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There is growing interest within regulatory agencies and toxicological research
communities to develop, test, and apply new approaches, such as toxicogenomics, to more
efficiently evaluate chemical hazards. Given the complexity of analyzing thousands of
genes simultaneously, there is a need to identify reduced gene sets. Though several gene
sets have been defined for toxicological applications, few of these were purposefully
derived using toxicogenomics data. Here, we developed and applied a systematic
approach to identify 1000 genes (called Toxicogenomics-1000 or T1000) highly responsive
to chemical exposures. First, a co-expression network of 11,210 genes was built by
leveraging microarray data from the Open TG-GATEs program. This network was then re-
weighted based on prior knowledge of their biological (KEGG, MSigDB) and toxicological
(CTD) relevance. Finally, weighted correlation network analysis was applied to identify 258
gene clusters. T1000 was defined by selecting genes from each cluster that were most
associated with outcome measures. For model evaluation, we compared the performance
of T1000 to that of other gene sets (L1000, S1500, Genes selected by Limma, and random
set) using two external datasets based on the rat model. Additionally, a smaller (T384) and
a larger version (T1500) of T1000 were used for dose-response modeling to test the effect
of gene set size. Our findings demonstrated that the T1000 gene set is predictive of apical
outcomes across a range of conditions (e.g., in vitro and in vivo, dose-response, multiple
species, tissues, and chemicals), and generally performs as well, or better than other gene
sets available.
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33 Abstract

34 There is growing interest within regulatory agencies and toxicological research communities to 

35 develop, test, and apply new approaches, such as toxicogenomics, to more efficiently evaluate 

36 chemical hazards. Given the complexity of analyzing thousands of genes simultaneously, there is 

37 a need to identify reduced gene sets. Though several gene sets have been defined for 

38 toxicological applications, few of these were purposefully derived using toxicogenomics data. 

39 Here, we developed and applied a systematic approach to identify 1000 genes (called 

40 Toxicogenomics-1000 or T1000) highly responsive to chemical exposures.  First, a co-

41 expression network of 11,210 genes was built by leveraging microarray data from the Open TG-

42 GATEs program. This network was then re-weighted based on prior knowledge of their 

43 biological (KEGG, MSigDB) and toxicological (CTD) relevance. Finally, weighted correlation 

44 network analysis was applied to identify 258 gene clusters. T1000 was defined by selecting 

45 genes from each cluster that were most associated with outcome measures. For model evaluation, 

46 we compared the performance of T1000 to that of other gene sets (L1000, S1500, Genes selected 

47 by Limma, and random set) using two external datasets based on the rat model. Additionally, a 

48 smaller (T384) and a larger version (T1500) of T1000 were used for dose-response modeling to 

49 test the effect of gene set size. Our findings demonstrated that the T1000 gene set is predictive of 

50 apical outcomes across a range of conditions (e.g., in vitro and in vivo, dose-response, multiple 

51 species, tissues, and chemicals), and generally performs as well, or better than other gene sets 

52 available. 
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53 Introduction
54

55 Over the past decade there have been profound steps taken across the toxicological sciences and 

56 regulatory communities to help transform conventional toxicity testing largely based on animal 

57 models and apical outcome measurements to an approach that is founded on systems biology and 

58 predictive science (Kavlock et al. 2018; Knudsen et al. 2015; Villeneuve & Garcia-Reyero 

59 2011).  On the scientific side, efforts are being exemplified by emergent notions such as the 

60 Adverse Outcome Pathway framework (AOP; Ankley et al., 2010) and New Approach Methods 

61 (ECHA 2016).  On the regulatory side, these are exemplified by changes to, for example, 

62 chemical management plans in Canada, the United States and REACH (ECHA 2007) across the 

63 European Union.

64

65 A core tenet underlying the aforementioned transformations, as catalyzed by the 2007 U.S. 

66 National Research Council report “Toxicity Testing in the 21st Century” (Andersen & Krewski 

67 2009), is that perturbations at the molecular-level can be predictive of those at the whole 

68 organism-level. Though whole transcriptome profiling is increasingly popular, it still remains 

69 costly for routine research and regulatory applications. Additionally, building predictive models 

70 with thousands of features introduces problems due to the high dimensionality of the data and so 

71 considering a smaller number of genes has the potential to increase classification performance 

72 (Alshahrani et al. 2017; Soufan et al. 2015b). Identifying smaller panels of key genes that can be 

73 measured, analyzed and interpreted conveniently remain an appealing option for toxicological 

74 studies and decision making 

75
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76 In recent years, several initiatives across the life sciences have started to identify reduced gene 

77 sets from whole transcriptomic studies. For example, the Library of Integrated Network-Based 

78 Cellular Signatures (LINCS) project derived L1000, which is a gene set of 976 ‘Landmark’ 

79 genes chosen to infer the expression of 12,031 other highly connected genes in the human 

80 transcriptome (Subramanian et al. 2017). In the toxicological sciences, the U.S. Tox21 Program 

81 recently published S1500+, which is a set of 2,753 genes designed to be both representative of 

82 the whole-transcriptome, while maintaining a minimum coverage of all biological pathways in 

83 Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 2007) and Molecular 

84 Signatures Database (MSigDB) (Liberzon et al. 2015a). The first 1,500 genes were selected by 

85 analyzing microarray data from 3,339 different studies, and the rest were nominated by members 

86 of the scientific community (Mav et al. 2018).  L1000 and S1500 gene sets were originally 

87 proposed to serve a different purpose. The 978 landmark genes of L1000 are chosen to infer 

88 expression of other genes more accurately, while genes of S1500 are selected to achieve more 

89 biological pathway coverage. Compared to L1000, the S1500 gene set attains more toxicological 

90 relevance through the gene nomination phase, though its data-driven approach relies upon 

91 microarray data primarily derived from non-toxicological studies. It worth nothing that about 

92 33.7% of genes are shared between both signatures. Even though some differences can be 

93 realized between L1000 and S1500, they are both strong candidates of gene expression modeling 

94 and prediction (Haider et al. 2018).

