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ABSTRACT
Background. Genetic testing for BRCA1/2 germline mutations in hereditary
breast/ovarian cancer patients requires screening for single nucleotide variants, small
insertions/deletions and large genomic rearrangements (LGRs). These studies have long
been run by Sanger sequencing and multiplex ligation-dependent probe amplification
(MLPA). The recent introduction of next-generation sequencing (NGS) platforms
dramatically improved the speed and the efficiency of DNA testing for nucleotide
variants, while the possibility to correctly detect LGRs by this mean is still debated. The
purpose of this study was to establish whether and to which extent the development of
an analytical algorithm could help us translating NGS sequencing via an Ion Torrent
PGM platform into a tool suitable to identify LGRs in hereditary breast-ovarian cancer
patients.
Methods. We first used NGS data of a group of three patients (training set), previously
screened in our laboratory by conventional methods, to develop an algorithm for
the calculation of the dosage quotient (DQ) to be compared with the Ion Reporter
(IR) analysis. Then, we tested the optimized pipeline with a consecutive cohort
of 85 uncharacterized probands (validation set) also subjected to MLPA analysis.
Characterization of the breakpoints of three novel BRCA1 LGRs was obtained via long-
range PCR and direct sequencing of the DNA products.
Results. In our cohort, the newly defined DQ-based algorithm detected 3/3 BRCA1
LGRs, demonstrating 100% sensitivity and 100%negative predictive value (NPV) (95%
CI [87.6–99.9]) compared to 2/3 cases detected by IR (66.7% sensitivity and 98.2%
NPV (95% CI [85.6–99.9])). Interestingly, DQ and IR shared 12 positive results, but
exons deletion calls matched only in five cases, two of which confirmed by MLPA. The

How to cite this article Nicolussi A, Belardinilli F, Silvestri V, Mahdavian Y, Valentini V, D’Inzeo S, Petroni M, Zani M, Ferraro
S, Di Giulio S, Fabretti F, Fratini B, Gradilone A, Ottini L, Giannini G, Coppa A, Capalbo C. 2019. Identification of novel BRCA1
large genomic rearrangements by a computational algorithm of amplicon-based Next-Generation Sequencing data. PeerJ 7:e7972
http://doi.org/10.7717/peerj.7972

https://peerj.com
mailto:giuseppe.giannini@uniroma1.it
mailto:anna.coppa@uniroma1.it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7972
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.7972


breakpoints of the 3 novel BRCA1 deletions, involving exons 16–17, 21–22 and 20, have
been characterized.
Conclusions. Our study defined a DQ-based algorithm to identify BRCA1 LGRs using
NGS data. Whether confirmed on larger data sets, this tool could guide the selection
of samples to be subjected to MLPA analysis, leading to significant savings in time and
money.

Subjects Bioinformatics, Oncology
Keywords BRCA1 LGRs, NGS, Deep coverage, Analytical validation, DQ analysis, MLPA

