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ABSTRACT
There is growing interest within regulatory agencies and toxicological research com-
munities to develop, test, and apply new approaches, such as toxicogenomics, to more
efficiently evaluate chemical hazards. Given the complexity of analyzing thousands of
genes simultaneously, there is a need to identify reduced gene sets. Though several gene
sets have been defined for toxicological applications, few of these were purposefully
derived using toxicogenomics data. Here, we developed and applied a systematic
approach to identify 1,000 genes (called Toxicogenomics-1000 or T1000) highly
responsive to chemical exposures. First, a co-expression network of 11,210 genes was
built by leveraging microarray data from the Open TG-GATEs program. This network
was then re-weighted based on prior knowledge of their biological (KEGG, MSigDB)
and toxicological (CTD) relevance. Finally, weighted correlation network analysis was
applied to identify 258 gene clusters. T1000 was defined by selecting genes from each
cluster that were most associated with outcome measures. For model evaluation, we
compared the performance of T1000 to that of other gene sets (L1000, S1500, Genes
selected by Limma, and random set) using two external datasets based on the rat model.
Additionally, a smaller (T384) and a larger version (T1500) of T1000 were used for
dose-response modeling to test the effect of gene set size. Our findings demonstrated
that the T1000 gene set is predictive of apical outcomes across a range of conditions
(e.g., in vitro and in vivo, dose-response, multiple species, tissues, and chemicals), and
generally performs as well, or better than other gene sets available.

Subjects Bioinformatics, Computational Biology, Toxicology, Data Mining and Machine
Learning
Keywords Toxicogenomics, Gene signature, Co-expression network, Graph clustering, Machine
learning, Gene selection

INTRODUCTION
Over the past decade there have been profound steps taken across the toxicological sciences
and regulatory communities to help transform conventional toxicity testing largely based
on animal models and apical outcome measurements to an approach that is founded on
systems biology and predictive science (Kavlock et al., 2018; Knudsen et al., 2015; Villeneuve
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& Garcia-Reyero, 2011). On the scientific side, efforts are being exemplified by emergent
notions such as the Adverse Outcome Pathway framework (AOP; Ankley et al., 2010) and
New Approach Methods (ECHA, 2016). On the regulatory side, these are exemplified by
changes to, for example, chemical management plans in Canada, the United States and
REACH (ECHA, 2007) across the European Union.

A core tenet underlying the aforementioned transformations, as catalyzed by the 2007
U.S. National Research Council report ‘‘Toxicity Testing in the 21st Century’’ (NRC, 2007),
is that perturbations at themolecular-level can be predictive of those at the whole organism-
level. Though whole transcriptome profiling is increasingly popular, it still remains costly
for routine research and regulatory applications. Additionally, building predictive models
with thousands of features introduces problems due to the high dimensionality of the data
and so considering a smaller number of genes has the potential to increase classification
performance (Alshahrani et al., 2017; Soufan et al., 2015b). Identifying smaller panels of key
genes that can be measured, analyzed and interpreted conveniently remain an appealing
option for toxicological studies and decision making

In recent years, several initiatives across the life sciences have started to identify reduced
gene sets from whole transcriptomic studies. For example, the Library of Integrated
Network-Based Cellular Signatures (LINCS) project derived L1000, which is a gene set
of 978 ‘landmark’ genes chosen to infer the expression of 12,031 other highly connected
genes in the human transcriptome (Subramanian et al., 2017). In the toxicological sciences,
the US Tox21 Program recently published S1500+, which is a set of 2,753 genes designed
to be both representative of the whole-transcriptome, while maintaining a minimum
coverage of all biological pathways in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Kanehisa et al., 2007) and the Molecular Signatures Database (MSigDB)
(Liberzon et al., 2015a). The first 1,500 genes were selected by analyzing microarray data
from 3,339 different studies, and the rest were nominated by members of the scientific
community (Mav et al., 2018). L1000 and S1500 gene sets were originally proposed to serve
a different purpose. The 978 landmark genes of L1000 are chosen to infer expression of
other genes more accurately, while genes of S1500 are selected to achieve more biological
pathway coverage. Compared to L1000, the S1500 gene set attains more toxicological
relevance through the gene nomination phase, though its data-driven approach relies upon
microarray data primarily derived from non-toxicological studies. It worth nothing that
about 33.7% (i.e., intersection over union) of genes are shared between both signatures.
Even though some differences can be realized between L1000 and S1500, they are both
strong candidates of gene expression modeling and prediction (Haider et al., 2018).

The objectives of the current study were to develop and apply a systematic approach to
identify highly-responsive genes from toxicogenomic studies, and from these to nominate
a set of 1000 genes to form the basis for the T1000 (Toxicogenomics-1000) reference gene
set. Co-expression network analysis is an established approach using pairwise correlation
between genes and clustering methods to group genes with similar expression patterns
(van Dam et al., 2018). First, a co-expression network was derived using in vitro and in vivo
data from human and rat studies from the Toxicogenomics Project-Genomics Assisted
Toxicity Evaluation System (Open TG-GATEs) database. Next, the connections within the
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Table 1 Summary of datasets used in the current study.Datasets 1–3 were used to develop T1000 (see Phase I, II & III in ‘Methods’) and datasets
4 and 5 (see Phase IV in ‘Methods’) were used to evaluate the performance of the gene sets.