95

96 The objectives of the current study were to develop and apply a systematic approach to identify 

97 highly-responsive genes from toxicogenomic studies, and from these to nominate a set of 1000 

98 genes to form the basis for the T1000 (Toxicogenomics-1000) reference gene set.  Co-expression 
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99 network analysis is an established approach using pairwise correlation between genes and 

100 clustering methods to group genes with similar expression patterns (van Dam et al. 2018). First, a 

101 co-expression network was derived using in vitro and in vivo data from human and rat studies 

102 from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (Open TG-

103 GATEs) database. Next, the connections within the co-expression network were adjusted to 

104 increase the focus on genes in KEGG pathways, the MSigDB, or the Comparative 

105 Toxicogenomics Database (CTD) (Davis et al. 2017). This incorporation of prior biological and 

106 toxicological knowledge was motivated by loose Bayesian inference to refine the 

107 computationally-prioritized transcriptomic space. Clusters of highly connected genes were 

108 identified from the resulting co-expression network, and machine learning models were applied 

109 to prioritize clusters based on their association with apical endpoints. Clustering genes based on 

110 expression data has been shown to be instrumental in functional annotation and sample 

111 classification (Necsulea et al. 2014), with the rationale that genes with similar expression 

112 patterns are likely to participate in the same biological pathways (Budinska et al. 2013). From 

113 each cluster key genes were identified for inclusion in T1000. Testing and validation of T1000 

114 was realized through two separate datasets (one from Open TG-GATEs and one from the U.S. 

115 National Toxicology Program) that were not used for gene selection.  The current study is part of 

116 the larger EcoToxChip project (Basu et al. 2019). For the processed data, user can download all 

117 samples processed from https://zenodo.org/record/3359047#.XUcTwpMzZ24. We also deposited 

118 source codes and scripts used for the study at https://github.com/ecotoxxplorer/t1000.

PeerJ reviewing PDF | (2019:06:38961:2:0:NEW 28 Sep 2019)

Manuscript to be reviewed



119 Materials & Methods

120 Databases and datasets preparation

121 The derivation of T1000 was based on five public microarray datasets of toxicological relevance 

122 (Table 1): four datasets from Open TG-GATEs (Igarashi et al. 2014b), and one dataset generated 

123 by Thomas et al (referred to as the dose-response dataset in this manuscript; GSE45892) (Thomas 

124 et al. 2013).  Table 1 provides a summary of all microarray datasets used in this study. For building 

125 the initial T1000 gene set, we used three of the four Open TG-GATEs datasets (see datasets 1-3 in 

126 Table 1).

127

128 Open TG-GATEs

129

130 Open TG-GATEs is one of the largest publicly accessible toxicogenomics resources (Igarashi et 

131 al. 2014b). This database comprises data from 170 compounds (mostly drugs) with the aim of 

132 improving and enhancing drug safety assessment. It contains gene expression profiles and 

133 traditional toxicological data derived from in vivo (rat) and in vitro (primary rat hepatocytes and 

134 primary human hepatocytes) studies. To process the raw gene expression data files of  Open TG-

135 GATEs, the Affy package (Gautier et al. 2004) was used to produce Robust Multi-array Average 

136 (RMA) probe set intensities (Irizarry et al. 2003b). Gene annotation for human and rat was 

137 performed using Affymetrix Human Genome U133 Plus 2.0 Array annotation data and 

138 Affymetrix Rat Genome 230 2.0 Array annotation data, respectively. Genes without annotation 

139 were excluded. When the same gene was mapped multiple times, the average value was used. 

140 Finally, all profiles for each type of experiment were joined into a single matrix for downstream 

141 analysis.
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142 From the training datasets, specific samples were labelled binary as “dysregulated” or “non-

143 dysregulated”. Dysregulated refers to exposure cases with potential toxic outcomes and non-

144 dysregulated included controls and exposures with non-toxic outcomes. For the in vitro datasets, 

145 gene expression changes were associated with lactate dehydrogenase (LDH) activity (%). The 

146 activity of LDH, which serves as a proxy for cellular injury or dysregulation, was binarized such 

147 that values above 105% and below 95% were considered “dysregulated”.  While conservative, 

148 we note that these cut-off values were situated around the 5% and 95% marks of the LDH 

149 distribution curve (see Supplemental Figure S1 and Supplemental Information S1 for more 

150 details). 

151

152 For the in vivo datasets (kidney and liver datasets from Open TG-GATEs), gene expression 

153 changes were associated with histopathological measures.  The magnitude of pathologies was 

154 previously annotated into an ordinal scale: present, minimal, slight, moderate and severe 

155 (Igarashi et al. 2014a).  This scale was further reduced into a binary classification with the first 

156 three levels considered “non-dysregulated” while the latter two were considered “dysregulated”.

157

158 Dose-response dataset and benchmark dose (BMD) calculation

159 The dose-response dataset (Accession No. GSE45892), was used to externally evaluate the 

160 ability of T1000 genes to predict apical endpoints (Thomas et al. 2013). Briefly, this dataset 

161 contains Affymetrix HT Rat230 PM microarray data following in vivo exposure of rats to six 

162 chemicals (TRBZ: 1,2,4-tribromobenzene, BRBZ: bromobenzene, TTCP: 2,3,4,6-

163 tetrachlorophenol, MDMB: 4,4’-methylenebis(N,N’-dimethyl)aniline, NDPA: N-

164 nitrosodiphenylamine, and HZBZ: hydrazobenzene). In exposed animals, both gene expression 

165 and apical outcomes (liver: absolute liver weight, vacuolation, hypertrophy, microvesiculation, 
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166 necrosis; thyroid: absolute thyroid weight, follicular cell hypertrophy, follicular cell hyperplasia; 

167 bladder: absolute bladder weight, increased mitosis, diffuse transitional epithelial hyperplasia, 

168 increased necrosis epithelial cell) were measured, permitting the comparison of transcriptionally-

169 derived benchmark doses (BMDt) with traditional benchmark doses derived from apical 

170 outcomes (Yang et al. 2007). The apical outcome-derived benchmark dose (BMDa) for each 

171 treatment group was defined as the benchmark dose from the most sensitive apical outcome for 

172 the given chemical-duration group.