BACKGROUND
Hereditary breast and ovarian cancer syndrome, caused by germline pathogenic mutations
in the BRCA1 (MIM#113705) or BRCA2 (MIM#600185) genes, is characterized by an
increased risk for breast, ovarian, pancreatic and other cancers (Palma et al., 2006). It has
been recently estimated that the cumulative risks of breast cancer to age 80 years was 72% for
BRCA1 and 69% for BRCA2 carriers (Kuchenbaecker et al., 2017). Differences in mutation
type and site may at least partially impact on cancer risk definition (Rebbeck et al., 2015;
Coppa et al., 2018; Rebbeck et al., 2018). BRCA1 and BRCA2 gene mutations are typically
found in 25–30% of the breast cancer families subjected to genetic testing (Giannini et
al., 2006; Economopoulou, Dimitriadis & Psyrri, 2015). The relatively low rate of success
in finding relevant pathogenic mutations in this settings is likely due to the contribution
of other moderate-to-high penetrance breast cancer susceptibility genes (i.e., PALB2,
ATM, CHK2) (Economopoulou, Dimitriadis & Psyrri, 2015; Coppa et al., 2018), or to the
influence of low penetrance and risk-modifying alleles (Couch et al., 2012; Ottini et al.,
2013; Kuchenbaecker et al., 2014; Peterlongo et al., 2015), all of which needs to be taken into
account for a more appropriate assessment of individual cancer risk. For quite some time,
the use of classical qualitative PCR-based techniques incapable of detecting large genomic
rearrangements (LGRs) also contributed to failures in the identification of BRCAmutation
carriers. Interestingly, the prevalence ofBRCA1/BRCA2 LGRs varies greatly among different
populations ranging from 0 to 27% of mutation positive families in Iranian/French,
Canadian, Dutch, Spanish, German, French and South Africa populations (Gad et al.,
2002; Hogervorst et al., 2003; Hartmann et al., 2004; Pietschmann et al., 2005; Moisan et
al., 2006; La Hoya de et al., 2006; Sluiter & Van Rensburg, 2011). Relevant differences in the
frequency of BRCA1 LGRs have also been reported within the Italian population (Montagna
et al., 2003; Buffone et al., 2007). In general, BRCA2 LGRs are less frequent (Woodward et
al., 2005; Agata et al., 2005; Buffone et al., 2007), probably due to the lower density of Alu
sequences compared to BRCA1, which are involved in the genesis of LGRs (Smith et al.,
1996). Multiplex ligation-dependent probe amplification (MLPA) is the most commonly
used technique for the detection of large deletions/duplications in BRCA1/2 genes.

The recent advances in sequencing technologies have increased the speed and
efficiency of DNA testing and the emergence of benchtop next-generation sequencing
(NGS) instruments are becoming the standard in molecular genetic diagnosis
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(Feliubadalo et al., 2013; Trujillano et al., 2015). NGS is capable of sensitive detection
of sequence variants, but may also be used for detection of LGRs by the evaluation of Copy
Number Variations (CNVs) (Tarabeux et al., 2014; Enyedi et al., 2016; Schenkel et al., 2016;
Schmidt et al., 2017). The CNVs assessment is mainly performed using the sequencing read
depth (RD) assessment approach, whose assumption is that the RD signal is proportional to
the number of copies of chromosomal segments present in that specimen (Tan et al., 2014).
The ability to detect CNVs from NGS multigene panel largely, but not uniquely, depends
on the library preparation, and target enrichment approaches based on hybridization
and capture seem to have better performances compared to amplicon-based methods.
In general, NGS data are not routinely used for CNVs detection in clinical settings for
BRCA mutation screenings, due to concerns related to library preparation protocols,
normalization procedures and employed software (Feliubadalo et al., 2013;Wallace, 2016).
Recently, we adopted the NGS Ion AmpliSeqTM BRCA1 and BRCA2 Panel to perform
routine BRCA1/2 mutation screening on the Ion PGM platform (Nicolussi et al., 2019).
Here, we aimed at establishing whether sequencing data generated by this approach could
be processed by a computational algorithm to efficiently predict the presence of LGRs,
based on the dosage quotient (DQ) calculation and the Ion Reporter (IR) analysis.

METHODS
Patients and DNA
Families putatively affected by hereditary breast/ovarian cancer syndrome were recruited at
the Hereditary Tumors section of Policlinico Umberto I, University La Sapienza, between
July 2015 and September 2017 and selected as previously described (Capalbo et al., 2006b;
Capalbo et al., 2006a;Coppa et al., 2014). Comprehensive pre-test counseling was offered to
all probands and their family members and informed consent was obtained. For each study
participant, samples of blood or DNA from peripheral blood leukocytes were collected.
DNA from blood samples was extracted and quantified as described by Nicolussi et al.
(2019). All investigations were approved by Ethics Committee of the University of Roma
‘‘La Sapienza’’ (Prot.: 88/18; RIF.CE:4903, 31-01-2018) and conducted according to the
principles outlined in the declaration of Helsinki.