Dataset
#

Dataset Organism Organ Exposure type Number of
chemicals

Matrix size (%
missing values)

Purpose in
current study

1 Open TG-
GATEs

Human Liver in vitro 158 chemicals 2,606
experiments× 20,502
genes (8.9%)

Training

2 Open TG-
GATEs

Rat Liver in vitro 145 chemicals 3,371
experiments× 14,468
genes (11.6%)

Training

3 Open TG-
GATEs

Rat Liver in vivo (single
dose)

158 chemicals 857
experiments× 14,400
genes (11.5%)

Training

4 Open TG-
GATEs

Rat Kidney in vivo (single
dose)

41 chemicals 308
experiments× 14,400
genes (12.2%)

Testing

5 Dose–response
(GSE45892)

Rat Liver,
Bladder,
Thyroid

in vivo (repeated
dose)

6 chemicals 30 experi-
ments× 14,400
genes (0%)

Testing (external
validation)

Total 7,172 experiments

co-expression network were adjusted to increase the focus on genes in KEGG pathways,
the MSigDB, or the Comparative Toxicogenomics Database (CTD) (Davis et al., 2017).
This incorporation of prior biological and toxicological knowledge was motivated by loose
Bayesian inference to refine the computationally-prioritized transcriptomic space. Clusters
of highly connected genes were identified from the resulting co-expression network, and
machine learning models were applied to prioritize clusters based on their association
with apical endpoints. Clustering genes based on expression data has been shown to be
instrumental in functional annotation and sample classification (Necsulea et al., 2014), with
the rationale that genes with similar expression patterns are likely to participate in the same
biological pathways (Budinska et al., 2013). From each cluster, key genes were identified
for inclusion in T1000. Testing and validation of T1000 was realized through two separate
datasets (one from Open TG-GATEs and one from the US National Toxicology Program)
that were not used for gene selection. The current study is part of the larger EcoToxChip
project (Basu et al., 2019). For the processed data, users can download all samples processed
fromhttps://zenodo.org/record/3359047#.XUcTwpMzZ24.We also deposited source codes
and scripts used for the study at https://github.com/ecotoxxplorer/t1000.

MATERIALS & METHODS
Databases and datasets preparation
The derivation of T1000 was based on five public microarray datasets of toxicological
relevance (Table 1): four datasets from Open TG-GATEs (Igarashi et al., 2014b), and
one dataset generated by Thomas et al. (referred to as the dose–response dataset in this
manuscript; GSE45892) (Thomas et al., 2013). Table 1 provides a summary of allmicroarray
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datasets used in this study. For building the initial T1000 gene set, we used three of the
four Open TG-GATEs datasets (see datasets 1–3 in Table 1).

Open TG-GATEs
Open TG-GATEs is one of the largest publicly accessible toxicogenomics resources (Igarashi
et al., 2014b). This database comprises data for 170 compounds (mostly drugs) with the aim
of improving and enhancing drug safety assessment. It contains gene expression profiles
and traditional toxicological data derived from in vivo (rat) and in vitro (primary rat
hepatocytes and primary human hepatocytes) studies. To process the raw gene expression
data files of Open TG-GATEs, the Affy package (Gautier et al., 2004) was used to produce
Robust Multi-array Average (RMA) probe set intensities (Irizarry et al., 2003b). Gene
annotation for human and rat was performed using Affymetrix Human Genome U133
Plus 2.0 Array annotation data and Affymetrix Rat Genome 230 2.0 Array annotation data,
respectively. Genes without annotation were excluded. When the same gene was mapped
multiple times, the average value was used. Finally, all profiles for each type of experiment
were joined into a single matrix for downstream analysis.

From the training datasets, specific samples were labelled binary as ‘‘dysregulated’’ or
‘‘non-dysregulated’’. Dysregulated refers to exposure cases with potential toxic outcomes
and non-dysregulated included controls and exposures with non-toxic outcomes. For
the in vitro datasets, gene expression changes were associated with lactate dehydrogenase
(LDH) activity (%). The activity of LDH, which serves as a proxy for cellular injury or
dysregulation, was binarized such that values above 105% and below 95% were considered
‘‘dysregulated’’. While conservative, we note that these cut-off values were situated around
the 5% and 95% marks of the LDH distribution curve (see Fig. S1 and Supplemental
Information 1 for more details).

For the in vivo datasets (kidney and liver datasets from Open TG-GATEs), gene
expression changes were associated with histopathological measures. The magnitude
of pathologies was previously annotated into an ordinal scale: present, minimal, slight,
moderate and severe (Igarashi et al., 2014a). This scale was further reduced into a binary
classification with the first three levels considered ‘‘non-dysregulated’’ while the latter two
were considered ‘‘dysregulated’’.