173 Raw gene expression data (CEL files) for the dose-response dataset were downloaded from GEO 

174 (Accession No. GSE45892), organized into chemical-exposure-duration treatment groups, and 

175 normalized using the RMA method (Irizarry et al. 2003a). Only expression measurements 

176 corresponding to genes in the T1000 gene (or T384 and T1500) set were retained, resulting in 

177 reduced gene expression matrices for each treatment group (  = 24). The reduced gene 𝑡
178 expression matrices were analyzed using BMDExpress 2.0 to calculate a toxicogenomic 

179 benchmark dose (BMDt) for each treatment group (Yang et al. 2007). Here, the BMDt was 

180 calculated as the dose that corresponded to a 10% increase in gene expression compared to the 

181 control (Farmahin et al. 2017). Within BMDExpress 2.0, genes were filtered using one-way 

182 ANOVA (FDR adjusted p-value cut-off = 0.05). A BMDt was calculated for each differentially 

183 expressed gene by curve fitting with exponential (degree 2-5), polynomial (degree 2-3), linear, 

184 power, and Hill models. For each gene, the model with the lowest Akaike information criterion 

185 (AIC) was used to derive the BMDt.

186

187 The BMDts from individual genes were used to determine a treatment group-level BMDt using 

188 functional enrichment analysis with Reactome pathways (Farmahin et al. 2017).  Note, we chose 
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189 here to functionally enrich with Reactome since we utilized KEGG to derive the T1000 list. 

190 After functional enrichment analysis, significantly enriched pathways (p-value < 0.05) were 

191 filtered such that only pathways with > 3 genes and > 5% of genes in the pathway were retained. 

192 The treatment group-level BMDt was calculated by considering the mean gene-level BMDt for 

193 each significantly enriched pathway and selecting the lowest value. If there were no significantly 

194 enriched pathways that passed all filters, no BMDt could be determined for that treatment group. 

195 The similarity of the BMDt to the benchmark dose derived from apical outcomes (BMDa) was 

196 assessed by calculating the BMDt/BMDa ratio and the correlation between BMDt and BMDa for 

197 all treatment groups (Farmahin et al. 2017). Following the same procedures, BMDt/BMDa ratio 

198 and correlation statistics were determined from genes belonging to L1000, S1500, and Linear 

199 Models for Microarray Data (Limma) (Smyth 2005) to provide a reference for the performance 

200 of T1000 genes. 

201

202 Databases for Computing Prior Knowledge

203 The CTD, KEGG, and Hallmark databases were mined to integrate existing toxicogenomics and 

204 broader biological knowledge into one network that represents the prior knowledge space. CTD is 

205 manually curated from the literature to serve as a public source for toxicogenomics information, 

206 currently including over 30.5 million chemical-gene, chemical-disease, and gene-disease 

207 interactions (Davis et al. 2017). Following the recommendations of Hu et al. (2015), only 

208 “mechanistic/marker” associations were extracted from the CTD database, thus excluding 

209 “therapeutic” associations that are presumably less relevant to toxicology. The extracted subgraph 

210 contained 2,889 chemicals, 950 diseases annotated as toxic endpoints (e.g. neurotoxicity, 

211 cardiotoxicity, hepatotoxicity and nephrotoxicity), and 22,336 genes. KEGG pathways are a 
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212 popular bioinformatics resource that help to link, organize, and interpret genomic information 

213 through the use of manually drawn networks describing the relationships between genes in specific 

214 biological processes (Kanehisa et al. 2007). The MSigDB Hallmark gene sets have been developed 

215 using a combination of automated approaches and expert curation to represent known biological 

216 pathways and processes while limiting redundancy (Liberzon et al. 2015b).

217 Each feature vector consisted of 239 dimensions, representing information encoded from 

218 Hallmark, KEGG and CTD. For the Hallmark and KEGG features, we used “1” or “0” to 

219 indicate if a gene was present or absent for each of the 50 Hallmark gene sets (Liberzon et al. 

220 2015b) and 186 KEGG pathways (Kanehisa & Goto 2000). These features were transformed into 

221 z-scores. For the CTD features, we computed the degree, betweenness centrality, and closeness 

222 centrality of each gene, based on the topology of the extracted CTD subgraph. The topology 

223 measures were log-scaled for each gene in the network. The resulting prior knowledge space 

224 consisted of a 239-dimension vector for each of the 22,336 genes, with each vector containing 50 

225 z-score normalized Hallmark features, 186 z-score normalized KEGG features, and three log-

226 scaled CTD network features.

227

228 Reactome database

229 To understand the biological space covered by T1000, we analyzed T1000’s top enriched 

230 Reactome pathways (as KEGG was used to develop T1000). Reactome is a manually curated 

231 knowledgebase of human reactions and pathways with annotations of 7,088 protein-coding genes  

232 (Croft et al. 2014).
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233 Performance evaluation

234 For the performance evaluation and testing phase, we leveraged the fourth dataset from Open 

235 TG-GATEs (see dataset 4 in Table 1), which was not used for gene ranking or selection so that it 

236 could serve as an external validation dataset. The dose-response dataset was used for an 

237 additional external validation (see dataset 5 in Table 1). 

