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Background: Genetic testing for BRCA1/2 germline mutations in hereditary breast/ovarian
cancer patients requires screening for single nucleotide variants, small insertions/deletions
and large genomic rearrangements (LGRs). These studies have long been run by Sanger
sequencing and multiplex ligation-dependent probe amplification (MLPA). The recent
introduction of next-generation sequencing (NGS) platforms dramatically improved the
speed and the efficiency of DNA testing for nucleotide variants, while the possibility to
correctly detect LGRs by this mean is still debated. The purpose of this study was to
establish whether and to which extent the development of an analytical algorithm could
help us translating NGS sequencing via an Ion Torrent PGM platform into a tool suitable to
identify LGRs in hereditary breast-ovarian cancer patients. Methods: We first used NGS
data of a group of 3 patients (training set), previously screened in our laboratory by
conventional methods, to develop an algorithm for the calculation of the dosage quotient
(DQ) to be compared with the Ion Reporter (IR) analysis. Then, we tested the optimized
pipeline with a consecutive cohort of 85 uncharacterized probands (validation set) also
subjected to MLPA analysis. Characterization of the breakpoints of three novel BRCA1 LGRs
was obtained via long-range PCR and direct sequencing of the DNA products. Results: In
our cohort, the newly defined DQ-based algorithm detected 3/3 BRCA1 LGRs,
demonstrating 100% sensitivity and 100% negative predictive value (NPV) [95%
CI:87.6-99.9]) compared to 2/3 cases detected by IR (66.7% sensitivity and 98.2% NPV
[95% CI:85.6-99.9]). Interestingly, DQ and IR shared 12 positive results, but exons deletion
calls matched only in 5 cases, two of which confirmed by MLPA. The breakpoints of the 3
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novel BRCA1 deletions, involving exons 16-17, 21-22 and 20, have been characterized.
Conclusions: Our study defined a DQ-based algorithm to identify BRCA1 LGRs using NGS
data. Whether confirmed on larger data sets, this tool could guide the selection of samples
to be subjected to MLPA analysis, leading to significant savings in time and money.
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22

23 Abstract 

24 Background: Genetic testing for BRCA1/2 germline mutations in hereditary breast/ovarian 

25 cancer patients requires screening for single nucleotide variants, small insertions/deletions and 

26 large genomic rearrangements (LGRs). These studies have long been run by Sanger sequencing 

27 and multiplex ligation-dependent probe amplification (MLPA). The recent introduction of next-

28 generation sequencing (NGS) platforms dramatically improved the speed and the efficiency of 

29 DNA testing for nucleotide variants, while the possibility to correctly detect LGRs by this mean 

30 is still debated. The purpose of this study was to establish whether and to which extent the 

31 development of an analytical algorithm could help us translating NGS sequencing via an Ion 

32 Torrent PGM platform into a tool suitable to identify LGRs in hereditary breast-ovarian cancer 

33 patients.

34 Methods: We first used NGS data of a group of 3 patients (training set), previously screened in 

35 our laboratory by conventional methods, to develop an algorithm for the calculation of the 

36 dosage quotient (DQ) to be compared with the Ion Reporter (IR) analysis. Then, we tested the 

37 optimized pipeline with a consecutive cohort of 85 uncharacterized probands (validation set) also 

38 subjected to MLPA analysis. Characterization of the breakpoints of three novel BRCA1 LGRs 

39 was obtained via long-range PCR and direct sequencing of the DNA products.

40 Results: In our cohort, the newly defined DQ-based algorithm detected 3/3 BRCA1 LGRs, 

41 demonstrating 100% sensitivity and 100% negative predictive value (NPV) [95% CI:87.6-99.9]) 

42 compared to 2/3 cases detected by IR (66.7% sensitivity and 98.2% NPV [95% CI:85.6-99.9]). 

43 Interestingly, DQ and IR shared 12 positive results, but exons deletion calls matched only in 5 
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44 cases, two of which confirmed by MLPA. The breakpoints of the 3 novel BRCA1 deletions, 

45 involving exons 16-17, 21-22 and 20, have been characterized.

46 Conclusions: Our study defined a DQ-based algorithm to identify BRCA1 LGRs using NGS 

47 data. Whether confirmed on larger data sets, this tool could guide the selection of samples to be 

48 subjected to MLPA analysis, leading to significant savings in time and money.

