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Following the Permo-Triassic mass extinction, Archosauriformes - the clade that includes
crocodylians, birds, and their extinct relatives - rapidly diversified into numerous distinct
lineages, became distributed globally, and, by the Late Triassic, filled a wide array of
resource zones. Current scenarios of archosauriform evolution are ambiguous with respect
to whether their taxonomic diversification in the Early-Middle Triassic coincided with the
initial evolution of dietary specializations that were present by the Late Triassic, or if their
ecological disparity arose sometime after lineage diversification. Late Triassic
archosauriform dietary specialization is recorded by morphological divergence from the
plesiomorphic archosauriform tooth condition (laterally-compressed crowns with serrated
carinae and a generally triangular lateral profile). Unfortunately, the roots of this
diversification are poorly documented, with few known Early-Middle Triassic tooth
assemblages, limiting characterizations of morphological diversity during this critical, early
period in archosaur evolution. Recent fieldwork (2007-2017) in the Middle Triassic Manda
Beds of the Ruhuhu Basin, Tanzania, recovered a tooth assemblage that provides a
window into this poorly sampled interval. To investigate the taxonomic composition of that
collection, we built a dataset of continuous quantitative and discrete morphological
characters based on in situ teeth of known taxonomic status (e.g., Nundasuchus,
Parringtonia: N = 65) and a sample of isolated teeth (N = 31). Using crown heights from
known taxa to predict tooth base ratio (= base length/base width), we created a
quantitative morphospace for the tooth assemblage. The majority of isolated, unassigned
teeth fall within a region of morphospace shared by several Manda taxa (e.qg.,
Nundasuchus, Parringtonia); two isolated teeth fall exclusively within a ‘Pallisteria’
morphospace. A non-metric multidimensional scaling ordination (N = 67) of 11 binary
characters reduced overlap between species. The majority of the isolated teeth from the

Manda assemblage fall within the Nundasuchus morphospace. This indicates these teeth
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are plesiomorphic for archosauriforms as Nundasuchus exhibits the predicted
plesiomorphic condition of archosauriform teeth. Our model shows that even the
conservative tooth morphologies of archosauriforms can be differentiated and assigned to
species/genus level, rendering the model useful for identifying isolated teeth. The large
overlap in tooth shape among the species present and their overall similarity indicates that
dietary specialization lagged behind species diversification in archosauriforms from the
Manda Beds, a pattern predicted by Simpson’s ‘adaptive zones’ model. Although applied to
a single geographic region, our methods offer a promising means to reconstruct ecological
radiations and are readily transferable across a broad range of vertebrate taxa throughout
Earth history.
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Following the Permo-Triassic mass extinction, Archosauriformes — the clade that includes
crocodylians, birds, and their extinct relatives — rapidly diversified into numerous distinct
lineages, became distributed globally, and, by the Late Triassic, filled a wide array of resource
zones. Current scenarios of archosauriform evolution are ambiguous with respect to whether
their taxonomic diversification in the Early-Middle Triassic coincided with the initial evolution
of dietary specializations that were present by the Late Triassic, or if their ecological disparity
arose sometime after lineage diversification. Late Triassic archosauriform dietary specialization
is recorded by morphological divergence from the plesiomorphic archosauriform tooth condition
(laterally-compressed crowns with serrated carinae and a generally triangular lateral profile).
Unfortunately, the roots of this diversification are poorly documented, with few known Early—
Middle Triassic tooth assemblages, limiting characterizations of morphological diversity during
this critical, early period in archosaur evolution. Recent fieldwork (2007-2017) in the Middle
Triassic Manda Beds of the Ruhuhu Basin, Tanzania, recovered a tooth assemblage that provides
a window into this poorly sampled interval. To investigate the taxonomic composition of that
collection, we built a dataset of continuous quantitative and discrete morphological characters
based on in situ teeth of known taxonomic status (e.g., Nundasuchus, Parringtonia: N = 65) and
a sample of isolated teeth (N = 31). Using crown heights from known taxa to predict tooth base
ratio (= base length/base width), we created a quantitative morphospace for the tooth
assemblage. The majority of isolated, unassigned teeth fall within a region of morphospace
shared by several Manda taxa (e.g., Nundasuchus, Parringtonia); two isolated teeth fall
exclusively within a ‘ Pallisteria’ morphospace. A non-metric multidimensional scaling
ordination (N = 67) of 11 binary characters reduced overlap between species. The majority of the