238

239 In this step, we applied five supervised machine learning methods to the TG-GATES rat kidney 

240 in vivo dataset, with the objective to predict which exposures caused significant “dysregulation”, 

241 according to the criteria defined in step 4. This dataset was purposefully not used earlier when 

242 deriving T1000 so that it could serve later as a validation and testing dataset. The five machine 

243 learning models used were K-nearest neighbors (KNN; K = 3) (Cover & Hart 1967), Decision 

244 Trees (DT), Naïve Bayes Classifier (NBC), Quadratic Discriminant Analysis (QDA) and 

245 Random Forests (RF). 

246

247 The performance of each method was evaluated with five-fold cross-validation and measured 

248 using six different metrics (Equations 2 – 7). TP represents the number of true positives, FP the 

249 number of false positives, TN the number of true negatives and FN the number of false 

250 negatives. The F1 score (also called the balanced F-score)  is a performance evaluation measure 

251 that computes the weighted average of sensitivity and precision (He & Garcia 2009), and is well-

252 suited for binary classification models. The F0.5 score (Davis & Goadrich 2006; Maitin-Shepard 

253 et al. 2010; Santoni et al. 2010) is another summary metric that gives twice as much weight to 

254 precision than sensitivity. The evaluation was performed on a Linux based workstation with 16 

255 cores and 64 GB RAM for processing the data and running the experiments. 

256
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257                                (1)𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)
258                               (2)𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)
259                                   (3)𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)
260                  (4) 𝐺𝑀𝑒𝑎𝑛 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
261                          (5)𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
262           (6)𝐹0.5𝑆𝑐𝑜𝑟𝑒 = 1.25 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

0.25 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
263

264 Proposed T1000 Framework

265 The work of T1000 was conducted in four discrete phases as follows (see Figure 1):  I) data 

266 preparation and gene co-expression network generation; II) network clustering to group relevant 

267 genes; III) gene selection and prioritization; and IV) external testing and performance evaluation.  

268 The goal of phase I was to construct two network representations of the interactions between 

269 toxicologically-relevant genes, with one based on TG-GATES microarray data (step 1&2) and 

270 the other based on the KEGG, MSigDB, and CTD databases (step 3). In a co-expression 

271 network, nodes represent genes and edges represent the Pearson’s correlation of expression 

272 values of pairs of genes. In the current study, we constructed three separate co-expression 

273 networks using gene expression profiles from Open TG-GATEs datasets (human in vitro, rat in 

274 vitro, and rat in vivo) (Table 1). If an interaction with a correlation coefficient of 60% or higher 

275 was present in all three networks, that gene-gene interaction was then accepted and mapped into 

276 one integrated co-expression network by averaging the absolute values of the pairwise 

277 correlation coefficients between individual genes. Matching between rat and human genes was 

278 based on gene symbols (e.g., Ddr1 in rat is matched with DDR1 in human using BiomaRt R 

279 package (Durinck et al. 2009)) and ignored when no match exists. This is a more conservative 
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280 approach to maintain perfect matching orthologues in the networks although other computational 

281 approaches to match orthologues can be used (Wang et al. 2015). The final integrated co-

282 expression network had 11,210 genes from a total of 20,502 genes.

283 To build the prior knowledge space (step 3), we encoded information from the Hallmark, KEGG 

284 and CTD databases into feature vectors composed of 239 features describing each gene (see 

285 Materials section). Then, we projected the data onto a two-dimensional space using principle 

286 component analysis (PCA) and clustered using K-means (K=3) to detect those genes that 

287 contributed most to the prior knowledge space. Regarding K-means, we initially experimented 

288 with K=1, K=3 and K=5 and after visual inspection of summarized information as 

289 Supplemental Information S2 Figure 1, we chose K=3.

290 Genes that were furthest from the centroids (i.e., highest contributing ones) of the K-means 

291 clusters were more enriched with pathways and gene-chemical-disease interactions (see 

292 Supplemental Information S2). Based on step 3, a ranked list of all genes was generated such 

293 that the first ranked gene would have a prior score of 100% and the last, a prior score close to 

294 0%. In phase II, we re-weighted the interactions in the co-expression network based on the prior 

295 knowledge space and then detected clusters of highly connected genes in the updated network 

296 (step 4). In a Bayesian fashion, the pairwise connections between genes in the co-expression 

297 network were re-weighted by multiplying the correlation with the mean prior score. For example, 

298 given  and  as prior scores of genes A and B, the correlation score  is re-𝑃(𝐴) 𝑃(𝐵) 𝑆(𝐴, 𝐵)
299 weighted as follows (Eq. 7):

300

301 (7)𝑆(𝐴, 𝐵)𝑛𝑒𝑤 =  𝑆(𝐴, 𝐵) ∗  ((𝑃(𝐴) + 𝑃(𝐵))/2)
302
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303 It should be noted that in Eq. 7, the product of joint distribution could have been considered for 

304 the update such that .𝑆(𝐴, 𝐵)𝑛𝑒𝑤 =  𝑆(𝐴, 𝐵) ∗ ((𝑃(𝐴) ∗ 𝑃(𝐵))
305 After re-weighting the connections, we detected clusters of highly connected genes using the 

306 Markov Cluster Algorithm (MCL) (Van Dongen & Abreu-Goodger 2012). The MCL approach 

307 groups together nodes with strong edge weights and then simulates a random flow through a 

308 network to find more related groups of genes based on the flow’s intensity of movement. It does 

309 not require the number of clusters to be pre-specified. An inflation parameter controls the 

310 granularity of the output clustering and several values within a recommended range (1.2-5.0) 

311 were tried (Van Dongen & Abreu-Goodger 2012). To optimize for the granularity of the 

312 clustering, a systematic analysis for the MCL inflation parameter was performed with values in 

313 range (1.2-5.0) (see Supplemental Information S3). After examining closely efficiency and 

314 mass fraction, a value of 3.3 was chosen. This generated 258 clusters that consisted of 11,210 

315 genes.  The average number of genes in each cluster was 43.4 with the min-max ranging from 1 

316 to 8,423.