49

50 Background 

51 Hereditary breast and ovarian cancer syndrome, caused by germline pathogenic mutations in the 

52 BRCA1 (MIM#113705) or BRCA2 (MIM#600185) genes, is characterized by an increased risk 

53 for breast, ovarian, pancreatic and other cancers (Palma et al., 2006). It has been recently 

54 estimated that the cumulative risks of breast cancer to age 80 years was 72% for BRCA1 and 

55 69% for BRCA2 carriers (Kuchenbaecker et al., 2017). Differences in mutation type and site may 

56 at least partially impact on cancer risk definition (Rebbeck et al., 2015; Coppa et al., 2018; 

57 Rebbeck et al., 2018). BRCA1 and BRCA2 gene mutations are typically found in 25–30% of the 

58 breast cancer families subjected to genetic testing (Giannini et al., 2006; Economopoulou, 

59 Dimitriadis & Psyrri, 2015). The relatively low rate of success in finding relevant pathogenic 

60 mutations in this settings is likely due to the contribution of other moderate-to-high penetrance 

61 breast cancer susceptibility genes (i.e., PALB2, ATM, CHK2) (Economopoulou, Dimitriadis & 

62 Psyrri, 2015; Coppa et al., 2018), or to the influence of low penetrance and risk-modifying 

63 alleles (Couch et al., 2012; Ottini et al., 2013; Kuchenbaecker et al., 2014; Peterlongo et al., 

64 2015), all of which needs to be taken into account for a more appropriate assessment of 

65 individual cancer risk. For quite some time, the use of classical qualitative PCR-based techniques 

66 incapable of detecting large genomic rearrangements (LGRs) also contributed to failures in the 
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67 identification of BRCA mutation carriers. Interestingly, the prevalence of BRCA1/BRCA2 LGRs 

68 varies greatly among different populations ranging from 0 to 27% of mutation positive families 

69 in Iranian/French, Canadian, Dutch, Spanish, German, French and South Africa populations 

70 (Gad et al., 2002; Hogervorst et al., 2003; Hartmann et al., 2004; Pietschmann et al., 2005; 

71 Moisan et al., 2006; la Hoya et al., 2006; Sluiter & van Rensburg, 2011).  Relevant differences in 

72 the frequency of BRCA1 LGRs have also been reported within the Italian population (Montagna 

73 et al., 2003; Buffone et al., 2007). In general, BRCA2 LGRs are less frequent (Woodward et al., 

74 2005; Agata et al., 2005; Buffone et al., 2007), probably due to the lower density of Alu 

75 sequences compared to BRCA1, which are involved in the genesis of LGRs (Smith et al., 1996).

76 Multiplex ligation-dependent probe amplification (MLPA) is the most commonly used technique 

77 for the detection of large deletions/duplications in BRCA1/2 genes.

78 The recent advances in sequencing technologies have increased the speed and efficiency of DNA 

79 testing and the emergence of benchtop next-generation sequencing (NGS) instruments are 

80 becoming the standard in molecular genetic diagnosis (Feliubadalo et al., 2013; Trujillano et al., 

81 2015). NGS is capable of sensitive detection of sequence variants, but may also be used for 

82 detection of LGRs by the evaluation of Copy Number Variations (CNVs) (Tarabeux et al., 2014; 

83 Enyedi et al., 2016; Schenkel et al., 2016; Schmidt et al., 2017). The CNVs assessment is mainly 

84 performed using the sequencing read depth (RD) assessment approach, whose assumption is that 

85 the RD signal is proportional to the number of copies of chromosomal segments present in that 

86 specimen (Tan et al., 2014). The ability to detect CNVs from NGS multigene panel largely, but 

87 not uniquely, depends on the library preparation, and target enrichment approaches based on 

88 hybridization and capture seem to have better performances compared to amplicon-based 

89 methods. In general, NGS data are not routinely used for CNVs detection in clinical settings for 
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90 BRCA mutation screenings, due to concerns related to library preparation protocols, 

91 normalization procedures and employed software (Feliubadalo et al., 2013; Wallace, 2016). 