isolated teeth from the Manda assemblage fall within the Nundasuchus morphospace. This
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indicates these teeth are plesiomorphic for archosauriforms as Nundasuchus exhibits the
predicted plesiomorphic condition of archosauriform teeth. Our model shows that even the
conservative tooth morphologies of archosauriforms can be differentiated and assigned to
species/genus level, rendering the model useful for identifying isolated teeth. The large overlap
in tooth shape among the species present and their overall similarity indicates that dietary
specialization lagged behind species diversification in archosauriforms from the Manda Beds, a
pattern predicted by Simpson’s ‘adaptive zones’ model. Although applied to a single geographic
region, our methods offer a promising means to reconstruct ecological radiations and are readily

transferable across a broad range of vertebrate taxa throughout Earth history.
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Introduction
Adaptive radiations, or evolutionary diversifications, play a critical role in the history of life as
clades speciate and fill new ecological roles over geologically rapid time intervals (Simpson,
1944; Schluter, 1996). Although there are examples of adaptive radiations that are not speciose
(e.g. Darwin’s finches), or adaptively disparate (e.g. crotaphytine and oplurine iguanids), such a
framework is still useful for structuring macroevolutionary questions and explaining present (and
past) biological diversity (Gavrilets and Losos, 2009). Adaptive radiations and the shifts in
evolutionary rates associated with them are among the most studied aspects of evolutionary
biology (e.g. Stanley, 1979; Losos and Miles, 1994, 2002; Gavrilets and Losos, 2009; Revell et
al., 2018; Slater and Friscia, 2019). However, empirical uncertainties remain regarding many of
the properties of adaptive radiations (Gavrilets and Losos, 2009; Slater and Friscia, 2019), with
the relative timings of lineage diversification and ecological disparity during adaptive radiations
being one such problem. Does lineage diversification come first, followed by specialization and
evolution within an ‘adaptive zone’ (Simpson, 1944, 1953) or does ecological specialization
drive lineage diversification simultaneously (Schluter, 1996)? In the former case species fill the
same resource zones using similar, ancestral morphological structures (e.g. identical tooth
morphologies), whereas in the latter each species would be expected to have a unique, derived
morphology for its resource zone at the start of the radiation (for an empirical example, see
Slater and Friscia, 2019). Determining which of these competing hypotheses operated in a
particular case requires us to reconstruct an evolutionary radiation where a species-poor,
adaptively constrained clade diversifies into a species-rich, adaptively disparate clade.

One such radiation occurred during the Triassic Period, following the Permo-Triassic

mass extinction (PTME: Raup, 1979; Erwin, 1994; Chen and Benton, 2012; Benton and Newell,
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2014) as archosauriforms recovered, rapidly diversified, and spread across Pangea to dominate
terrestrial ecosystems for the next 150 million years (Nesbitt, 2011; Ezcurra and Butler, 2018). In
addition to Archosauriformes being a speciose and disparate radiation, they also provide an
opportunity to test adaptive radiations at a higher phylogenetic level. Lineage diversification of
archosaurs was rapid after the PTME, and by the Middle Triassic many non-archosaurian
archosauriform and crown archosaur clades had appeared (Ezcurra, 2016; Foth et al., 2016;
Ezcurra and Butler, 2018). By the Late Triassic archosaurs filled a wide variety of ecological
roles, from top predators to large herbivores, and were represented in terrestrial, freshwater, and
even marine ecosystems (e.g. Li et al., 2006; Butler et al., 2019). If lineage diversification occurs
first, followed by subsequent ecological disparity, we would expect Middle Triassic
archosauriforms from across the tree to present a limited range of ecologies. The question that
arises is how best to measure ecological disparity? Ecological disparity covers a variety of
physiological, behavioral, and morphological traits but the nature of the fossil record limits its
measure primarily to morphology. Previous work has used cranial morphology as a measure of
disparity (e.g. Foth et al., 2016); however complete, or even partial, skulls are rare for Early—
Middle Triassic archosauriforms. Therefore, an alternative morphological system to approximate
ecological disparity is needed. In this study we use teeth as an indicator of ecological disparity
because they have relatively high preservation potential (e.g. Turner-Walker, 2008) and offer a
direct link to ecology through diet (Lucas, 1979; Dessem, 1985; Scallon and Shine, 1988;
Sander, 1997; Linde, Palmer & Gomez-Zurita, 2004; Santana, Strait & Dumont, 2011;
Zahradnicek et al., 2014). We consider diet as the aspect of ecology of interest for both the
relative ease of inference from morphology alone and the use of diet in previous studies of