317 The goal of phase III of gene selection and prioritization was to select the top genes from each 

318 cluster to form T1000 (step 5), and then produce a final ranking of the 1000 selected genes (step 

319 6). For each of the 258 gene clusters, random forest (RF) classifiers were used to rank genes 

320 based on their ability to separate changes in gene expression labelled as “dysregulated” from 

321 those labelled “non-dysregulated”, using the Gini impurity index of classification (Nguyen et al. 

322 2013; Qi 2012; Tolosi & Lengauer 2011). RF is one of the most widely used solutions for feature 

323 ranking, and as an ensemble model, it is known for its stability (Chan & Paelinckx 2008). In 

324 order to cover more biological space and ensure selected genes represent the whole 
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325 transcriptome, a different RF classifier is built for each cluster and used to select representative 

326 genes (Sahu & Mishra 2012).

327 We selected the top genes from each cluster based on the performance of the RF classifier. For 

328 example, when selecting the 1,000 top genes from two clusters (A and B), if the cross-validation 

329 prediction accuracy estimated for models A and B were 60% and 55%, respectively, then 522 

330 ((60%/(60%+55%))*1000) and 478 ((55%/(60%+55%))*1000) genes would be selected from 

331 clusters A and B. However, if cluster A contained only 520 genes, the remaining two genes 

332 would be taken from group B, if possible. So, the cluster size is only used if it contains 

333 insufficient genes. We repeated this process until 1000 genes were selected. After choosing top k 

334 genes from each cluster, we aggregated them into a single list of 1000 genes and built a final RF 

335 model to get a global ranking of the genes. We refer to this final ranked list as T1000 (see 

336 Supplemental Table S1 for a full list of selected genes and summary annotation; see 

337 Supplemental Information S4 for the cluster assignment of the genes). The goal of phase IV 

338 was to test the performance of the T1000 gene set using external datasets, and thus transition 

339 from gene selection activities to ones that focus on the evaluation of T1000. Phase IV is 

340 discussed in the following Results section. To discuss factors that characterizes and distinguishes 

341 T1000 from L1000 and S1500, Table 2 is provided. As summarized in Table 2, T1000 is more 

342 toxicogenomic tailored by selecting genes that optimizes for endpoint predictions and using 

343 toxicogenomic datasets. Incorporating the prior knowledge space is critical for T1000 in ranking 

344 genes with more contribution to toxic effects. L1000 aims at finding a set of genes that can be 

345 used to extrapolate for the full expression space of all other genes. S1500 has considered an 

346 optimization for the number of covered pathways. T1000, L1000 and S1500 have considered 
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347 using PCA and clustering during the selection process. In T1000, however, this step is part of 

348 computing the prior only.

349

350 Results

351 Overview of T1000 and biological relevance

352 The genes comprising T1000 cover a wide biological space of toxicological relevance.  For 

353 illustration, co-expression networks, before and after applying Steps 2 and 3 (i.e., networks built 

354 on the Open TG-GATEs data that are subsequently updated with prior information from KEGG, 

355 MSigDb, and CTD), are shown in Figure 2. In part (a) of Figure 2, a sample co-expression 

356 network composed of 150 genes (i.e., 150 for visualization purposes only; of the 11,210 genes 

357 identified) has, in general, similar color and size of all the nodes of the network. While this 

358 covers a broad toxicological space, it does not necessarily identify or prioritize the most 

359 important genes. After subjecting the data to steps 2 and 3, two clusters of genes with different 

360 node sizes and colors were identified (Figure 2b).  Through this refined network, we then 

361 applied a prediction model to each cluster to identify the most representative genes resulting in 

362 the final co-expression network of the T1000 genes (Figure 2c). 

363

364 The complete list of T1000 genes with their gene symbols and descriptions, as well as their 

365 regulation state (up- or down-regulated) is provided in Supplemental Table S1.

366

367 Visual examination of the Reactome enrichment map (Supplemental Figure S2) reveals that 

368 ‘biological oxidations’ (largest circle in Supplemental Figure S2) contained the most enriched 

369 pathways followed by ‘fatty acid metabolism’. This is logical given that xenobiotic and fatty acid 
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370 metabolism, mediated by cytochrome P450 (CYP450) enzymes, feature prominently across the 

371 toxicological literature (Guengerich 2007) (Hardwick 2008). 

372

373 We further examine two genes that are ranked among the top up- and down-regulated gene sets, 

374 respectively. We observed that CXCL10 (ranked 2nd in up-regulated genes) and IGFALS (ranked 

375 3rd in down-regulated genes) had reported links in the literature in response to exposure to toxic 

376 compounds. Upregulation of CXCL10, the ligand of the chemokine receptor CXCR3 found on 

377 macrophages, has been observed in the bronchiolar epithelium of patients with Chronic 

378 Obstructive Pulmonary Disease (COPD) compared to non-smokers or smokers with normal lung 

379 function (Saetta et al. 2002). Smokers develop COPD after exposure to the many chemicals found 

380 in cigarette smoke, which include oxidants that cause inflammation (Foronjy & D'Armiento 2006). 

381 Although TG-GATEs does not comprise any cigarette toxicants within its database, the general 

382 pathways by which toxicants disrupt tissue function are represented by T1000.