A retrospective group of 3 DNA samples, previously found positive for BRCA1 LGRs
by MLPA was used as a training set (TS). LGRs in the TS were as follows: sample BR59,
BRCA1 exon 23–24 deletion (c.5407-?*(1_?)del); sample BR328, BRCA1 exon 18-19
deletion (c.5075-?_5193+?del)(Buffone et al., 2007) and sample BR409, NBR2 exon1
and BRCA1 exon 1-2 deletion (NBR2del EX1_BRCA1 delEX1-2) (Coppa et al., 2018)
(Table 1).

For NGS-based LGR analysis, a consecutive group of 127 NGS/MPLA negative
samples have been used to create a baseline and a prospective consecutive cohort of
85 uncharacterized probands, validation set (VS), was studied.

Ion torrent PGM sequencing
The target regions in the BRCA1 and BRCA2 genes were amplified using the Ion
AmpliSeqTM BRCA1 andBRCA2Panel (Life Technologies) according to themanufacturers’
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Table 1 LGRs in TS and VS.

Sample Id Genomic variant Exon deletion Ref

BR59 c.5407-?_*(1_?)del exon 23-24 del Buffone et al. (2007)
BR328 c.5075-?_5193+?del exon 18-19 del Buffone et al. (2007)TS

exon 1 NBR2 del
BR409 NBR2delEX1_BRCA1delEX1-2

exon 1-2 BRCA1 del
Coppa et al. (2018)

BR963 NG_005905.2: g.163181_169408del6228 exon 21-22 del /
BR1154 NG_005905.2: g.160396_164568del4173 exon 20 del /VS

BR1379 NG_005905.2:g.145185_151339del6155 exon 16-17 del /

procedures and processed as previously described (Belardinilli et al., 2015; Nicolussi et al.,
2019).

Sanger sequencing
All clinical samples were sequenced for the entire coding regions by Sanger sequencing,
using an ABI PRISMDyeDeoxy Terminator Cycle Sequencing Kit and an ABI 3100 Genetic
Analyzer (Applied Biosystems, Warrington, UK). Reference sequence for BRCA1 was
Genbank, NM_007294.3, and reference sequence forBRCA2wasGenebank, NM_000059.3.

MLPA analyses
MLPAmethodology (Schouten et al., 2002) was performed, according to themanufacturer’s
instructions (MRC–Holland, Amsterdam, the Netherlands), to identify BRCA1/2 genomic
rearrangements. For the statistical analysis we transferred the size and the peak areas of
each sample to an Excel file. The peak areas of the expected MLPA products were evaluated
by comparison with a normal control and by cumulative comparison of all samples within
the same experiment (Buffone et al., 2007; Coppa et al., 2018).

NGS-based LGRs analysis
LGRs in BRCA1 gene were studied by two distinct approaches: the manual calculation of
the DQ and the IR platform. In the manual approach, DQ for each sample was calculated
as follows: amplicon read count normalized on the BRCA1 and BRCA2 total reads/average
of normalized amplicon read counts obtained from all samples. Specifically, we referred to
DQA when amplicon counts were normalized vs. the coverage data of all samples run on
the same single chip, and to DQB when amplicon counts were normalized vs. coverage data
obtained from a baseline built from 127 LGRs negative samples. In addition, DQB has been
alternatively obtained either considering together all amplicons of the Ion AmpliSeqTM

BRCA1 and BRCA2 Panel (DQB1) or by separately considering the three different pools
of amplicons (DQB2). DQ value higher than mean plus two standard deviations (SD)
was considered indicative of a duplication; DQ value lower than mean minus 2 SD was
considered indicative of a deletion. Particular attention has been also payed to reduction
of multiple consecutive amplicons, even when they failed to trespass the above defined
thresholds.