92 Recently, we adopted the NGS Ion AmpliSeq™ BRCA1 and BRCA2 Panel to perform routine 

93 BRCA1/2 mutation screening on the Ion PGM platform (Nicolussi et al., 2019). Here, we aimed 

94 at establishing whether sequencing data generated by this approach could be processed by a 

95 computational algorithm to efficiently predict the presence of LGRs, based on the dosage 

96 quotient (DQ) calculation and the Ion Reporter (IR) analysis. 

97

98 Methods

99 Patients and DNA

100 Families putatively affected by hereditary breast/ovarian cancer syndrome were recruited at the 

101 Hereditary Tumors section of Policlinico Umberto I, University La Sapienza, between July 2015 

102 and September 2017 and selected as previously described (Capalbo et al., 2006b,a; Coppa et al., 

103 2014). Comprehensive pre-test counseling was offered to all probands and their family members 

104 and informed consent was obtained. For each study participant, samples of blood or DNA from 

105 peripheral blood leukocytes were collected. DNA from blood samples was extracted and 

106 quantified as described by Nicolussi et al. (Nicolussi et al., 2019). All investigations were 

107 approved by Ethics Committee of the University of Roma “La Sapienza” (Prot.: 88/18; 

108 RIF.CE:4903, 31-01-2018) and conducted according to the principles outlined in the declaration 

109 of Helsinki.

110 A retrospective group of 3 DNA samples, previously found positive for BRCA1 LGRs by MLPA 

111 was used as a training set (TS). LGRs in the TS were as follows: sample BR59, BRCA1 exon 23-

112 24 deletion (c.5407-?*(1_?)del); sample BR328, BRCA1 exon 18-19 deletion (c.5075-
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113 ?_5193+?del)(Buffone et al., 2007) and sample BR409, NBR2 exon1 and BRCA1 exon 1-2 

114 deletion (NBR2del EX1_BRCA1 delEX1-2) (Coppa et al., 2018) (Table 1).

115 For NGS-based LGR analysis, a consecutive group of 127 NGS/MPLA negative samples have 

116 been used to create a baseline and a prospective consecutive cohort of 85 uncharacterized 

117 probands, validation set (VS), was studied. 

118

119 Ion Torrent PGM sequencing

120 The target regions in the BRCA1 and BRCA2 genes were amplified using the Ion AmpliSeq™ 

121 BRCA1 and BRCA2 Panel (Life Technologies) according to the manufacturers’ procedures and 

122 processed as previously described (Belardinilli et al., 2015; Nicolussi et al., 2019).

123

124 Sanger sequencing

125 All clinical samples were sequenced for the entire coding regions by Sanger sequencing, using 

126 an ABI PRISM DyeDeoxy Terminator Cycle Sequencing Kit and an ABI 3100 Genetic Analyzer 

127 (Applied Biosystems, Warrington, UK). Reference sequence for BRCA1 was Genbank, 

128 NM_007294.3, and reference sequence for BRCA2 was Genebank, NM_000059.3. 

129

130 MLPA analyses

131 MLPA methodology (Schouten et al., 2002) was performed, according to the manufacturer’s 

132 instructions (MRC–Holland, Amsterdam, the Netherlands), to identify BRCA1/2 genomic 

133 rearrangements. For the statistical analysis we transferred the size and the peak areas of each 

134 sample to an Excel file. The peak areas of the expected MLPA products were evaluated by 
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135 comparison with a normal control and by cumulative comparison of all samples within the same 

136 experiment (Buffone et al., 2007; Coppa et al., 2018).

137

138 NGS-based LGRs Analysis

139 LGRs in BRCA1 gene were studied by two distinct approaches: the manual calculation of the DQ 

140 and the IR platform. In the manual approach, DQ for each sample was calculated as follows: 

141 amplicon read count normalized on the BRCA1 and BRCA2 total reads/average of normalized 

142 amplicon read counts obtained from all samples. Specifically, we referred to DQA when 

143 amplicon counts were normalized vs the coverage data of all samples run on the same single 

144 chip, and to DQB when amplicon counts were normalized vs coverage data obtained from a 

145 baseline built from 127 LGRs negative samples. In addition, DQB has been alternatively 

146 obtained either considering together all amplicons of the Ion AmpliSeq™ BRCA1 and BRCA2 

147 Panel (DQB1) or by separately considering the three different pools of amplicons (DQB2). DQ 

148 value higher than mean plus 2 standard deviations (SD) was considered indicative of a 

149 duplication; DQ value lower than mean minus 2 SD was considered indicative of a deletion. 

