for the refinement of macromolecular crystal
structures. Acta Crystallographica Section D Biological Crystallography 67:355–367
DOI 10.1107/S0907444911001314.

Nakamura K, Someya Y, Kumasaka T, Ueno G, Yamamoto M, Sato T, Takeda N, Miyamura T,
Tanaka N. 2005. A norovirus protease structure provides insights into active and substrate bind-
ing site integrity. Journal of Virology 79:13685–13693 DOI 10.1128/JVI.79.21.13685-13693.2005.

Fernandes et al. (2015), PeerJ, DOI 10.7717/peerj.798 15/16

https://peerj.com
http://dx.doi.org/10.1128/JVI.74.14.6581-6591.2000
http://dx.doi.org/10.1021/bi1008497
http://dx.doi.org/10.1006/viro.1993.1345
http://dx.doi.org/10.3390/v2030748
http://dx.doi.org/10.1128/JVI.01348-12
http://dx.doi.org/10.1126/science.8380940
http://dx.doi.org/10.1371/journal.pone.0038723
http://dx.doi.org/10.1016/0022-2836(68)90205-2
http://dx.doi.org/10.1016/0092-8674(94)90059-0
http://dx.doi.org/10.1107/S0021889807021206
http://dx.doi.org/10.1371/journal.ppat.1002413
http://dx.doi.org/10.1128/JVI.02869-12
http://dx.doi.org/10.1107/S0907444911001314
http://dx.doi.org/10.1128/JVI.79.21.13685-13693.2005
http://dx.doi.org/10.7717/peerj.798


Sawaya MR. 2014. Methods to refine macromolecular structures in cases of severe diffraction
anisotropy. Methods in Molecular Biology 1091:205–214 DOI 10.1007/978-1-62703-691-7 15.

Scheffler U, Rudolph W, Gebhardt J, Rohayem J. 2007. Differential cleavage of the norovirus
polyprotein precursor by two active forms of the viral protease. Journal of General Virology
88:2013–2018 DOI 10.1099/vir.0.82797-0.

Schrodinger, LLC. 2010. The PyMOL Molecular Graphics System, Version 1.3r1.

Sosnovtsev SV, Belliot G, Chang KO, Prikhodko VG, Thackray LB, Wobus CE, Karst SM,
Virgin HW, Green KY. 2006. Cleavage map and proteolytic processing of the murine
norovirus nonstructural polyprotein in infected cells. Journal of Virology 80:7816–7831
DOI 10.1128/JVI.00532-06.

Strong M, Sawaya MR, Wang S, Phillips M, Cascio D, Eisenberg D. 2006. Toward the structural
genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium
tuberculosis. Proceedings of the National Academy of Sciences of the United States of America
103:8060–8065 DOI 10.1073/pnas.0602606103.

Takahashi D, Hiromasa Y, Kim Y, Anbanandam A, Yao X, Chang KO, Prakash O. 2013.
Structural and dynamics characterization of norovirus protease. Protein Science 22:347–357
DOI 10.1002/pro.2215.

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM,
Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA,
Powell HR, Read RJ, Vagin A, Wilson KS. 2011. Overview of the CCP4 suite and current
developments. Acta Crystallographica Section D Biological Crystallography 67:235–242
DOI 10.1107/S0907444910045749.

Zeitler CE, Estes MK, Prasad BV. 2006. X-ray crystallographic structure of the Norwalk virus
protease at 1.5-A resolution. Journal of Virology 80:5050–5058
DOI 10.1128/JVI.80.10.5050-5058.2006.

Fernandes et al. (2015), PeerJ, DOI 10.7717/peerj.798 16/16

https://peerj.com
http://dx.doi.org/10.1007/978-1-62703-691-7_15
http://dx.doi.org/10.1099/vir.0.82797-0
http://dx.doi.org/10.1128/JVI.00532-06
http://dx.doi.org/10.1073/pnas.0602606103
http://dx.doi.org/10.1002/pro.2215
http://dx.doi.org/10.1107/S0907444910045749
http://dx.doi.org/10.1128/JVI.80.10.5050-5058.2006
http://dx.doi.org/10.7717/peerj.798

	Structure determination of Murine Norovirus NS6 proteases with C-terminal extensions designed to probe protease--substrate interactions
	Introduction
	Materials and Methods
	Cloning and purification of MNV NS6 variants
	Crystallisation of MNV NS6 variants
	X-ray data collection and processing
	Phasing, model building and refinement

	Results and Discussion
	Structure determination
	Structure analysis
	Implications of the structures

	Acknowledgements
	References