Dose–response dataset and benchmark dose (BMD) calculation
The dose–response dataset (Accession No. GSE45892), was used to externally evaluate
the ability of T1000 genes to predict apical endpoints (Thomas et al., 2013). Briefly, this
dataset contains Affymetrix HT Rat230 PM microarray data following in vivo exposure
of rats to six chemicals (TRBZ: 1,2,4-tribromobenzene, BRBZ: bromobenzene, TTCP:
2,3,4,6-tetrachlorophenol, MDMB: 4,4′-methylenebis(N,N’-dimethyl)aniline, NDPA:
N-nitrosodiphenylamine, and HZBZ: hydrazobenzene). In exposed animals, both gene
expression and apical outcomes (liver: absolute liver weight, vacuolation, hypertrophy,
microvesiculation, necrosis; thyroid: absolute thyroid weight, follicular cell hypertrophy,
follicular cell hyperplasia; bladder: absolute bladder weight, increased mitosis, diffuse
transitional epithelial hyperplasia, increased necrosis epithelial cell) were measured,
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permitting the comparison of transcriptionally-derived benchmark doses (BMDt) with
traditional benchmark doses derived from apical outcomes (Yang, Allen & Thomas, 2007).
The apical outcome-derived benchmark dose (BMDa) for each treatment group was
defined as the benchmark dose from the most sensitive apical outcome for the given
chemical-duration group.

Raw gene expression data (CEL files) for the dose–response dataset were downloaded
from GEO (Accession No. GSE45892), organized into chemical-exposure-duration
treatment groups, and normalized using the RMA method (Irizarry et al., 2003a). Only
expression measurements corresponding to genes in the T1000 gene (or T384 and T1500)
set were retained, resulting in reduced gene expression matrices for each treatment group
(t = 24). The reduced gene expression matrices were analyzed using BMDExpress 2.0
to calculate a toxicogenomic benchmark dose (BMDt) for each treatment group (Yang,
Allen & Thomas, 2007). Here, the BMDt was calculated as the dose that corresponded to a
10% increase in gene expression compared to the control (Farmahin et al., 2017). Within
BMDExpress 2.0, genes were filtered using one-way ANOVA (FDR adjusted p-value cut-off
= 0.05). A BMDt was calculated for each differentially expressed gene by curve fitting with
exponential (degree 2–5), polynomial (degree 2-3), linear, power, and Hill models. For
each gene, the model with the lowest Akaike information criterion (AIC) was used to derive
the BMDt.

The BMDts from individual genes were used to determine a treatment group-level
BMDt using functional enrichment analysis with Reactome pathways (Farmahin et al.,
2017). Note, we chose here to functionally enrich with Reactome since we utilized KEGG to
derive the T1000 list. After functional enrichment analysis, significantly enriched pathways
(p-value <0.05) were filtered such that only pathways with >3 genes and >5% of genes in
the pathway were retained. The treatment group-level BMDt was calculated by considering
the mean gene-level BMDt for each significantly enriched pathway and selecting the lowest
value. If there were no significantly enriched pathways that passed all filters, no BMDt could
be determined for that treatment group. The similarity of the BMDt to the benchmark
dose derived from apical outcomes (BMDa) was assessed by calculating the BMDt/BMDa

ratio and the correlation between BMDt and BMDa for all treatment groups (Farmahin
et al., 2017). Following the same procedures, BMDt/BMDa ratio and correlation statistics
were determined from genes belonging to L1000, S1500, and Linear Models for Microarray
Data (Limma) (Smyth, 2005) to provide a reference for the performance of T1000 genes.

Databases for Computing Prior Knowledge
The CTD, KEGG, and Hallmark databases were mined to integrate existing toxicogenomics
and broader biological knowledge into one network that represents the prior knowledge
space. CTD is manually curated from the literature to serve as a public source for
toxicogenomics information, currently including over 30.5 million chemical-gene,
chemical-disease, and gene-disease interactions (Davis et al., 2017). Following the
recommendations of Hu et al. (2015), only ‘‘mechanistic/marker’’ associations were
extracted from the CTD database, thus excluding ‘‘therapeutic’’ associations that are
presumably less relevant to toxicology. The extracted subgraph contained 2,889 chemicals,
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950 diseases annotated as toxic endpoints (e.g., neurotoxicity, cardiotoxicity, hepatotoxicity
and nephrotoxicity), and 22,336 genes. KEGG pathways are a popular bioinformatics
resource that help to link, organize, and interpret genomic information through the use of
manually drawn networks describing the relationships between genes in specific biological
processes (Kanehisa et al., 2007). The MSigDB Hallmark gene sets have been developed
using a combination of automated approaches and expert curation to represent known
biological pathways and processes while limiting redundancy (Liberzon et al., 2015b).

Each feature vector consisted of 239 dimensions, representing information encoded from
Hallmark, KEGG and CTD. For the Hallmark and KEGG features, we used ‘‘1′′or ‘‘0′′to
indicate if a gene was present or absent for each of the 50 Hallmark gene sets (Liberzon et al.,
2015b) and 186 KEGG pathways (Kanehisa & Goto, 2000). These features were transformed
into z-scores. For the CTD features, we computed the degree, betweenness centrality, and
closeness centrality of each gene, based on the topology of the extracted CTD subgraph.
The topology measures were log-scaled for each gene in the network. The resulting prior
knowledge space consisted of a 239-dimension vector for each of the 22,336 genes, with
each vector containing 50 z-score normalized Hallmark features, 186 z-score normalized
KEGG features, and three log-scaled CTD network features.