150 Particular attention has been also payed to reduction of multiple consecutive amplicons, even 

151 when they failed to trespass the above defined thresholds.

152 In the IR approach, we create a user-defined CNV detection workflow by a tunable Ion 

153 Reporter™ Software algorithm based on Hidden Markov Model (HMM), that utilize normalized 

154 read coverage across amplicons to predict the copy number or ploidy 

155 (https://assets.thermofisher.com/TFS-Assets/LSG/brochures/CNV-Detection-by-Ion.pdf). The 

156 data coverage of 20 mutation-negative patients has been used as CNV baseline to analyze the 
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157 samples of both TS and VS. We detected no BRCA2 LGR in both the TS and VS. Thus, our 

158 analysis is necessarily limited to BRCA1 LGRs.

159

160 DNA breakpoint analysis 

161 Newly discovered BRCA1 large deletions were validated by characterization of the genomic 

162 breakpoints. Long-range PCR was performed according to the manufacturer’s instructions using 

163 the kit Platinum Taq DNA polymerases High Fidelity (Thermo Fisher) with the primers sitting 

164 on closer undeleted exons as described in Table S2. PCR products were purified with ExoSAP-

165 IT (USB Corp., Cleveland, USA) according to the manufacturer’s instructions and sequenced 

166 using the ABI PRISM DyeDeoxy Terminator Cycle Sequencing Kit and an ABI 3100 Genetic 

167 Analyzer (Applied Biosystems, Warrington, UK). Reference sequences for BRCA1 and BRCA2 

168 were Genebank NM_007294.3 and NM_000059.3, respectively.

169

170 Statistical analysis

171 Validation metrics were defined as: Accuracy = (TP + TN)/(TP + FP + TN + FN); Sensitivity = 

172 TP/(TP + FN); Specificity = TN/(TN+FP); FDR = FP/(TP + FP); Negative Predictive Value = 

173 TN/( TN + FN),  where TP = true positives, TN = true negatives, FP = false positives, FN = 

174 false negatives. The confidence intervals (CIs) were calculated by the method of Wilson (1927) 

175 (EB, 2019).

176

177 Results 

178 NGS-dependent LGR analyses 

179 To establish whether the data obtained by NGS via Ion AmpliSeq™ BRCA1and BRCA2 Panel 
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180 were suitable to identify copy number alterations in BRCA1, we used data from three samples 

181 (TS), already characterized in our laboratory for the presence of BRCA1 LGRs by MLPA (Table 

182 1). The sequencing data of the TS were analyzed by a locally devised algorithm for the 

183 calculation of the DQ and by our custom modified IR analysis, as described in materials and 

184 methods. The intrarun DQ calculation (DQA), which includes normalization based on the 

185 coverage data of the samples sequenced in the same chip, was always included to monitor the 

186 variability eventually due to different batches of reagents or to time-related variables. In general, 

187 however, we thought we could get improved resolution and reduced numbers of CNV false calls 

188 by normalizing the coverage data of all amplicons of each sample vs those obtained from a 

189 reference set of 127 MLPA negative samples selected on the basis of their quality and uniformity 

190 of the coverage (DQB analysis). This baseline has been used to perform two DQB calculations, 

191 considering either all amplicons contained in the Ion AmpliSeq™ BRCA1 and BRCA2 Panel 

192 (DQB1) or dividing them into the three subsets identified by the amplification primer pools 

193 (DQB2).

194 As shown in Fig 1A, the DQA plot of the TS samples revealed the presence of peaks below the 

195 thresholds, in samples BR328 and BR409 (corresponding to deletions of BRCA1 exons 18-19 

196 and 1-2, respectively, in agreement with MLPA results). The DNA quality of BR59 sample was 

197 rather low, as evidenced by the many peaks out of the threshold. Nevertheless, the DQB1 

198 analysis evidenced values below the threshold for 3 consecutive amplicons (AMPL223551867, 

199 223530147 and 223954665), identifying BRCA1 exon 23-24 deletion (Fig.1B), already 

200 discovered by MLPA analysis. Although they fail to trespass the threshold, the same consecutive 