383 A gene that was found to be significantly downregulated by T1000 was the gene encoding for 

384 Insulin Like Growth Factor Binding Protein Acid Labile Subunit or IGFALS, which is an Insulin 

385 growth factor-1 (IGF-1) binding protein (Amuzie & Pestka 2010). Interestingly, the mRNA 

386 expression of IGFALS was reported to be significantly downregulated when experimental animals 

387 were fed deoxynivalenol, a mycotoxin usually found in grain (Amuzie & Pestka 2010). By 

388 reducing IGFALS, the half-life of circulating IGF-1 is reduced, causing growth retardation 

389 (Amuzie & Pestka 2010). Many compounds in the TG-GATEs database are of organismal origin, 

390 and thus, as the data suggest, they have a similar mode of action as deoxynivalenol in reducing 

391 expression of important effectors such as IGFALS.

392
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393 Regarding potential clinical applications, we discuss the use of T1000 signature for screening 

394 drugs that may show toxic adverse effects in Supplemental Information S5. The experiment is 

395 motivated by the connectivity map project for connecting small molecules, genes, and disease 

396 using gene-expression signatures (Lamb et al. 2006).

397

398 Benchmark dose-response results

399

400 Overall, the aim of the evaluation was to assess the ability of T1000 gene sets to predict apical 

401 outcomes according to previously published methods (Farmahin et al. 2017). Additionally, we 

402 repeated step 4 of the T1000 approach to select the top 384 (T384; i.e., a number conducive to 

403 study in a QCPR microplate format as per the EcoToxChip project; (Basu et al. 2019)) and 1,500 

404 (T1500 see Supplemental Information S6; i.e., a number pursued in other endeavours like 

405 S1500) genes to investigate the effect of gene set size on apical outcome prediction. To benchmark 

406 the performance of T1000 against other notable gene sets, we considered S1500 (Merrick et al. 

407 2015) and L1000 (Subramanian et al. 2017).

408

409

410 BMDt analysis (see Materials section) of the dose-response dataset was performed with the 

411 T1000 gene list and the BMDExpress software program (Yang et al. 2007). The maximum 

412 number of BMDs calculated was 21 because for three of the experimental groups a BMDa 

413 (benchmark dose, apical outcome) did not exist due to a lack of observed toxicity (Table 3). The 

414 T384 gene set performed similarly with Limma; however, increasing the size of this gene set to 

415 T1000 resulted in performance evaluation metrics that rivaled that of all other gene sets of the 

416 same size or larger (L1000, Limma, and S1500). Further increasing the size of T1000 to T1500 

417 did not increase the performance as the correlation slightly decreased while the average ratio of 
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418 BMDt/BMDa got slightly closer to one. Figure 3 provides a visual summary of the comparison 

419 based on the BMDt/BMDa ratios.

420

421 Prediction results

422 In a second validation study, we applied T1000 to study the Rat Genome 230 2.0 Array for 

423 Kidney dataset from the Open TG-GATEs program.  This dataset was not included in any model 

424 training or parameter tuning steps. This helped to establish another external validation of T1000 

425 in terms of its generalized ability to predict apical outcomes for datasets derived from different 

426 tissues. When compared to baseline gene sets mapped using Limma and L1000, T1000 achieved 

427 a relative improvement of the F1Score by 6.9% and 27.56%, respectively, thus outperforming 

428 comparison gene sets (Table 4). When considering the absolute difference of F1Score between 

429 T1000 and the second best (i.e., Limma), T1000 achieved an improvement of 1.59%. The 

430 improvement was 1.54% for F0.5Score confirming that T1000 led to fewer false positive 

431 predictions. 

432 Another baseline we compare with is Random-500, where a set of 1000 features are selected 

433 randomly and the performance is reported for the five classifiers considered (i.e., LDA, NBC, 

434 KNN, QDA and RF). This experiment is repeated for 500 times and the average and standard 

435 deviation scores are reported in Table 4. GMean, F1Score and F0.5Score of T1000 are 

436 significantly higher (t-test with alpha = 0.1) than the random scores. The t-test we performed was 

437 based on the average performance of the five used different machine learning (ML) classifiers. 

438 So, we averaged results of Random-500 to get a summary performance scores for each of the 

439 classifiers. One observation is that the Random-500 results outperformed several gene sets. This 

440 can be due to the fact that some machine learning models are less sensitive to the type of selected 
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441 features (e.g., RF). On average, we found that a randomly generated set would outperform other 

442 models with a chance of about 30% only. Here, we focused on F0.5Measure as one of the 

443 summary performance measures. It should be noted that this does not reflect the magnitude of 

444 improvement which is measured using the t-test. Given the fact that other approaches will 

445 outperform a random selection in 70% and with a significantly higher performance on average 

446 (see T1000 in Table 4), we conclude that a systematic approach is required to prioritize genes.

447 In the context of high throughput screening, such small improvements in F1Score or F0.5Score 

448 may represent large cost savings (Soufan et al. 2015a) as false positives may lead to added 

449 experiments that would otherwise be unnecessary. Detailed performance scores of each 

450 individual machine learning model are provided in Supplemental Table S2. Please refer to 

451 Supplemental Information S7 for more comparisons including expression space visualization 

452 using PCA and gene set coverage evaluation.

453

454 Discussion

455 There is great interest across the toxicological and regulatory communities in harnessing 

456 transcriptomics data to guide and inform decision-making (Basu et al. 2019; Council 2007; 

457 ECHA 2016; Mav et al. 2018; Thomas et al. 2019).  In particular, transcriptomic signatures hold 

458 great promise to identify chemical-specific response patterns, prioritize chemicals of concern, 

459 and predict quantitatively adverse outcomes of regulatory concern, in a cost-effective manner. 

460 However, the inclusion of full transcriptomic studies into standard research studies faces 

461 logistical barriers and bioinformatics challenges, and thus, there is interest in the derivation and 

462 use of reduced but equally meaningful gene sets.  