evolutionary radiations (e.g. Slater and Friscia, 2019).
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Although tooth assemblages are rare in Middle Triassic terrestrial settings, recent
fieldwork (2007, 2008, 2012, 2015, 2017) in the Manda Beds of the Ruhuhu Basin, Tanzania
(Sidor and Nesbitt, 2017), has revealed a rich assemblage of archosauriforms known from
postcrania and partial crania, including teeth (e.g. Nesbitt et al., 2010; 2014; Smith et al., 2018).
Specifically, these teeth come from the middle and upper Lifua Member bone accumulations
(Smith et al., 2018), which are thought to be Anisian in age (Rubidge, 2005) but may be as
young as early Carnian (Ottone et al., 2014; Marsicano et al., 2016; Wynd et al., 2018; Peecook
et al., 2018). If the Anisian age is correct, then this is one of the oldest, diverse archosaur faunas
known that is also represented by specimens from historical collections (e.g. Butler et al., 2009;
2017; Nesbitt et al., 2010; 2013; 2014; 2017; Barrett, Nesbitt & Peecook, 2015). Using a
combination of information from these new and historical collections, we quantify tooth
disparity in this earliest part of the archosaur radiation to generate a morphospace visualization.
From this we can assign isolated teeth to specific taxon, visualize inter- and intraspecific
variation as well as intra-individual variation, and use this variation as a window into the
ecological disparity of the archosauriforms within the Lifua Member assemblage. To achieve
these goals we use a combination of in situ teeth from jaw elements assignable to particular
species (Figure 1), and isolated teeth attributable to Archosauriformes (Figure 2). Of particular
interest is whether the isolated teeth fall within, or expand, the region of morphospace occupied
by the described Manda Beds taxa.

Institutional Abbreviations — NHMUK, Natural History Museum, London, U.K.; NMT,

National Museum of Tanzania, Dar es Salaam, Tanzania.

Materials & Methods
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The 31 isolated teeth included in this study were all collected from surface accumulations
of vertebrate fossils during fieldwork in 2007, 2008, 2012, 2015, and 2017 from the Manda Beds
of the Ruhuhu Basin by a multi-institutional team (Sidor and Nesbitt, 2017). All of the isolated
teeth included in this study are currently housed at Virginia Tech Department of Geosciences and
will be permanently reposited and managed in the National Museum of Tanzania. In addition to
these isolated teeth (seven of which were referred to Nundasuchus: see Nesbitt et al., 2014), we
also included teeth from within the tooth-bearing elements of five taxonomically distinct
archosauriforms from the Manda Beds: Nundasuchus (NMT RB48), Parringtonia (NMT
RB426), Asilisaurus (NMT RB837), ‘Pallisteria’ (NHMUK PV R36620), and one currently
undescribed pseudosuchian that we refer to —by its specimen number (NMT RB187). We assign
the isolated teeth to Archosauriformes on the basis of their serration morphology (Nesbitt, 2011)
as well as their general ziphodont construction, including lateral compression (e.g. Godefroit and
Cuny, 1997).

To quantify tooth shape, linear measurements (total crown height, base width, and fore-
aft base length) and denticle counts were made following the protocol in Smith, Vann & Dodson
(2005), although due to the smaller size of the teeth in our study, we used 1 mm denticle
densities, rather than 5 mm densities (Supplemental Data S1). All statistical analyses were
performed in R (v 3.1.2) and the RStudio console (v 1.1.383). All graphs of quantitative data
were made using the R package “ggplot2” (Wickham, 2009). To capture tooth disparity (from
log-transformed linear measurements) we used sum of variances with 95% predictive intervals
following the methodology of Larson, Brown & Evans (2016). We chose to use sum of variances
as our measure of disparity due to its prevalence in the literature and its robustness when

working with small sample sizes. Sample size varied from 2—14 teeth, however, sample size does
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not significantly affect the sum of variance analysis (Ciampaglio, Kemp, & McShea, 2001). In
Asilisaurus the 14 teeth largely contributed base and width measurements because only three
teeth were complete enough to measure crown height. We constructed a linear model in R
predicting the variable of tooth base shape (ratio of mesiodistal length over labiolingual width)
by the variables of total crown height and species-level assignment such that base shape = total
crown height * species assignment. The effects of each species on predicting tooth base shape
were elucidated using the R package “lsmeans” (Lenth, 2016) using a pairwise comparison in the
model by taxon. We plotted the teeth of known taxonomic affinity using ggplot2 (Wickham,
2009) to produce a base morphospace into which we plotted results from the isolated teeth for
comparison.