201 amplicons showed strongly reduced values also at DQA evaluation (Fig. 1A). Hence, the careful 

202 examination of the two DQ calculations allowed us to identify all three BRCA1 LGRs in the TS. 
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203 Also, the analysis performed by IR software detected the presence of CNV (CNV=1) in the 

204 proper regions in all three TS samples (Table 2). On this basis, we extended DQA, DQB and IR 

205 analysis to a group of 85 consecutive samples (VS) negative for BRCA1/2 pathogenic variants at 

206 NGS analysis and compared it with MLPA results. Overall, DQA and DQB analysis resulted in 

207 detection of positive calls in 33/85 (39%) samples, while IR analysis detected CNVs in 29/85 

208 (34%) (Table 3). Interestingly, DQ and IR evaluation only shared 12 positive results, with exon 

209 calls being not coincident in 7 of them and with a rather precise, although imperfect, indication 

210 of the exons involved in the remaining 5 (Table S1). MLPA confirmed BRCA1 LGRs in 3/85 

211 samples (Fig. 2): BR963 and BR1379, belonging to the small group of 5 DQ/IR double positive 

212 samples, and BR1154 resulted DQ positive-IR negative. Therefore, DQ calculation resulted 

213 100% sensitive and displayed a 100% NPV (95% CI:87.6-99.9) (Table 3) in our VS, values not 

214 reached by IR analysis, which failed in the identification of BR1154 (Table 2). Within DQ 

215 analysis, the correct calls were more clearly defined by the DQB2 calculation (Fig. 3A, B, C). 

216 The appropriateness of the deletions calls of DQ, IR and MLPA evaluations were confirmed by 

217 the molecular characterization of the breakpoints, as described below.

218

219 Characterization of LGRs

220 Identification of the breakpoints characterizing the LGRs is important for several reasons, 

221 including the possibility to develop diagnostic assays for segregation analyses in relatives. For 

222 different reasons DQ, IR and MLPA analyses are not able to provide such detailed molecular 

223 characterization of LGR. To define the breakpoints of the newly identified BRCA1 LGRs, PCR 

224 amplification of genomic DNA from the three samples and direct sequencing were performed.
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225 As shown in Fig. 4A, PCR amplification of genomic DNA from the BR963 patient resulted in an 

226 aberrant fragment of approximately 1353 bp, whose direct sequencing confirmed loss of BRCA1 

227 exons 21 and 22, possibly originating from an erroneous homologous recombination process 

228 between an AluSq2 (Alu family, SINE class; chr17:41206762-41207066) and an AluSz (Alu 

229 family, SINE class; chr17:41200521-41200834) motifs. The rearrangement involved a perfectly 

230 repeated stretch of 24 bases and resulted in the deletion of 6228 nucleotides encompassing part 

231 of IVS20, exons 21-22 and IVS22 (Fig. 4B, C). The BR963 proband was affected with breast 

232 cancer at age 40 and belonged to HBC family. Segregation analysis demonstrated that the 

233 mutation came from the maternal lineage (Fig. 5A). PCR amplification of genomic DNA from 

234 BR1154 patient resulted in an aberrant fragment of approximately 872 bp (also present in her 

235 mother, sample BR1148), whose direct sequencing confirmed loss of BRCA1 exons 20, possibly 

236 originating from an erroneous homologous recombination process between an AluY (Alu family, 

237 SINE class; chr17:41205398-41205698) and an AluY (Alu family, SINE class; chr17:41205398-

238 41205698) motifs. The rearrangement involved a perfectly repeated stretch of 11 bases and 

239 resulted in the deletion of 4173 nucleotides encompassing part of IVS19, exon 20 and IVS20 

240 (Fig. 4D, E, F). The BR1154 proband was affected with ovarian cancer at age 52 and belonged to 

241 a HBOC family (Fig. 5B). The segregation analysis demonstrated that the mutation originating 

242 from the maternal lineage segregated in three individuals (Fig. 5B). Finally, PCR amplification 

243 of genomic DNA from BR1379 patient, resulted in an aberrant fragment of approximately 2027 

244 bp, whose direct sequencing confirmed loss of BRCA1 exons 16 and 17, possibly originated from 

245 an erroneous homologous recombination process between an AluSp (Alu family, SINE class; 

246 chr17:41224585-41224884) and an AluSg (Alu family, SINE class; chr17:41218424-41218724) 

247 motif. The rearrangement involved a perfectly repeated stretch of 16 bases and resulted in the 
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248 deletion of 6155 nucleotides encompassing part of IVS15, exons 16-17 and IVS17 (Fig. 4G, H, 

249 I). The BR1379 proband was affected with bilateral breast cancer at age 42 and 58 and belonged 

250 to a family with colon cancer and hepatomas cases (Fig. 5C).