463
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464 Our approach to select T1000 followed the same rationale of how the LINCS program derived 

465 the L1000 dataset (Liu et al. 2015), though here we purposefully included additional steps to 

466 bolster the toxicological relevance of the resulting gene set.  Generating a list of ranked genes 

467 based on toxicologically relevant input data and prior knowledge is another key feature of 

468 T1000. 

469 There are some limitations associated with our current study. For instance, the co-expression 

470 network was based on data from the Open TG-GATEs program. While this is arguably the 

471 largest toxicogenomics resource available freely, the program is founded on one in vivo model 

472 (rat), two in vitro models (primary rat and human hepatocytes), 170 chemicals that are largely 

473 drugs, and microarray platforms. Thus, there remain questions about within- and cross- species 

474 and cell type differences, the environmental relevance of the tested chemicals, and the biological 

475 space captured by the microarray. The multi-pronged and -tiered bioinformatics approach was 

476 designed to yield a toxicologically robust gene set, and the approach can be ported to other 

477 efforts that are starting to realize large toxicogenomics databases such as our own EcoToxChip 

478 project (Basu et al. 2019). In addition, our approach in selecting T1000 genes was purely data-

479 driven without considering input from scientific experts as was done by the NTP to derive the 

480 S1500 gene set (Mav et al. 2018).  It is unclear how such gene sets (e.g., T1000, S1500) will be 

481 used by the community and under which domains of applicability, and thus there is a need to 

482 perform case studies in which new approach methods are compared to traditional methods 

483 (Kavlock et al. 2018). It worth to mention that T1000 had 259 and 90 genes in common with 

484 S1500 and L1000, respectively and 741 unique genes.

485

486 Conclusions
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487 Here we outlined a systematic, data-driven approach to identify highly-responsive genes from 

488 toxicogenomics studies.  From this, we prioritized a list of 1,000 genes termed the T1000 gene 

489 set. We demonstrated the applicability of T1000 to 7,172 expression profiles, showing great 

490 promise in future applications of this gene set to toxicological evaluations.  We externally 

491 validated T1000 against two in vivo datasets of toxicological prominence (a kidney dataset of 

492 308 experiments on 41 chemicals from Open TG-GATEs and a dose-response study of 30 

493 experiments on six chemicals (Thomas et al. 2013). We compared the performance of T1000 

494 against existing gene sets (Limma, L1000 and S1500) as well as panels of randomly selected 

495 genes.  In doing so, we demonstrate T1000’s versatility as it is predictive of apical outcomes 

496 across a range of conditions (e.g., in vitro and in vivo), and generally performs as well, or better 

497 than other gene sets available. Our approach represents a promising start to yield a 

498 toxicologically-relevant gene set.  We hope that future efforts will start to use and apply T1000 

499 in a diverse range of settings, and from these we can then start to make updates to the 

500 composition of the T1000 gene set based on improved understanding of its performance 

501 characteristics and user experiences.
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503 Supplemental data

504 Supplemental data are available at PeerJ online.
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Figure 1
Framework of the T1000 approach for gene selection and prioritization.

Phase I is composed of Steps [1-3]. After data is prepared in Step 1, the co-expression
network is generated through Step 2. The prior knowledge scores are computed using (KEGG,
MSigDB) and toxicological (CTD) relevance graphs in Step 3. Phase II involves Step 4 for re-
weighting of the co-expression scores based on prior knowledge of biological and
toxicological relevance graphs. In addition, the graph is clustered during Step 4. In Phase III,
in Step 5, a prediction model is trained for each cluster. Then, after selecting top genes from
each cluster in Step 5, a one final prediction model called global is trained to rank all selected
genes (Step 6). Phase IV is a focused on external evaluation of the prioritized gene list.
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Figure 2
Visual representation of co-expression networks before and after performing Steps 2
and 3 of the T1000 selection process.

Visual representation of co-expression networks before and after performing Steps 2 and 3 of
the T1000 selection process. A sample co-expression network of a group of 150 genes such
that each pair of genes would have a connection is provided in Part (a). After re-weighting
the correlation scores using the prior knowledge of biological and toxicological relevance
graphs and performing clustering through Steps [1-4] of T1000 framework (see Figure 1), the
graph in Part (a) is evolved to the one in Part (b). In Part (b), a pair of genes would have a link
only if they hold enough confidence after applying prior scores. From part (b), nodes
representing genes gain different levels of colors summarizing different levels of structural
representations in the graph. Therefore, it is more relevant to cluster the graph at this stage
after applying prior weights instead of the stage of Part (a). We can visually detect two
separate clusters of genes in Part (b). After executing T1000 framework, we visualize the
generated co-expression graph of all selected 1000 genes in Part (c). Compared to Part (a),
we see variant levels of colors indicating different structural relevance. The colors in Parts
(a), (b), and (c) reflect structural statistics using betweenness centrality and node degree.
Part (a) holds a very similar statistics while Parts (b), (c) exploits and shows variant levels. A
more contributing gene would have a larger node and a darker blue color while a less
important one would have a very small node with a red color intensity. Please note that Parts
(b) and (c) are realized only after executing steps from T1000 framework while Part (a) shows
the generic representation of the co-expression graph.
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Figure 3
Ratios of BMDt/BMDa for each experimental group determined with various gene sets as
indicated atop the plots.

Ratios of BMDt/BMDa represents ratio of transcriptionally-derived benchmark doses BMDt
using gene signatures to apical outcome-derived benchmark dose BMDa serving as the
ground truth. The limits of the blue rectangular band and dotted lines represent 3-fold and
10-fold of unity, respectively. Ratios could not be calculated for three experimental groups
(hydrazobenzene (HZBZ): 5 day, 2 week, 4 week) due to a lack of apical outcomes. Red
circles represent mean ratios greater than 10-fold, while the yellow ones represent ratios
greater than 3-fold. The fewer circles, the more the gene set is indicative of potential
relevance to the examined apical endpoints (see Supplementary Figure 3 and 4 for T384 and
T1500 plots, respectively). In Part a), the T1000 results are highlighted such that in only two
experiments, the ratio of difference from the ground truth was greater than 3 folds and less
than 10. In Parts b,c&d, the results of L1000, S1500 and Limma are illustrated, respectively,
with each having a single experiment (i.e., red circle) with 10-fold difference from the ground
truth. All of them had more yellow circles as compared to Part a of T1000.
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Table 1(on next page)

Summary of datasets used in the current study.