Simple quantitative measurements only capture the overall shape of the teeth, and all of
the teeth in the study resemble the hypothetical ancestral archosauriform tooth (serrated,
recurved, and laterally compressed: Nesbitt, 2011). In order to more fully capture and describe
the subtle variation of these teeth, a method of capturing discrete variation is needed. Non-metric
multidimensional scaling (NMDS) is an ordination method that visualizes variation that can
incorporate discrete qualitative features. We created a set of 11 binary characters for scoring
isolated and in situ teeth for NMDS (Table 1, Figure 3, Supplemental Data S2). All characters
except one are new to this analysis (trait 6, dental caudae = shallow grooves extending from
between two adjacent denticles present/absent is taken from Abler [1992]). None of the traits
used in this study have been used in phylogenetic analyses of archosauriforms, in order to avoid
circular reasoning when comparing our ecological signal to taxonomic and clade identity. The
NMDS analysis was conducted in PAST (Hammer, Harper & Ryan, 2001) with a Bray-Curtis

transformation. We ran an additional NMDS analysis in PAST using average taxon and
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morphotype scores where traits were scored for each taxon with >50% agreement of in situ teeth.

Traits for which <50% of the specimens in the taxon or morphotype were scored as unknown

7).

Isolated Tooth Descriptions

Morphotype A: These teeth (Figure 2A) are generally triangular in outline in lateral view and
most are recurved (the point of the crown is distal to the distal-most extent of the crown base)
although the remainder have crown tips that are level with the distal-most extent of the crown
base. The labial and lingual sides of the crown lack ridges (i.e. no fluting), and the labial side of
the crown exhibits greater convexity than the lingual side. The mesial denticle series terminates
more apically along the crown margin than the distal series, which continues along the entire
height of the crown though both start at the tip of the crown. The mesial denticle series is also
offset from the mesial-distal long axis of the crown base, deflecting to the lingual side toward the
crown base. The denticle densities range from 2—5 per mm. Denticle caudae (Abler, 1992),
which are shallow grooves extending from between two adjacent denticles, are often present and
directed parallel to the denticles. These denticle caudae are most easily viewed in mesial or distal
view (Figure 3F).

In general, Morphotype A teeth strongly resemble both in sifu and isolated teeth of
Nundasuchus (Figure 1; Nesbitt et al., 2014). Particularly important features are the presence of
denticle caudae, an unequal labial-lingual curvature, and the more apical termination of the
mesial denticle series relative to the distal denticle series. Also like Nundasuchus, teeth of
Morphotype A exhibit a mix of states in the changing curvature of the mesial crown edge in

lateral view, with some teeth gradually changing angles and others exhibiting an abrupt shift in
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angle. The in situ teeth of Nundasuchus can exhibit either state depending on the proximity of
the mesial edge of the crown to the distal edge of the preceding tooth. Though this combination
of traits is only found in Nundasuchus in the Manda Beds fauna, archosauriforms from the
Middle and Upper Triassic elsewhere (e.g. de Oliveira and Pinheiro, 2017; Schoch et al., 2018).
Morphotype B: These teeth (Figure 2B) are triangular in shape in lateral view and are
occasionally recurved, although in most the apical tip of the crown is approximately level with
the distal-most end of the crown base. Morphotype B tooth crowns lack fluting and, in contrast to
Morphotype A, the labial and lingual curvatures are equal. None of the teeth are bulbous (no
labiolingual measurements are greater than crown base width). In the majority of Morphotype B
teeth the mesial margin of the crown possesses a single point where the angle of the mesial
carina changes abruptly. As in Morphotype A teeth, the mesial series of denticles in Morphotype
B teeth terminates on the crown further apically than the distal series, which often terminates at
the crown base. However, the mesial row of denticles is in line with the mesial-distal long axis of
the crown base. The denticle densities range from 3-8 per mm. Denticle caudae are present on
some of the teeth and are directed parallel to the denticles. Although these teeth bear a strong
resemblance to Morphotype A, they can be differentiated by their equal labial and lingual
curvatures. Morphotype B teeth are similar to some of the in situ and isolated Nundascuhus teeth
(Figure 1,2; Nesbitt et al., 2014).