Reactome database
To understand the biological space covered by T1000, we analyzed T1000′s top enriched
Reactome pathways (as KEGGwas used to develop T1000). Reactome is a manually curated
knowledgebase of human reactions and pathways with annotations of 7,088 protein-coding
genes (Croft et al., 2014).

Performance evaluation
For the performance evaluation and testing phase, we leveraged the fourth dataset from
Open TG-GATEs (see dataset 4 in Table 1), which was not used for gene ranking or
selection so that it could serve as an external validation dataset. The dose–response dataset
was used for an additional external validation (see dataset 5 in Table 1).

In this step, we applied five supervised machine learning methods to the TG-GATES
rat kidney in vivo dataset, with the objective to predict which exposures caused significant
‘‘dysregulation’’, according to the criteria defined in step 4. This dataset was purposefully
not used earlier when deriving T1000 so that it could serve later as a validation and testing
dataset. The five machine learning models used were K-nearest neighbors (KNN; K = 3)
(Cover & Hart, 1967), Decision Trees (DT), Naïve Bayes Classifier (NBC), Quadratic
Discriminant Analysis (QDA) and Random Forests (RF).

The performance of each method was evaluated with five-fold cross-validation and
measured using six different metrics (Eqs. (1)–(6)). TP represents the number of true
positives, FP the number of false positives, TN the number of true negatives and FN the
number of false negatives. The F1 score (also called the balanced F-score) is a performance
evaluation measure that computes the weighted average of sensitivity and precision
(He & Garcia, 2009), and is well-suited for binary classification models. The F0.5 score
(Davis & Goadrich, 2006; Maitin-Shepard et al., 2010; Santoni, Hartley & Luban, 2010) is
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another summary metric that gives twice as much weight to precision than sensitivity. The
evaluation was performed on a Linux based workstation with 16 cores and 64 GB RAM for
processing the data and running the experiments.

sensitivity =TP/(TP+FN ) (1)

specificity =TN/(TN +FP) (2)

precision=TP/(TP+FP) (3)

GMean=
√
sensitivity× specificity (4)

F1Score= 2×
precision× sensitivity
precision+ sensitivity

(5)

F0.5Score= 1.25×
precision× sensitivity

0.25×precision+ sensitivity
(6)

Proposed T1000 Framework
The work of T1000 was conducted in four discrete phases as follows (see Fig. 1): (I)
data preparation and gene co-expression network generation; (II) network clustering to
group relevant genes; (III) gene selection and prioritization; and (IV) external testing and
performance evaluation.

The goal of phase I was to construct two network representations of the interactions
between toxicologically-relevant genes, with one based on TG-GATES microarray data
(step 1&2) and the other based on the KEGG, MSigDB, and CTD databases (step 3). In a
co-expression network, nodes represent genes and edges represent the Pearson’s correlation
of expression values of pairs of genes. In the current study, we constructed three separate
co-expression networks using gene expression profiles from Open TG-GATEs datasets
(human in vitro, rat in vitro, and rat in vivo) (Table 1). If an interaction with a correlation
coefficient of 60% or higher was present in all three networks, that gene-gene interaction
was then accepted and mapped into one integrated co-expression network by averaging the
absolute values of the pairwise correlation coefficients between individual genes. Matching
between rat and human genes was based on gene symbols (e.g., Ddr1 in rat is matched with
DDR1 in humanusing BiomaRt R packageDurinck et al., 2009) and ignoredwhen nomatch
exists. This is a more conservative approach to maintain perfect matching orthologues in
the networks although other computational approaches to match orthologues can be used
(Wang et al., 2015). The final integrated co-expression network had 11,210 genes from a
total of 20,502 genes.
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Figure 1 Framework of the T1000 approach for gene selection and prioritization. Phase I is composed
of Steps [1-3]. After data is prepared in Step 1, the co-expression network is generated through Step 2. The
prior knowledge scores are computed using (KEGG, MSigDB) and toxicological (CTD) relevance graphs
in Step 3. Phase II involves Step 4 for re-weighting of the co-expression scores based on prior knowledge
of biological and toxicological relevance graphs. In addition, the graph is clustered during Step 4. In Phase
III, in Step 5, a prediction model is trained for each cluster. Then, after selecting top genes from each clus-
ter in Step 5, a one final prediction model called global is trained to rank all selected genes (Step 6). Phase
IV is a focused on external evaluation of the prioritized gene list.

Full-size DOI: 10.7717/peerj.7975/fig-1

To build the prior knowledge space (step 3), we encoded information from theHallmark,
KEGG and CTD databases into feature vectors composed of 239 features describing each
gene (see Materials section). Then, we projected the data onto a two-dimensional space
using principle component analysis (PCA) and clustered using K-means (K = 3) to detect
those genes that contributed most to the prior knowledge space. Regarding K-means,
we initially experimented with K = 1, K = 3 and K = 5 and after visual inspection of
summarized information as Supplemental Information 2, Fig. 1, we chose K = 3.