Datasets 1-3 were used to develop T1000 (see Phase I, II & III in Methods Section) and
datasets 4 and 5 (see Phase IV in Methods Section) were used to evaluate the performance
of the gene sets.
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1

Dataset 

#
Dataset Organism Organ

Exposure 

Type

Number of 

chemicals

Matrix size (% 

missing values)

Purpose in 

Current Study

1

Open 

TG-

GATEs

Human Liver in vitro
158 

chemicals

2,606 experiments x 

20,502 genes (8.9%)
Training

2

Open 

TG-

GATEs

Rat Liver in vitro
145 

chemicals

3,371 experiments x 

14,468 genes (11.6%)
Training

3

Open 

TG-

GATEs

Rat Liver

in vivo 

(single 

dose)

158 

chemicals

857 experiments x 

14,400 genes (11.5%)
Training

4

Open 

TG-

GATEs

Rat Kidney

in vivo 

(single 

dose)

41 

chemicals

308 experiments  x 

14,400 genes  (12.2%)
Testing

5

Dose-

response

(GSE45

892)

Rat

Liver, 

Bladder, 

Thyroid

in vivo 

(repeated 

dose)

6 chemicals
30 experiments x 

14,400 genes (0%)

Testing 

(external 

validation)

Total 7,172  experiments

2
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Table 2(on next page)

Descriptive comparison of T1000 against existing gene sets.

For the ‘selection criteria’ column, expression space coverage refers to the goal of finding a
subset of genes that would achieve high correlation with the original full set of
genes.Pathway coverage refers to finding a subset of genes that cover more pathways in a
reference library.
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1

Gene 

set

Selection 

criteria

Ranked 

gene list
Species Data Approach

Number 

of genes

L1000
Expression 

space coverage
No Human L1000 data

PCA and clustering (Data 

mining)
978

S1500 

(NTP 

2018)

Pathway 

coverage that 

combines data-

driven and 

knowledge-

driven 

activities

No Human 

Public GEO 

expression datasets 

(mainly GEO 3339 

gene expression 

series)

PCA, clustering, and 

other data-driven steps 

(Data mining)

2861 

(includes 

L1000 

genes)

T1000

Toxicological 

relevance using 

endpoint 

prediction

Yes
Human 

and Rat

Open TG-GATEs that 

is founded on co-

expression networks 

from  CTD, KEGG 

and Hallmark

Co-expression network 

and prior knowledge 

(Graph mining). PCA and 

clustering are used only 

for the prior knowledge.

1000

2

3   
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Table 3(on next page)

Summary of correlation of apical endpoints to 24 experimental groups (6 chemicals x 4
exposure durations).
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1

T384 (n 

= 384)

T1000 (n 

= 1000) 

T1500 (n 

= 1500)

L1000 (n 

= 976)

S1500 (n 

= 2861)

Limma 

(n = 

1000)

# of BMDts 18 21 21 21 21 14

Mean ratio 

(BMDt/BMDa)

2.2 1.2 1.1 1.8 1.1 2.1

Correlation 

(BMDt, 

BMDa)

0.83

(p < 

0.001)

0.89

(p < 

0.001)

0.83

(p < 

0.001)

0.76

(p < 

0.001) 

0.78

(p < 

0.001)

0.73

(p < 0.01)

2
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Table 4(on next page)

Summary comparison of average classification performance using the testing RatKidney
dataset. Scores are based on average results from five classifiers (LDA, NBC, QDA, DT
and RF) and the standard deviation is reported to highlight variance of estimate.

*Statistically significant at an alpha level of 0.1 using T-test and considering comparison with
Random results.
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1

Sensitivity Specificity Precision Gmean F1Measure F0.5Measure

T1000
29.25% 

(±11.64)*

71.33% 

(±4.74)

21.51% 

(±4.45)

44.7% 

(±7.8)*

24.58% 

(±7.11)*

22.6% 

(±5.36)

Limma
27.76% 

(±16.3)

70.75% 

(±6.33)

20% 

(±9.96)

41.84% 

(±14.81)

22.99% 

(±12.04)

21.06% 

(±10.64)

CD
21.79% 

(±15.39)

68.08% 

(±10.97)

13.94% 

(±6.64)

34.79% 

(±13.3)

16.65% 

(±9.96)

14.83% 

(±7.82)

L1000
22.99% 

(±12.82)

70.42% 

(±5.78)

16.84% 

(±7.29)

38.33% 

(±11.46)

19.27% 

(±9.27)

17.71% 

(±7.97)

S1500
21.79% 

(±7.65)

72.67% 

(±3.98)*

17.87% 

(±3.99)

39.19% 

(±6.2)

19.53% 

(±5.42)

18.48% 

(±4.48)

Random-500
27.83% 

(±11.69)

70.89% 

(±5.09)

20.31% 

(±4.89)

42.81% 

(±8.38)

18.41% 

(±12.03)

21.29% 

(±5.79)

P-value 

(T1000 vs. 

Random)

0.0555 0.3454 0.1283 0.0504 0.0192 0.1112

Best Model 

(Limma_NBC)
44.78% 68.75% 28.57% 55.48% 34.88% 30.80%

Worst Model 

(Limma_QDA)
4.48% 72.08% 4.29% 17.97% 4.38% 4.32%

2
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