Morphotype C: This morphotype (Figure 2C) is represented by a single tooth in our assemblage,
NMT RB831. The overall shape is tall, near conical, and recurved. The crown lacks fluting and
the labial curvature is greater than the lingual curvature. Although its labial-lingual curvature is
unequal, the mesial denticle series is positioned along the midline of the mesial-distal long axis.

The orientation of the mesial edge of the tooth changes gradually, forming a long, continuous
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curve. The tooth is not bulbous. Denticle densities range from 2—4 per mm, and no denticle
caudae are present. There is no variation in either the shape or size of the denticles between the
mesial and distal series or along the length of the crown. Unlike either Morphotypes A or B, the
mesial series of denticles in Morphotype C ends at approximately the same level on the crown as
the distal series, just above the crown base.

In general size and shape, as well as in many of its discrete features, the Morphotype C
tooth is similar to the teeth of ‘Pallisteria’ based on our observations. The teeth of the latter
taxon are large, conical, recurved, and possess unequal labial-lingual curvature. The denticle
density is low (< 3 per mm) in the middle part of the tooth crown and denticles show little
variation in shape or size. Unfortunately, none of the ‘Pallisteria’ teeth could be scored for Trait
7 (termination height of the mesial denticle series; Table 1) due to poor preservation of the
denticles, which otherwise differentiates Morphotype C teeth from morphotypes A and B. If
Morphotype C is similar to, or is, ‘Pallisteria’, then subsequent ‘Pallisteria’ tooth discoveries

should be expected to have sub-equally extending mesial and distal denticle rows.

In situ Tooth Descriptions

Nundasuchus: We included a total of 13 Nundasuchus teeth, six in situ and seven isolated,
originally described in Nesbitt et al. (2014). The teeth range in height from 5.6 to 22 mm with
denticle densities from 2—5 per mm. All the teeth are labio-lingually compressed and are serrated
on both mesial and distal margins. Only one tooth possesses a recurved tip that extends past the
distal-most end on the tooth base. Most teeth are smooth on the sides with a single exception
exhibiting fluting. All of the teeth possess: unequal labial-lingual curvatures, a mesial row of

denticles that terminates higher on the tooth crown than the distal row of denticles, and a mesial
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carina that is offset from the midline. Only two of the teeth possess dental caudae and one tooth
is bulbous. In some teeth the mesial and distal denticle rows differ in size and/or in shape. About
half the teeth have a distinct point on the mesial margin where the angle of the edge changes
abruptly. For the in situ teeth this seems to be related to how close the tooth is to the preceding
socket, with the closer the distance being associated with an abrupt angle shift point.

Asilisaurus: We included 14 in situ teeth though only three of these included more than the very
base of the tooth. These three ranged in height from 1.6 to 2.9 mm and had a denticle density of
~8 per mm. The teeth are closely packed, ankylosed to the sockets, and peg-like in shape
(Nesbitt et al., 2010). All of the teeth have: smooth sides, equal labial-lingual curvature, and
subeven mesial and distal row of denticles. None of the Asilisaurus teeth possess dental caudae
and the mesial edge of the teeth changes angles gradually.

Parringtonia: Of the 14 teeth in the study, 12 were in situ and the other two larger, isolated teeth.
The teeth range in size from 2.5-21.6 mm, though the tallest in situ tooth is 8.3 mm, and the
denticle densities vary from 5—15 per mm. Most of the Parringtonia teeth lacked crown tips,
though the two complete teeth are not recurved. All of the teeth are labio-lingually compressed
and possess fluting and a mesial carina along the midline. The mesial and distal denticle series of
all the teeth remain constant in both shape and size, though the mesial denticle series terminates
higher on the crown than the distal series. In all the teeth the mesial edge angle changes
gradually.

NMT RB187: All 13 teeth of the teeth included from NMT RB187 are in situ. The labio-
lingually compressed teeth range from 5.3—13.4 mm tall with denticle densities of 8—14 per mm.
All of the teeth are recurved, fluted, and lack dental caudae. The mesial edge of the teeth changes

gradually and follows the mesial-distal long axis. In teeth with preserved crown tips the shape of
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the denticles remains constant. Of all the taxa included here, NMT RB187 exhibits the greatest
degree of recurvedness.