In the IR approach, we create a user-defined CNV detection workflow by a tunable
Ion ReporterTM Software algorithm based on Hidden Markov Model (HMM), that utilize
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normalized read coverage across amplicons to predict the copy number or ploidy (https:
//assets.thermofisher.com/TFS-Assets/LSG/brochures/CNV-Detection-by-Ion.pdf). The
data coverage of 20 mutation-negative patients has been used as CNV baseline to analyze
the samples of both TS and VS. We detected no BRCA2 LGR in both the TS and VS. Thus,
our analysis is necessarily limited to BRCA1 LGRs.

DNA breakpoint analysis
Newly discovered BRCA1 large deletions were validated by characterization of the genomic
breakpoints. Long-range PCR was performed according to the manufacturer’s instructions
using the kit Platinum Taq DNA polymerases High Fidelity (Thermo Fisher) with the
primers sitting on closer undeleted exons as described in Table S2. PCR products were
purified with ExoSAP-IT (USB Corp., Cleveland, USA) according to the manufacturer’s
instructions and sequenced using the ABI PRISM DyeDeoxy Terminator Cycle Sequencing
Kit and an ABI 3100 Genetic Analyzer (Applied Biosystems, Warrington, UK). Reference
sequences for BRCA1 and BRCA2 are in GenBank; NM_007294.3 and NM_000059.3,
respectively.

Statistical analysis
Validation metrics were defined as: Accuracy = (TP + TN)/(TP + FP + TN + FN);
Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); Negative Predictive Value =
TN/(TN + FN), where TP = true positives, TN = true negatives, FP = false positives, FN
= false negatives. The confidence intervals (CIs) were calculated by the method of Wilson
(1927).

RESULTS
NGS-dependent LGR analyses
To establish whether the data obtained by NGS via Ion AmpliSeqTM BRCA1 and BRCA2
Panel were suitable to identify copy number alterations in BRCA1, we used data from
three samples (TS), already characterized in our laboratory for the presence of BRCA1
LGRs by MLPA (Table 1). The sequencing data of the TS were analyzed by a locally
devised algorithm for the calculation of the DQ and by our custommodified IR analysis, as
described in materials and methods. The intrarun DQ calculation (DQA), which includes
normalization based on the coverage data of the samples sequenced in the same chip, was
always included to monitor the variability eventually due to different batches of reagents or
to time-related variables. In general, however, we thought we could get improved resolution
and reduced numbers of CNV false calls by normalizing the coverage data of all amplicons
of each sample vs. those obtained from a reference set of 127 MLPA negative samples
selected on the basis of their quality and uniformity of the coverage (DQB analysis). This
baseline has been used to perform two DQB calculations, considering either all amplicons
contained in the Ion AmpliSeqTM BRCA1 and BRCA2 Panel (DQB1) or dividing them
into the three subsets identified by the amplification primer pools (DQB2).

As shown in Fig. 1A, the DQA plot of the TS samples revealed the presence of peaks
below the thresholds, in samples BR328 and BR409 (corresponding to deletions of BRCA1
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Figure 1 DQ analyses for TS samples. (A) For each sample, every peak represents the ratio of the ampli-
con read count normalized on BRCA1/BRCA2 total reads and the average of normalized amplicon read
counts from all samples on a single chip (DQA). (B) For each sample, every peak represents the ratio of
the amplicon read count normalized on BRCA1/BRCA2 total reads and the average of the coverage data of
a baseline built from 127 LGRs negative samples (DQB1). The threshold=mean± 2 SD. Value > mean
± 2 SD is indicative of a duplication; Value < mean± 2 SD is indicative of a deletion. * indicated the am-
plicons included in the region involved in the rearrangement as confirmed by MLPA analysis.