Genes that were furthest from the centroids (i.e., highest contributing ones) of the K-
means clusters were more enriched with pathways and gene-chemical-disease interactions
(see Supplemental Information S2). Based on step 3, a ranked list of all genes was generated
such that the first ranked gene would have a prior score of 100% and the last, a prior score
close to 0%. In phase II, we re-weighted the interactions in the co-expression network
based on the prior knowledge space and then detected clusters of highly connected genes
in the updated network (step 4). In a Bayesian fashion, the pairwise connections between
genes in the co-expression network were re-weighted by multiplying the correlation with
the mean prior score. For example, given P (A) and P (B) as prior scores of genes A and B,
the correlation score S(A,B) is re-weighted as follows (Eq. (7)):

S(A,B)new = S(A,B)∗ ((P (A)+P (B))/2) (7)
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It should be noted that in Eq. (7), the product of joint distribution could have been
considered for the update such that S(A,B)new = S(A,B)∗ (P(A)∗P(B)).

After re-weighting the connections, we detected clusters of highly connected genes
using the Markov Cluster Algorithm (MCL) (Van Dongen & Abreu-Goodger, 2012). The
MCL approach groups together nodes with strong edge weights and then simulates a
random flow through a network to find more related groups of genes based on the flow’s
intensity of movement. It does not require the number of clusters to be pre-specified.
An inflation parameter controls the granularity of the output clustering and several
values within a recommended range (1.2–5.0) were tried (Van Dongen & Abreu-Goodger,
2012). To optimize for the granularity of the clustering, a systematic analysis for the
MCL inflation parameter was performed with values in range (1.2–5.0) (see Supplemental
Information 3). After examining closely efficiency and mass fraction, a value of 3.3 was
chosen. This generated 258 clusters that consisted of 11,210 genes. The average number of
genes in each cluster was 43.4 with the min-max ranging from 1 to 8,423.

The goal of phase III of gene selection and prioritization was to select the top genes
from each cluster to form T1000 (step 5), and then produce a final ranking of the 1,000
selected genes (step 6). For each of the 258 gene clusters, random forest (RF) classifiers were
used to rank genes based on their ability to separate changes in gene expression labelled
as ‘‘dysregulated’’ from those labelled ‘‘non-dysregulated’’, using the Gini impurity index
of classification (Nguyen, Wang & Nguyen, 2013; Qi, 2012; Tolosi & Lengauer, 2011). RF is
one of the most widely used solutions for feature ranking, and as an ensemble model, it is
known for its stability (Chan & Paelinckx, 2008). In order to cover more biological space
and ensure selected genes represent the whole transcriptome, a different RF classifier was
built for each cluster and used to select representative genes (Sahu & Mishra, 2012).

We selected the top genes from each cluster based on the performance of the RF
classifier. For example, when selecting the 1,000 top genes from two clusters (A and B), if
the cross-validation prediction accuracy estimated for models A and B were 60% and 55%,
respectively, then 522 ((60%/(60%+55%))*1000) and 478 ((55%/(60%+55%))*1000)
genes would be selected from clusters A and B. However, if cluster A contained only 520
genes, the remaining two genes would be taken from group B, if possible. So, the cluster
size is only used if it contains insufficient genes. We repeated this process until 1000 genes
were selected. After choosing top k genes from each cluster, we aggregated them into a
single list of 1000 genes and built a final RF model to get a global ranking of the genes.
We refer to this final ranked list as T1000 (see Table S1 for a full list of selected genes
and summary annotation; see Supplemental Information 4 for the cluster assignment of
the genes). The goal of phase IV was to test the performance of the T1000 gene set using
external datasets, and thus transition from gene selection activities to ones that focus on
the evaluation of T1000. Phase IV is discussed in the following Results section. To discuss
factors that characterize and distinguishe T1000 from L1000 and S1500, Table 2 is provided.
As summarized in Table 2, T1000 is more toxicogenomic tailored by selecting genes that
optimizes for endpoint predictions and using toxicogenomic datasets. Incorporating the
prior knowledge space is critical for T1000 in ranking genes with more contribution to
toxic effects. L1000 aims at finding a set of genes that can be used to extrapolate for the full
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Table 2 Descriptive comparison of T1000 against existing gene sets. For the ‘selection criteria’ column, expression space coverage refers to the
goal of finding a subset of genes that would achieve high correlation with the original full set of genes. Pathway coverage refers to finding a subset of
genes that cover more pathways in a reference library.

Gene
set

Selection criteria Ranked
gene
list

Species Data Approach Number
of
genes

L1000 Expression space coverage No Human L1000 data PCA and clustering (Data
mining)

978

S1500
(NTP
2018)

Pathway coverage that
combines data-driven and
knowledge-driven activities

No Human Public GEO expression
datasets (mainly GEO 3339
gene expression series)

PCA, clustering, and other
data-driven steps (Data min-
ing)

2,861 (in-
cludes
L1000
genes)

T1000 Toxicological relevance using
endpoint prediction

Yes Human
and Rat

Open TG-GATEs that is
founded on co-expression
networks from CTD, KEGG
and Hallmark

Co-expression network and
prior knowledge (Graph min-
ing). PCA and clustering are
used only for the prior knowl-
edge.

1,000

expression space of all other genes. S1500 has considered an optimization for the number
of covered pathways. T1000, L1000 and S1500 have considered using PCA and clustering
during the selection process. In T1000, however, this step is part of computing the prior
only.