251 In conclusion, our results in the VS allow us to propose an operative algorithm which 

252 uses DQ calculation and IR analysis to select samples to be subjected to MLPA analysis, as 

253 indicated in Fig. 6. Indeed, all DQ positive samples should be subjected to MLPA, while DQ and 

254 IR double positive samples, sharing calls in the same regions, could be directly subjected to 

255 second level confirmation assay or directly to breakpoint characterization. In principle, all DQ 

256 negative samples (52 sample out of 85 in our VS) could be considered negative for LGRs, thus 

257 completing the analysis at this step. 

258

259 Discussion

260 A complete clinical level analysis of BRCA1 and BRCA2 in hereditary breast/ovarian 

261 cancer includes the study of LGRs. Many methods have been used to identify LGRs, such as 

262 fluorescent in-situ hybridization (FISH) and microarrays (Xia et al., 2018), Southern blot, long-

263 range PCR, quantitative multiplex PCR of short fragments (QMPSF) (Ewald et al., 2009), 

264 semiquantitative multiplex PCR, real-time PCR, restriction analysis and sequencing (Armour et 

265 al., 2002). All these methods are limited by their low throughput, time consuming, large amounts 

266 of high molecular weight DNA request and several false negative results (Ewald et al., 2009). 

267 More recently a multiplex PCR-based method that allows the determination of copy number status 

268 of multiple loci in a single assay, has been developed by Multiplicom 

269 (http://www.multiplicom.com) and described as a valid method (Concolino et al., 2014). However, 

270 the MLPA represents the most widely used approach to scan for LGRs in BRCA1/2 genes (Ruiz 
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271 de Garibay et al., 2012). The simultaneous detection of mutations and copy number alterations is 

272 an attractive and useful prospect for clinical settings. In the last years the NGS-based approaches 

273 for genetic testing offered a powerful alternative for BRCA1/2 mutation detection. However, the 

274 specificity of this approach is still considered not completely satisfactory for a correct LGRs 

275 detection. One of the most relevant aspects concerns the library preparation method, with the 

276 amplicon-based approach having a lower specificity compared to target enrichment approaches 

277 (Apessos et al., 2018). Here we reported the definition of an operative algorithm to use amplicon-

278 based Ion-PGM/Ampliseq BRCA1/BRCA2 sequencing data to efficiently predict the occurrence of 

279 BRCA1 LGRs. By comparison of the results obtained with DQ and IR analyses, we demonstrate 

280 that DQ had 100% sensitivity and 100% NPV, at variance with IR analysis, which failed in the 

281 identification of a BRCA1 exon 20 deletion. This result is consistent with one known limitation of 

282 the IR software, able to detect CNVs only if the region of interest is covered by more than one 

283 amplicon (https://assets.thermofisher.com/TFS-Assets/LSG/brochures/CNV-Detection-by-

284 Ion.pdf). Indeed, BRCA1 exon 20, deleted in BR1154 sample, is covered by only one amplicon in 

285 the Ion AmpliSeq™ BRCA1 and BRCA2 Panel, making IR incapable of calling this CNV. 

286 Of course, a major caveat deals with the limited specificity and accuracy of our approach, which 

287 could not overcome the limitations also reported by other groups (Feliubadalo et al., 2013; Pilato 

288 et al., 2016). Thus, although our operative algorithm cannot fully substitute for MLPA analysis, 

289 and if our data will be confirmed in larger data sets, we suggest that combined DQ and IR 

290 analyses could be used for selecting samples to be subjected to MLPA analysis following the 

291 flow chart depicted in Fig. 4, with significant savings in time and money.