Full-size DOI: 10.7717/peerj.7972/fig-1

exons 18-19 and 1-2, respectively, in agreement with MLPA results). The DNA quality
of BR59 sample was rather low, as evidenced by the many peaks out of the threshold.
Nevertheless, the DQB1 analysis evidenced values below the threshold for 3 consecutive
amplicons (AMPL223551867, 223530147 and 223954665), identifying BRCA1 exon 23-24
deletion (Fig. 1B), already discovered by MLPA analysis. Although they fail to trespass
the threshold, the same consecutive amplicons showed strongly reduced values also at
DQA evaluation (Fig. 1A). Hence, the careful examination of the two DQ calculations
allowed us to identify all three BRCA1 LGRs in the TS. Also, the analysis performed by IR
software detected the presence of CNV (CNV = 1) in the proper regions in all three TS
samples (Table 2). On this basis, we extended DQA, DQB and IR analysis to a group of
85 consecutive samples (VS) negative for BRCA1/2 pathogenic variants at NGS analysis
and compared it with MLPA results. Overall, DQA and DQB analysis resulted in detection
of positive calls in 33/85 (39%) samples, while IR analysis detected CNVs in 29/85 (34%)
(Table 3). Interestingly, DQ and IR evaluation only shared 12 positive results, with exon
calls being not coincident in seven of them and with a rather precise, although imperfect,
indication of the exons involved in the remaining five (Table S1). MLPA confirmed BRCA1
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LGRs in 3/85 samples (Fig. 2): BR963 and BR1379, belonging to the small group of five
DQ/IR double positive samples, and BR1154 resulted DQ positive-IR negative. Therefore,
DQ calculation resulted 100% sensitive and displayed a 100% NPV (95% CI [87.6–99.9])
(Table 3) in our VS, values not reached by IR analysis, which failed in the identification of
BR1154 (Table 2). Within DQ analysis, the correct calls were more clearly defined by the
DQB2 calculation (Figs. 3A–3C). The appropriateness of the deletions calls of DQ, IR and
MLPA evaluations were confirmed by the molecular characterization of the breakpoints,
as described below.

Characterization of LGRs
Identification of the breakpoints characterizing the LGRs is important for several reasons,
including the possibility to develop diagnostic assays for segregation analyses in relatives.
For different reasons DQ, IR and MLPA analyses are not able to provide such detailed
molecular characterization of LGR. To define the breakpoints of the newly identified
BRCA1 LGRs, PCR amplification of genomic DNA from the three samples and direct
sequencing were performed.

As shown in Fig. 4A, PCR amplification of genomicDNA from the BR963 patient resulted
in an aberrant fragment of approximately 1,353 bp, whose direct sequencing confirmed
loss of BRCA1 exons 21 and 22, possibly originating from an erroneous homologous
recombination process between an AluSq2 (Alu family, SINE class; chr17:41206762-
41207066) and an AluSz (Alu family, SINE class; chr17:41200521-41200834) motifs. The
rearrangement involved a perfectly repeated stretch of 24 bases and resulted in the deletion
of 6228 nucleotides encompassing part of IVS20, exons 21–22 and IVS22 (Figs. 4B and
4C). The BR963 proband was affected with breast cancer at age 40 and belonged to HBC
family. Segregation analysis demonstrated that the mutation came from the maternal
lineage (Fig. 5A). PCR amplification of genomic DNA from BR1154 patient resulted in an
aberrant fragment of approximately 872 bp (also present in her mother, sample BR1148),
whose direct sequencing confirmed loss of BRCA1 exons 20, possibly originating from
an erroneous homologous recombination process between an AluY (Alu family, SINE
class; chr17:41205398-41205698) and an AluY (Alu family, SINE class; chr17:41205398-
41205698) motifs. The rearrangement involved a perfectly repeated stretch of 11 bases
and resulted in the deletion of 4173 nucleotides encompassing part of IVS19, exon 20
and IVS20 (Figs. 4D–4F). The BR1154 proband was affected with ovarian cancer at age
52 and belonged to a HBOC family (Fig. 5B). The segregation analysis demonstrated
that the mutation originating from the maternal lineage segregated in three individuals
(Fig. 5B). Finally, PCR amplification of genomic DNA from BR1379 patient, resulted in an
aberrant fragment of approximately 2,027 bp, whose direct sequencing confirmed loss of
BRCA1 exons 16 and 17, possibly originated from an erroneous homologous recombination
process between anAluSp (Alu family, SINE class; chr17:41224585-41224884) and anAluSg
(Alu family, SINE class; chr17:41218424-41218724) motif. The rearrangement involved
a perfectly repeated stretch of 16 bases and resulted in the deletion of 6155 nucleotides
encompassing part of IVS15, exons 16-17 and IVS17 (Figs. 4G–4I). The BR1379 proband
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Table 2 CNVs prediction by IR software algorithm in TS and VS. The confidence score is the probability that the number of copies of the region of interest is different
from 2, which is the normal value, while the precision score indicates how much the algorithm is certain of the accuracy of the number of copies estimated by the analysis.