RESULTS
Overview of T1000 and biological relevance
The genes comprising T1000 cover a wide biological space of toxicological relevance. For
illustration, co-expression networks, before and after applying Steps 2 and 3 (i.e., networks
built on the Open TG-GATEs data that are subsequently updated with prior information
from KEGG, MSigDb, and CTD), are shown in Fig. 2. In Fig. 2A, a sample co-expression
network composed of 150 genes (i.e., 150 for visualization purposes only; of the 11,210
genes identified) has, in general, similar color and size of all the nodes of the network.
While this covers a broad toxicological space, it does not necessarily identify or prioritize
the most important genes. After subjecting the data to steps 2 and 3, two clusters of genes
with different node sizes and colors were identified (Fig. 2B). Through this refined network,
we then applied a prediction model to each cluster to identify the most representative genes
resulting in the final co-expression network of the T1000 genes (Fig. 2C).

The complete list of T1000 genes with their gene symbols and descriptions, as well as
their regulation states (up- or down-regulated) is provided in Table S1.

Visual examination of the Reactome enrichment map (Fig. S2) reveals that ‘biological
oxidations’ (the largest circle in Fig. S2) contained the most enriched pathways followed
by ‘fatty acid metabolism’. This is logical given that xenobiotic and fatty acid metabolism,
mediated by cytochrome P450 (CYP450) enzymes, feature prominently across the
toxicological literature (Guengerich, 2007; Hardwick, 2008).

We further examine two genes that are ranked among the top up- and down-regulated
gene sets, respectively. We observed that CXCL10 (ranked 2nd in up-regulated genes)
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Figure 2 Visual representation of co-expression networks before and after performing Steps 2 and
3 of the T1000 selection process.Visual representation of co-expression networks before and after per-
forming Steps 2 and 3 of the T1000 selection process. A sample co-expression network of a group of 150
genes such that each pair of genes would have a connection is provided in (A). After re-weighting the cor-
relation scores using the prior knowledge of biological and toxicological relevance graphs and perform-
ing clustering through Steps [1-4] of T1000 framework (see Fig. 1), the graph in (A) is evolved to the one
in (A). In (B), a pair of genes would have a link only if they hold enough confidence after applying prior
scores. From (B), nodes representing genes gain different levels of colors summarizing different levels of
structural representations in the graph. Therefore, it is more relevant to cluster the graph at this stage after
applying prior weights instead of the stage of (A). We can visually detect two separate clusters of genes in
(B). After executing T1000 framework, we visualize the generated co-expression graph of all selected 1,000
genes in (C). Compared to (A), we see variant levels of colors indicating different structural relevance.
The colors in (A), (B), and (C) reflect structural statistics using betweenness centrality and node degree.
(A) holds a very similar statistics while (B) and (C) exploits and shows variant levels. A more contributing
gene would have a larger node and a darker blue color while a less important one would have a very small
node with a red color intensity. Please note that (B) and (C) are realized only after executing steps from
T1000 framework while (A) shows the generic representation of the co-expression graph.

Full-size DOI: 10.7717/peerj.7975/fig-2

and IGFALS (ranked 3rd in down-regulated genes) had reported links in the literature
in response to exposure to toxic compounds. Upregulation of CXCL10, the ligand of the
chemokine receptor CXCR3 found on macrophages, has been observed in the bronchiolar
epithelium of patients with Chronic Obstructive Pulmonary Disease (COPD) compared to
non-smokers or smokers with normal lung function (Saetta et al., 2002). Smokers develop
COPD after exposure to the many chemicals found in cigarette smoke, which include
oxidants that cause inflammation (Foronjy & D’Armiento, 2006). Although TG-GATEs
does not contain any cigarette toxicants within its database, the general pathways by which
toxicants disrupt tissue function are represented by T1000.
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Table 3 Summary of correlation of apical endpoints to 24 experimental groups (6 chemicals× 4 exposure durations).

T384
(n= 384)

T1000
(n= 1,000)

T1500
(n= 1,500)

L1000
(n= 976)

S1500
(n= 2,861)

Limma
(n= 1,000)

# of BMDts 18 21 21 21 21 14
Mean ratio (BMDt/BMDa) 2.2 1.2 1.1 1.8 1.1 2.1
Correlation (BMDt, BMDa) 0.83 (p< 0.001) 0.89(p< 0.001) 0.83(p< 0.001) 0.76(p< 0.001) 0.78(p< 0.001) 0.73(p< 0.01)

A gene that was found to be significantly downregulated by T1000 was the gene encoding
for Insulin Like Growth Factor Binding Protein Acid Labile Subunit or IGFALS, which is
an Insulin growth factor-1 (IGF-1) binding protein (Amuzie & Pestka, 2010). Interestingly,
the mRNA expression of IGFALS was reported to be significantly downregulated when
experimental animals were fed deoxynivalenol, a mycotoxin usually found in grain (Amuzie
& Pestka, 2010). By reducing IGFALS, the half-life of circulating IGF-1 is reduced, causing
growth retardation (Amuzie & Pestka, 2010). Many compounds in the TG-GATEs database
are of organismal origin, and thus, as the data suggest, they have a similar mode of action
as deoxynivalenol in reducing expression of important effectors such as IGFALS.