‘Pallisteria’: We included 11 in situ teeth from the left and right maxillae of ‘Pallisteria’. These
teeth are the largest of all the taxa, ranging from 36.1-70.3 mm, and have the lowest density,
from 2-3 per mm. All except one are recurved and all have smooth crowns and lack dental
caudae. Most of the teeth have uneven labial-lingual curvature and a mesial edge that changes
angles gradually. The mesial carina is offset from the mesiodistal long axis in most the teeth and

the denticles remains constant in shape and size along the height of the crown.

Results

For our linear model we predicted the tooth base shape (ratio of labiolingual base width
to mesiodistal base length) using the total apicobasal crown height and the taxonomic affinity of
the tooth (base ~ tch + taxon) with the Im() command in base R (Table 2). We found that tooth
height was not a significant predictor of base shape (p = 0.0933. We used the R package
“Ismeans” to further investigate the differences between the species’ tooth shape (Table 3). From
this metric NMT RB187 has a significantly higher base shape ratio than all other taxa except
Parringtonia (p = 0.3788).

The sum of variances analysis (Figure 4) included all known Manda Beds archosauriform
taxa with associated dentition and two of the three morphotypes, as only a single tooth of
Morphotype C is present in our assemblage. These variances provide a quantification of
intraspecific variation in tooth size and shape, and allow for an equal interspecific comparison.
Mean variances ranged from a low of 0.02 log units in ‘Pallisteria’, two large isolated teeth of

Parringtonia, and Morphotype B, to a high of 0.145 log units in Morphotype A (Figure 4).
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More useful for visualizing variation than the linear model and Ismeans contrasts are
morphospace plots of the teeth from our generically determinate specimens, with the isolated,
unidentified teeth added for comparison. There is much overlap in morphospace occupancy,
particularly on the left side (shorter height) portion of the graph, although ‘Pallisteria’ occupies
its own section of morphospace in taller crown heights (Figure 5). Teeth towards the bottom of
the morphospace (lower base ratio) are more rounded and cone-like, whereas those with higher
base ratios are more laterally compressed. With size alone two of the Morphotype A teeth fall in
‘Pallisteria’ morphospace and the Morphotype C tooth with Nundasuchus morphospace contrary
to the discrete descriptive predictions. The relationship between base width and mesiodistal base
length provides little more distinction of the taxa included, and the impact of crown size is still
evident (Figure 6). In general the ratio of base mesiodistal length and labiolingual width follows
a linear trend controlled by size.

A total of 21 isolated teeth and 46 in situ teeth of known affinity were complete enough
to be scored for the NMDS analysis. Convex hulls are more differentiated than in the quantitative
morphospace, with almost no overlap of Nundasuchus with either NMT RB187 or Parringtonia
(Figure 7). Overlap of NMT RB187 and Parringtonia remains, but most of the isolated teeth fall
exclusively within or adjacent to the zone of Nundasuchus and ‘Pallisteria’ (Figure 7). The high
degree of overlap between Parringtonia and NMT RB187 likely reflects their often-shared
feature of having parallel ridges (fluting) along the labial and lingual sides of the tooth crown.
The only other tooth in the study with fluting is a single example referred to Nundasuchus. The
use of taxa and morphotype ‘averages’ in traits reveals similar groupings to the complete dataset,

with average morphotype scores between those of known taxa (Figure 8).
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Discussion

We present the first quantitative description of a Middle Triassic archosauriform tooth
assemblage, which reveals substantial conservation of tooth morphology at the beginning of the
archosaur radiation. Intraspecific variation appears to be as great, if not greater, than interspecific
variation. Morphotype A displays the greatest variance in tooth size in the sample, although
Nundasuchus has a very similar sum of variance structure (Figure 4). Driving at least part of the
pattern we see in our disparity analysis is whether more than a single individual of a given taxon
is included in our study. For example, NMT RB187, ‘Pallisteria’, and Parringtonia all display
low disparity, but our sample includes only elements from a single individual of each taxon,
whereas the Nundasuchus sample includes in situ teeth from one lower jaw (the holotype
specimen) and associated isolated teeth assigned to the holotype (Figure 4). Although two of the
isolated teeth from our assemblage fall exclusively within the ‘Pallisteria’ quantitative
morphospace, most of the isolated teeth fall within a zone of overlap between Nundasuchus,
NMT RB187, and Parringtonia (Figure 5). Much of this quantitative variation reflects body size
(Figure 6). Nundasuchus and ‘Pallisteria’ are much larger than the other taxa, which helps to
differentiate their morphospace from that of smaller-bodied taxa. Asilisaurus is the smallest
taxon in our sample, but there is postcranial evidence of a larger silesaurid in the Lifua
assemblage (possibly a very large individual of Asilisaurus; Barrett, Nesbitt, & Peecook, 2015)
that would be comparable in size to Nundasuchus and ‘ Pallisteria’. Recovery of teeth from
silesaurid individuals of this larger size might reduce some of the differentiation between them,
Nundasuchus, and ‘Pallisteria’ though we would still expect silesaurid teeth to be smaller