Sample
ID

Locus Type Genes Location Length Copy
number

CytoBand CNV
confidence

CNV
precision

BR59 chr17:41197602 CNV BRCA1 exon 23-24 2.138 kb 1 17q21.31 (41197602–41199740)× 1 5.66 5.66
BR328 chr17:41215277 CNV BRCA1 exon 18-19 749 kb 1 17q21.31 (41215277–41216026)× 1 13.05 13.05TS
BR409 chr17:41275973 CNV BRCA1 exon 2 275 kb 1 17q21.31 (41275973-41276248)× 1 1.14 1.14
BR963 chr17:41201074 CNV BRCA1 exon 21-22 2.18 kb 1 17q21.31 (41201074–41203254)× 1 9.14 9.14

VS
BR1379 chr17:41215855 CNV BRCA1 exon 16-18 7.44kb 1 17q21.31 (41215855–41223295)× 1 5.11 5.11
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Table 3 Performance of NGS-dependent LGRs analysis.

Tot MLPA Results

LGR No LGR

64.7% accuracy (95% CI [50.6–76.7])
LGR 33 3 30

100% sensitivity (95% CI [22.8–98.4])
63.4% specificity (95% CI [49–75.8])

DQ

No LGR 52 0 52
100% NPV (95% CI [87.6–99.9])
67.1% accuracy (95% CI [52.9–78.7])

LGR 29 2 27
66.7% sensitivity (95% CI [8.9–98.8])
67.1% specificity (95% CI [52.7–78.9])

IR

No LGR 56 1 55
98.2% NPV (95% CI [85.6–99.9])

Notes.
Validation metrics were defined as: Accuracy= (TP+ TN)/(TP+ FP+ TN+ FN); Sensitivity= TP/(TP+ FN); Specificity=
TN/(TN+ FP); Negative Predictive Value= TN/(TN+ FN), where TP, true positives; TN, true negatives; FP, false positives;
FN, false negatives.

was affected with bilateral breast cancer at age 42 and 58 and belonged to a family with
colon cancer and hepatomas cases (Fig. 5C).

In conclusion, our results in the VS allow us to propose an operative algorithm which
uses DQ calculation and IR analysis to select samples to be subjected to MLPA analysis, as
indicated in Fig. 6. Indeed, all DQ positive samples should be subjected to MLPA, while
DQ and IR double positive samples, sharing calls in the same regions, could be directly
subjected to second level confirmation assay or directly to breakpoint characterization. In
principle, all DQ negative samples (52 sample out of 85 in our VS) could be considered
negative for LGRs, thus completing the analysis at this step.