Regarding potential clinical applications, we discuss the use of T1000 signature for
screening drugs that may show toxic adverse effects in Supplemental Information 5. The
experiment is motivated by the connectivity map project for connecting small molecules,
genes, and disease using gene-expression signatures (Lamb et al., 2006).

Benchmark dose–response results
Overall, the aim of the evaluation was to assess the ability of T1000 gene sets to predict
apical outcomes according to previously published methods (Farmahin et al., 2017).
Additionally, we repeated step 4 of the T1000 approach to select the top 384 (T384;
i.e., a number conducive to study in a QPCR microplate format as per the EcoToxChip
project; Basu et al., 2019) and 1,500 (T1500 see Supplemental Information 6; i.e., a number
pursued in other endeavours like S1500) genes to investigate the effect of gene set size on
apical outcome prediction. To benchmark the performance of T1000 against other notable
gene sets, we considered S1500 (Merrick, Paules & Tice, 2015) and L1000 (Subramanian
et al., 2017).

BMDt analysis (see Materials section) of the dose–response dataset was performed with
the T1000 gene list and the BMDExpress software program (Yang, Allen & Thomas, 2007).
The maximum number of BMDs calculated was 21 because for three of the experimental
groups a BMDa (benchmark dose, apical outcome) did not exist due to a lack of observed
toxicity (Table 3). The T384 gene set performed similarly with Limma; however, increasing
the size of this gene set to T1000 resulted in performance evaluation metrics that rivaled
that of all other gene sets of the same size or larger (L1000, Limma, and S1500). Further
increasing the size of T1000 to T1500 did not increase the performance as the correlation
slightly decreased while the average ratio of BMDt/BMDa got slightly closer to one. Figure 3
provides a visual summary of the comparison based on the BMDt/BMDa ratios.
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Figure 3 Ratios of BMDt/BMDa for each experimental group determined with various gene sets as
indicated atop the plots. Ratios of BMDt/BMDa represents ratio of transcriptionally-derived benchmark
doses BMDt using gene signatures to apical outcome-derived benchmark dose BMDa serving as the
ground truth. The limits of the blue rectangular band and dotted lines represent 3-fold and 10-fold
of unity, respectively. Ratios could not be calculated for three experimental groups (hydrazobenzene
(HZBZ): 5 day, 2 week, 4 week) due to a lack of apical outcomes. Red circles represent mean ratios greater
than 10-fold, while the yellow ones represent ratios greater than 3-fold. The fewer circles, the more the
gene set is indicative of potential relevance to the examined apical endpoints (see Figs. S3 and S4 for T384
and T1500 plots, respectively). In (A), the T1000 results are highlighted such that in only two experiments,
the ratio of difference from the ground truth was greater than three folds and less than 10. In (A), (B),
(C) and (D), the results of L1000, S1500 and Limma are illustrated, respectively, with each having a single
experiment (i.e., red circle) with 10-fold difference from the ground truth. All of them had more yellow
circles as compared to (A) of T1000.

Full-size DOI: 10.7717/peerj.7975/fig-3

Prediction results
In a second validation study, we applied T1000 to study the Rat Genome 230 2.0 Array
for the kidney dataset (dataset 4) from the Open TG-GATEs program. This dataset was
not included in any model training or parameter tuning steps. This helped to establish
another external validation of T1000 in terms of its generalized ability to predict apical
outcomes for datasets derived from different tissues. When compared to the baseline
gene sets mapped using Limma and L1000, T1000 achieved a relative improvement of
the F1Score by 6.9% and 27.56%, respectively, thus outperforming the other gene sets
(Table 4). When considering the absolute difference of F1 Score between T1000 and the
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Table 4 Summary comparison of average classification performance using the testing RatKidney dataset. Scores are based on average results
from five classifiers (LDA, NBC, QDA, DT and RF) and the standard deviation is reported to highlight variance of estimate.

Sensitivity Specificity Precision Gmean F1Measure F0.5Measure

T1000 29.25% (±11.64)* 71.33% (±4.74) 21.51% (±4.45) 44.7% (±7.8)* 24.58% (±7.11)* 22.6% (±5.36)
Limma 27.76% (±16.3) 70.75% (±6.33) 20% (±9.96) 41.84% (±14.81) 22.99% (±12.04) 21.06% (±10.64)
CD 21.79% (±15.39) 68.08% (±10.97) 13.94% (±6.64) 34.79% (±13.3) 16.65% (±9.96) 14.83% (±7.82)
L1000 22.99% (±12.82) 70.42% (±5.78) 16.84% (±7.29) 38.33% (±11.46) 19.27% (±9.27) 17.71% (±7.97)
S1500 21.79% (±7.65) 72.67% (±3.98)* 17.87% (±3.99) 39.19% (±6.2) 19.53% (±5.42) 18.48% (±4.48)

Random-500 27.83% (±11.69) 70.89% (±5.09) 20.31% (±4.89) 42.81% (±8.38) 18.41% (±12.03) 21.29% (±5.79)
P-value (T1000 vs.
Random)

0.0555 0.3454 0.1283 0.0504 0.0192 0.1112

Best Model
(Limma_NBC)

44.78% 68.75% 28.57% 55.48% 34.88% 30.80%

Worst Model
(Limma_QDA)

4.48% 72.08% 4.29% 17.97% 4.38% 4.32%

Notes.
*Statistically significant at an alpha level of 0.1 using T -test and considering comparison with Random results.

second best (i.e., Limma), T1000 achieved an improvement of 1.59%. The improvement
was 1.54% for F0.5 Score confirming that T1000 led to fewer false positive predictions.