292 Another important contribution of this paper is the molecular characterization of the three novel 

293 BRCA1 rearrangements up to providing their unique breakpoint coordinates. Deletion of exons 
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294 21 and 22 causing damage to the C-terminal BRCT domain of the BRCA1 protein has been 

295 reported and characterized in Czech (Vasickova et al., 2007; Ticha et al., 2010) and Malay 

296 population (Hasmad et al., 2015), but with different breakpoints. BRCA1 exon 20 deletion has 

297 been described in Italian and Greek population (Montagna et al., 2003; Belogianni et al., 2004; 

298 Armaou et al., 2007) but all different from each other and from our own, with respect to their 

299 breakpoints. The BRCA1 exons 16-17 deletion, responsible of BRCA1 loss of function (Carvalho 

300 et al., 2009), has been reported in Latin America/Caribbean population, but the breakpoints were 

301 not provided by the authors (Judkins et al., 2012). Similar to many other cases (Mazoyer, 2005; 

302 Buffone et al., 2007; Ewald et al., 2009), all three novel rearrangements described here, are 

303 likely to be due to an erroneous homologous recombination event between perfectly matching 

304 Alu repeats.

305

306 Conclusion

307 In conclusion, here we described a simple approach that require the use of a basic statistical 

308 package such as Microsoft Excel, to predict the occurrence of LGRs by the analysis of NGS data 

309 designed for Ion AmpliSeq™ BRCA1 and BRCA2 Panel/IT-PGM platform, applicable to all 

310 NGS platforms in use to reduce the number of samples to be subjected to MLPA analysis. We 

311 also characterized for the first time the breakpoints of three novel BRCA1 LGRs.

312
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Table 1(on next page)

LGRs in TS and VS
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1

2

3

sample Id genomic variant exon deletion ref

BR59 c.5407-?_*(1_?)del exon 23-24 del
Buffone et 

al., 2007

BR328 c.5075-?_5193+?del exon 18-19 del
Buffone et 

al., 2007TS

BR409 NBR2delEX1_BRCA1delEX1-2
exon 1 NBR2 del

exon 1-2 BRCA1 del
Coppa et al., 

2018

BR963 NG_005905.2: g.163181_169408del6228 exon 21-22 del /

VS BR1154 NG_005905.2: g.160396_164568del4173 exon 20 del /

BR1379 NG_005905.2:g.145185_151339del6155 exon 16-17 del /

4

5

6

7

8

9
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Table 2(on next page)

CNVs prediction by IR software algorithm in TS and VS

The confidence score is the probability that the number of copies of the region of interest is
different from 2, which is the normal value, while the confident precision indicates how much
the algorithm is certain of the accuracy of the number of copies estimated by the analysis.
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1

2

Sample ID Locus Type Genes Location Length
Copy 

Number
CytoBand

CNV 

Confidence

CNV 

Precision

BR59 chr17:41197602 CNV BRCA1 exon 23-24 2.138kb 1 17q21.31(41197602-41199740)x1 5.66 5.66

BR328 chr17:41215277 CNV BRCA1 exon 18-19 749kb 1 17q21.31(41215277-41216026)x1 13.05 13.05TS

BR409 chr17:41275973 CNV BRCA1 exon 2 275kb 1 17q21.31(41275973-41276248)x1 1.14 1.14

BR963 chr17:41201074 CNV BRCA1 exon 21-22 2.18kb 1 17q21.31(41201074-41203254)x1 9.14 9.14
VS

BR1379 chr17:41215855 CNV BRCA1 exon 16-18 7.44kb 1 17q21.31(41215855-41223295)x1 5.11 5.11

3

4
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Table 3(on next page)

Performance of NGS-dependent LGRs analysis

Validation metrics were defined as: Accuracy = (TP + TN)/(TP + FP + TN + FN); Sensitivity =
TP/(TP + FN); Specificity = TN/(TN+FP); FDR = FP/(TP + FP), Negative Predictive Value = TN/(
TN + FN), where TP = true positives, TN = true negatives, FP = false positives, FN = false
negatives.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

MLPA

tot LGR no LGR
Results

64.7% accuracy [95% CI: 50.6-76.7]
LGR 33 3 30

100% sensitivity [95% CI: 22.8-98.4]

63.4% specificity [95% CI: 49-75.8]
DQ

no LGR 52 0 52
100% NPV [95% CI: 87.6-99.9]

67.1% accuracy [95% CI: 52.9-78.7]
LGR 29 2 27

66.7% sensitivity [95% CI: 8.9-98.8]

67.1% specificity [95% CI: 52.7-78.9]
IR

no LGR 56 1 55
98.2% NPV [95% CI: 85.6-99.9]
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Figure 1
DQ analyses for TS samples.