DISCUSSION
A complete clinical level analysis of BRCA1 and BRCA2 in hereditary breast/ovarian
cancer includes the study of LGRs. Many methods have been used to identify LGRs, such
as fluorescent in-situ hybridization (FISH) and microarrays (Xia et al., 2018), Southern
blot, long-range PCR, quantitative multiplex PCR of short fragments (QMPSF) (Ewald
et al., 2009), semiquantitative multiplex PCR, real-time PCR, restriction analysis and
sequencing (Armour et al., 2002). All these methods are limited by their low throughput,
time consuming, large amounts of high molecular weight DNA request and several false
negative results (Ewald et al., 2009). More recently a multiplex PCR-based method that
allows the determination of copy number status of multiple loci in a single assay, has been
developed byMultiplicom (http://www.multiplicom.com) and described as a valid method
(Concolino et al., 2014). However, the MLPA represents the most widely used approach to
scan for LGRs in BRCA1/2 genes (Ruiz de Garibay et al., 2012). The simultaneous detection
of mutations and copy number alterations is an attractive and useful prospect for clinical
settings. In the last years the NGS-based approaches for genetic testing offered a powerful
alternative for BRCA1/2 mutation detection. However, the specificity of this approach
is still considered not completely satisfactory for a correct LGRs detection. One of the
most relevant aspects concerns the library preparation method, with the amplicon-based
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Figure 2 BRCA1MLPA electropherogram showing aberrant profiles in BR963, BR1154, and BR1379 patients. (A) Wild-type sample (WT).
Black arrows indicate the deletion of (B) BRCA1 exons 21-22 (BR963), (C) BRCA1 exon 20 (BR1154), (D) BRCA1 exons 16-17 (BR1379).

Full-size DOI: 10.7717/peerj.7972/fig-2

approach having a lower specificity compared to target enrichment approaches (Apessos et
al., 2018). Here we reported the definition of an operative algorithm to use amplicon-based
Ion-PGM/Ampliseq BRCA1/BRCA2 sequencing data to efficiently predict the occurrence
of BRCA1 LGRs. By comparison of the results obtained with DQ and IR analyses, we
demonstrate that DQ had 100% sensitivity and 100% NPV, at variance with IR analysis,
which failed in the identification of a BRCA1 exon 20 deletion. This result is consistent
with one known limitation of the IR software, able to detect CNVs only if the region
of interest is covered by more than one amplicon (https://assets.thermofisher.com/TFS-
Assets/LSG/brochures/CNV-Detection-by-Ion.pdf). Indeed, BRCA1 exon 20, deleted in
BR1154 sample, is covered by only one amplicon in the Ion AmpliSeqTM BRCA1 and
BRCA2 Panel, making IR incapable of calling this CNV.

Of course, a major caveat deals with the limited specificity and accuracy of our approach,
which could not overcome the limitations also reported by other groups (Feliubadalo et al.,
2013; Pilato et al., 2016). Thus, although our operative algorithm cannot fully substitute
for MLPA analysis, and if our data will be confirmed in larger data sets, we suggest that
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Figure 3 DQ analyses for the representative samples for VS. (A) and (B) for each sample, every peak
represents the ratio of the amplicon read count normalized on BRCA1/BRCA2 total reads and the average
of normalized amplicon read counts from all samples on a single chip (DQA). (C) for each sample, every
peak represents the ratio of the amplicon read count normalized on BRCA1/BRCA2 total reads and the av-
erage of the coverage data of a baseline built from 127 LGRs negative samples considering separately the
amplicon pools (DQB2, pool 2). The threshold=mean± 2 SD. Value > mean± 2 SD is indicative of a
duplication; Value < mean± 2 SD is indicative of a deletion. * indicated the amplicons included in the re-
gion involved in the rearrangement as confirmed by MLPA analysis.

Full-size DOI: 10.7717/peerj.7972/fig-3

combined DQ and IR analyses could be used for selecting samples to be subjected to MLPA
analysis following the flow chart depicted in Fig. 4, with significant savings in time and
money.