Another baseline we compare with is Random-500, where a set of 1000 features are
selected randomly and the performance is reported for the five classifiers considered (i.e.,
LDA, NBC, KNN, QDA and RF). This experiment is repeated for 500 times and the
average and standard deviation scores are reported in Table 4. GMean, F1 Score and F0.5
Score of T1000 are significantly higher (t -test with alpha = 0.1) than the random scores.
The t -test we performed was based on the average performance of the five used different
machine learning classifiers. So, we averaged results of Random-500 to get a summary
performance scores for each of the classifiers. One observation is that the Random-500
results outperformed several gene sets. This can be due to the fact that some machine
learning models are less sensitive to the type of selected features (e.g., RF). On average,
we found that a randomly generated set would outperform other models with a chance of
about 30% only. Here, we focused on F0.5 Measure as one of the summary performance
measures. It should be noted that this does not reflect the magnitude of improvement
which is measured using the t -test. Given the fact that other approaches will outperform a
random selection in 70% andwith a significantly higher performance on average (see T1000
in Table 4), we conclude that a systematic approach is required to prioritize genes. In the
context of high throughput screening, such small improvements in F1 Score or F0.5 Score
may represent large cost savings (Soufan et al., 2015a) as false positives may lead to added
experiments that would otherwise be unnecessary. Detailed performance scores of each
individual machine learning model are provided in Table S2. Please refer to Supplemental
Information 7 for more comparisons including expression space visualization using PCA
and gene set coverage evaluation.
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DISCUSSION
There is great interest across the toxicological and regulatory communities in harnessing
transcriptomics data to guide and inform decision-making (Basu et al., 2019; Council,
2007; ECHA, 2016; Mav et al., 2018; Thomas et al., 2019). In particular, gene expression
signatures hold great promise to identify chemical-specific response patterns, prioritize
chemicals of concern, and predict quantitatively adverse outcomes of regulatory concern,
in a cost-effective manner. However, the inclusion of full transcriptomic studies into
standard research studies faces logistical barriers and bioinformatics challenges, and thus,
there is interest in the derivation and use of reduced but equally meaningful gene sets.

Our approach to select T1000 followed the same rationale of how the LINCS program
derived the L1000 gene set (Liu et al., 2015), though here we purposefully included
additional steps to bolster the toxicological relevance of the resulting gene set. Generating
a list of ranked genes based on toxicologically relevant input data and prior knowledge is
another key feature of T1000.

There are some limitations associated with our current study. For instance, the co-
expression network was based on data from the Open TG-GATEs program. While this
is arguably the largest toxicogenomics resource available freely, the program is founded
on one in vivo model (rat), two in vitro models (primary rat and human hepatocytes),
170 chemicals that are largely drugs, and microarray platforms. Thus, there remain
questions about within- and cross- species and cell type differences, the environmental
relevance of the tested chemicals, and the biological space captured by the microarray. Our
multi-pronged and -tiered bioinformatics approach was designed to yield a toxicologically
robust gene set, and the approach can be ported to other efforts that are starting to
realize large toxicogenomics databases such as our own EcoToxChip project (Basu et al.,
2019). In addition, our approach in selecting T1000 genes was purely data-driven without
considering input from scientific experts as was done by the NTP to derive the S1500 gene
set (Mav et al., 2018). It is unclear how such gene sets (e.g., T1000, S1500) will be used
by the community and under which domains of applicability, and thus there is a need to
perform case studies in which new methods are compared to traditional methods (Kavlock
et al., 2018). It is worth mentioning that T1000 had 259 and 90 genes in common with
S1500 and L1000, respectively and 741 unique genes.

CONCLUSIONS
Here we outlined a systematic, data-driven approach to identify highly-responsive genes
from toxicogenomics studies. From this, we prioritized a list of 1,000 genes termed the
T1000 gene set. We demonstrated the applicability of T1000 to 7,172 expression profiles,
showing great promise in future applications of this gene set to toxicological evaluations.
We externally validated T1000 against two in vivo datasets of toxicological prominence (a
kidney dataset of 308 experiments on 41 chemicals from Open TG-GATEs and a dose–
response study of 30 experiments on six chemicals (Thomas et al., 2013). We compared
the performance of T1000 against existing gene sets (Limma, L1000 and S1500) as well
as panels of randomly selected genes. In doing so, we demonstrate T1000′s versatility as
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it is predictive of apical outcomes across a range of conditions (e.g., in vitro and in vivo),
and generally performs as well as or better than other gene sets available. Our approach
represents a promising start to yield a toxicologically-relevant gene set. We hope that future
efforts will start to use and apply T1000 in a diverse range of settings, and from these we can
then start to make updates to the composition of the T1000 gene set based on improved
understanding of its performance characteristics and user experiences.
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