(A) for each sample, every peak represents the ratio of the amplicon read count normalized
on BRCA1/BRCA2 total reads and the average of normalized amplicon read counts from all
samples on a single chip (DQA). (B) for each sample, every peak represents the ratio of the
amplicon read count normalized on BRCA1/BRCA2 total reads and the average of the
coverage data of a baseline built from 127 LGRs negative samples (DQB1). The threshold=
mean ± 2 SD. Value > mean ± 2 SD is indicative of a duplication; Value < mean ± 2 SD is
indicative of a deletion. * indicated the amplicons included in the region involved in the
rearrangement as confirmed by MLPA analysis.
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Figure 2
BRCA1 MLPA electropherogram showing aberrant profiles in BR963, BR1154, and
BR1379 patients.

(A) Wild-type sample (WT). Black arrows indicate the deletion of (B) BRCA1 exons 21-22
(BR963), (C) BRCA1exon 20 (BR1154), (D) BRCA1 exons 16-17 (BR1379).
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Figure 3
DQ analyses for the representative samples for VS

(A) and (B) for each sample, every peak represents the ratio of the amplicon read count
normalized on BRCA1/BRCA2 total reads and the average of normalized amplicon read
counts from all samples on a single chip (DQA). (C) for each sample, every peak represents
the ratio of the amplicon read count normalized on BRCA1/BRCA2 total reads and the
average of the coverage data of a baseline built from 127 LGRs negative samples considering
separately the amplicon pools (DQB2, pool 2). The threshold= mean ± 2 SD. Value > mean ±
2 SD is indicative of a duplication; Value < mean ± 2 SD is indicative of a deletion. *
indicated the amplicons included in the region involved in the rearrangement as confirmed
by MLPA analysis.
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Figure 4
Characterization of BRCA1 LGRs

(A) gel image of PCR products. PCR amplification of the genomic region spanning the BRCA1

rearrangement resulted in a fragment of approximately 1353 bp present only in the proband
BR963. (B) and (C) schematic representation and electropherogram showing the BRCA1

exons 21 and 22 deletion. The variant arose from an erroneous homologous recombination
process between an AluSq2 (Alu family, SINE class; chr17:41206762-41207066) and an AluSz
(Alu family, SINE class; chr17:41200521-41200834) motif, and it involved a perfectly
repeated stretch of 24 bp. (D) gel image of PCR products. PCR amplification of the genomic
region spanning the BRCA1 rearrangement resulted in a fragment of approximately 872 bp
present in the proband BR1154 and in her mother BR1148. (E) and (F) schematic
representation and electropherogram showing the BRCA1 exon 20 deletion. The variant
arose from an erroneous homologous recombination process between two AluY motif at
chr17:41205398-41205698 and chr17:41205398-41205698, respectively, and it involved a
perfectly repeated stretch of 11 bp. (G) gel image of PCR products. PCR amplification of the
genomic region spanning the BRCA1 rearrangement resulted in a fragment of approximately
2027 bp present only in the proband BR1379. (H) and (I) schematic representation and
electropherogram showing the BRCA1 exons 16 and 17 deletion. The variant arose from an
erroneous homologous recombination process between an AluSp motif (Alu family, SINE
class; chr17:41224585-41224884) and an AluSg (Alu family, SINE class;
chr17:41218424-41218724) motif, and it involved a perfectly repeated stretch of 16 bp. MK,
marker; NT, no template; CTR healthy individual DNA.
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Figure 5
Pedigree of the HBC or HBOC family carriers of BRCA1 novel LGRs

(A) exons 21-22 deletion (BR963). (B) exon 20 deletion (BR1154). (C) exons 16-17 deletion
(BR1379). Probands are indicated with an arrow. Cancer type and age at diagnosis are
reported and described as: BC, breast cancer; Pan, pancreas; Leu, leukemia; Lung; bil BC,
bilateral breast cancer; OC, ovarian cancer; Hep, hepatoma; CC, colon cancer.
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Figure 6
Operative algorithm to select samples for MLPA analysis.
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