Another important contribution of this paper is the molecular characterization of the
three novel BRCA1 rearrangements up to providing their unique breakpoint coordinates.
Deletion of exons 21 and 22 causing damage to the C-terminal BRCT domain of the
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Figure 4 Characterization of BRCA1 LGRs. (A) Gel image of PCR products. PCR amplification of the
genomic region spanning the BRCA1 rearrangement resulted in a fragment of approximately 1,353 bp
present only in the proband BR963. (B) and (C) schematic representation and electropherogram showing
the BRCA1 exons 21 and 22 deletion. (continued on next page. . . )

Full-size DOI: 10.7717/peerj.7972/fig-4
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Figure 4 (. . .continued)
The variant arose from an erroneous homologous recombination process between an AluSq2 (Alu family,
SINE class; chr17:41206762-41207066) and an AluSz (Alu family, SINE class; chr17:41200521-41200834)
motif, and it involved a perfectly repeated stretch of 24 bp. (D) Gel image of PCR products. PCR amplifi-
cation of the genomic region spanning the BRCA1 rearrangement resulted in a fragment of approximately
872 bp present in the proband BR1154 and in her mother BR1148. (E) and (F) schematic representation
and electropherogram showing the BRCA1 exon 20 deletion. The variant arose from an erroneous homol-
ogous recombination process between two AluY motif at chr17:41205398-41205698 and chr17:41205398-
41205698, respectively, and it involved a perfectly repeated stretch of 11 bp. (G) Gel image of PCR prod-
ucts. PCR amplification of the genomic region spanning the BRCA1 rearrangement resulted in a fragment
of approximately 2027 bp present only in the proband BR1379. (H) and (I) schematic representation and
electropherogram showing the BRCA1 exons 16 and 17 deletion. The variant arose from an erroneous
homologous recombination process between an AluSp motif (Alu family, SINE class; chr17:41224585-
41224884) and an AluSg (Alu family, SINE class; chr17:41218424-41218724) motif, and it involved a per-
fectly repeated stretch of 16 bp. MK, marker; NT, no template; CTR healthy individual DNA.

Figure 5 Pedigree of the HBC or HBOC family carriers of BRCA1 novel LGRs. (A) Exons 21–22 dele-
tion (BR963). (B) Exon 20 deletion (BR1154). (C) Exons 16–17 deletion (BR1379). Probands are indi-
cated with an arrow. Cancer type and age at diagnosis are reported and described as: BC, breast cancer;
Pan, pancreas; Leu, leukemia; Lung; bil BC, bilateral breast cancer; OC, ovarian cancer; Hep, hepatoma;
CC, colon cancer.

Full-size DOI: 10.7717/peerj.7972/fig-5

BRCA1 protein has been reported and characterized in Czech (Vasickova et al., 2007; Ticha
et al., 2010) and Malay population (Hasmad et al., 2015), but with different breakpoints.
BRCA1 exon 20 deletion has been described in Italian and Greek population (Montagna
et al., 2003; Belogianni et al., 2004; Armaou et al., 2007) but all different from each other
and from our own, with respect to their breakpoints. The BRCA1 exons 16-17 deletion,
responsible of BRCA1 loss of function (Carvalho et al., 2009), has been reported in Latin
America/Caribbean population, but the breakpoints were not provided by the authors
(Judkins et al., 2012). Similar to many other cases (Mazoyer, 2005; Buffone et al., 2007;
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Figure 6 Operative algorithm to select samples for MLPA analysis.
Full-size DOI: 10.7717/peerj.7972/fig-6

Ewald et al., 2009), all three novel rearrangements described here, are likely to be due to an
erroneous homologous recombination event between perfectly matching Alu repeats.

CONCLUSION
In conclusion, here we described a simple approach that require the use of a basic statistical
package such as Microsoft Excel, to predict the occurrence of LGRs by the analysis of NGS
data designed for Ion AmpliSeqTM BRCA1 and BRCA2 Panel/IT-PGM platform, applicable
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to all NGS platforms in use to reduce the number of samples to be subjected to MLPA
analysis. We also characterized for the first time the breakpoints of three novel BRCA1
LGRs.
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