relative to the same body size.
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The NMDS ordination improves the differentiation of taxa, with A4silisaurus and the
large-bodied predator ‘Pallisteria’ more clearly separated from the still overlapping undescribed
pseudosuchian, and Parringtonia and Nundasuchus exhibiting wide variation in morphospace
overall, bridging the space between all taxa, and overlapping a substantial part of ‘Pallisteria’
morphospace (Figure 7). These results identify two general areas of morphospace, one shared by
the undescribed pseudosuchian and Parringtonia and the other by Nundasuchus and
‘Pallisteria’. The teeth of Parringtonia and the undescribed pseudosuchian share several
features, notably presence of fluting, a mesial carina along the midline tooth axis, and a high
denticle density (> 3 per mm). By contrast, Nundasuchus and ‘Pallisteria’ teeth lack fluting,
possess an offset mesial carina, unequal labial/lingual curvature, and have a low denticle density
(< 3 per mm). This result is further supported when the average or typical score of each taxon is
used, with NMT RB187, 4silisaurus, and Parringtonia clustering together versus Nundasuchus
and ‘Pallisteria’ on the other side of morphospace (Figure 8). Given that many of the isolated
teeth resemble those of Nundasuchus, it is not surprising that most of the isolated teeth fall
within the convex hull defined by Nundasuchus (Figure 7). We cannot, however, definitely
assign these teeth to Nundasuchus due to the overlap in discrete characters among our included
taxa.

Our results using both methods demonstrate that many of the isolated teeth resemble
those from currently recognized taxa. However, several teeth fall outside of the morphospace
defined by known taxa and could indicate either intraspecific variation (due to heterodonty or
ontogeny) or could represent other, as yet unsampled, taxa. Our methodologies are flexible and

the datasets can incorporate additional specimens as they are excavated, so these approaches
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could be applied to other tooth assemblages throughout the Triassic across a broad range of
spatial, temporal, and taxonomic scales.

Ecological Differentiation. There are some hints of dietary separation between large-
and small-bodied archosaurs based on minor changes in tooth morphology and consideration of
body size. However, our results, which show high degrees of overlap in tooth morphology
suggest that ecological differentiation, at least in diet, appears to lag behind lineage
diversification, at least with respect to Manda archosauriforms. Four of the five recognized taxa
included here possess ziphodont dentitions (=labiolingual narrow crown [labiolingual width <
60% of mesiodistal length], recurved, typically serrated carinae, and no constriction at the cervix
sensu Hendrickx, Mateus & Araujo, 2015) indicative of a carnivorous diet. Only Asilisaurus
differs in possessing a conidont dentiton (=conical crowns with small denticles or no denticles,
and typically fluted sensu Hendrickx, Mateus & Aratijo, 2015). Conidonty is present in
spinosaurids, many crocodylians, marine reptiles, and pterosaurs (Hendrickx, Mateus & Araujo,
2015) and has been linked to piscivory. Following this criterion Asilisaurus would be categorized
as a potential piscivore. However, dietary reconstructions of Silesaurus opolensis, another
silesaurid possessing similar dentition to Asilisaurus, have been herbivorous or omnivorous
based upon dental microwear (Kubo and Kubo, 2014) or insectivorous based upon coprolites
(Qvarnstrom et al., 2019). Thus, in the Manda Beds tooth assemblage there are two large-bodied
carnivores (Nundasuchus and ‘Pallisteria’), two small-bodied carnivores (Parringtonia and an
undescribed pseudosuchian), and one small-bodied, non-carnivore (A4silisaurus). The Middle
Triassic Manda Beds may, therefore, be capturing the beginning of the ‘Explosive Phase’ of
Simpson’s (1944) theoretical model as lineages split and begin to move towards new adaptive

zones. Further tooth assemblages will need to be evaluated to see if this is a broader trend that
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364 holds across the Triassic archosaur radiation. We posit that the qualitative NMDS ordination
365 method gives us the necessary lens for testing this hypothesis.

366

367 Conclusions

368 Simple quantitative measures of tooth shape were of limited use in characterizing the
369 Middle Triassic Manda Beds archosauriform tooth assemblage because of the highly conserved
370 morphology of many specimens. Instead, an ordination based on discrete characters provided a
371 more effective means of differentiating the teeth of distinct taxa. Nevertheless, we found little
372 evidence for significant ecological differentiation of tooth shape between the five taxa included
373 in our study. Most isolated teeth (n = 17/21) fall within the spectrum of recognized taxon

374 variation, and the remainder represent either unsampled taxa or unsampled intraspecific

375 variation.

376 Our relatively simple metrics can be used to describe subtle differences in tooth

377 morphology. These objective methods for grouping teeth provide a complimentary method for
378 assigning teeth to dietary roles, a practice that typically relies on qualitative comparisons to the
379 teeth of extant taxa of known diet (e.g. Fraser and Walkden, 1983; Sander, 1999, Barrett, 2000;
380 Hungerbiihler, 2000) or other fossil taxa (e.g. Dzik, 2003; Hendrickx, Mateus & Araujo, 2015;
381 de Oliveira and Pinheiro, 2017). Furthermore, the methods applied herein provide an evaluation
382 of ecological disparity that is separate from the features used in phylogenetic analyses, so that we
383 can compare these two evolutionary phenomena independently. This method is readily

384 transferable to tooth assemblages from other localities pertaining to any vertebrate clade. Our

385 next step will be to apply this technique to richer Middle Triassic sites, as well as Late Triassic
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sites, to understand how morphological and ecological diversity changed during the early stages

of the archosaur radiation.
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Figure 1

A sample of the in situ dental material used for baseline measurements in this study.

A - Parringtonia (NMT RB426) left dentary (left) in lateral (top) and medial (bottom) views
and right dentary (right) in lateral and medial views. B - undescribed archosauriform taxon
(NMT RB187) right maxilla in lateral and medial view. C - Nundasuchus (NMT RB48) holotype
right dentary in lateral and medial views. D - Asilisaurus (NMT RB 837) (from left to right)
right dentary in lateral and medial views, left maxilla in lateral and occlusal views, and right
maxilla in lateral and occlusal views. Abbreviations: ap, ascending process of the maxilla; ds,
dentary symphysis; ga, gastralia; mg, Meckelian groove; mt lll, metatarsal lll; nf, nutrient

foramen; pp, palatal process. All scale bars 1 cm.
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Figure 2

Examples of isolated teeth from the Manda Beds tooth assemblage.

A - Morphotype A specimens from left to right NMT RB807, NMT RB827, NMT RB809 in lateral
and mesial views. Scale bars 1 cm. B - Morphotype B, specimens from left to right, NMT
RB810, NMT RB819, NMT RB811 in lateral and mesial views. Scale bars 5 mm. C - sole
representative of Morphotype C NMT RB831 in lateral and mesial views. Scale bar 1 cm. D -
isolated teeth of known taxa. Top - Nundasuchus NMT RB48. Scale bar 1 cm. Bottom -

Parringtonia NMT RB426 in lateral and mesial views. Scale bar 2 mm.
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Figure 3

Visualization of discrete traits.

In all traits score 0 on left and score 1 on right. A - Trait 1, degree of recurvature, NMT RB819
(left) and NMT RB827 (right). B - Trait 2, fluting, NMT RB809 (left) and NMT RB426 (right). C -
Trait 3, labiolingual curvature, NMT RB811 (left) and NMT RB819 (right). D - Trait 4, mesial
margin angle, NMT RB811 (left) and NMT RB827 (right). E - Trait 5, labiolingual bulge, NMT
RB811 (left) and NMT RB48 (right). F - Trait 6, dental caudae, NMT RB809 (left) and NMT
RB810 (right). G - Trait 7, mesial vs distal serration series length, NMT RB831 (left) and NMT
RB810 (right). H - Trait 8, denticle density per mm, NMT RB809 (left) and NMT RB810 (right),
black lines equal 1 mm. | - Trait 9, mesial margin alignment, NMT RB810 (left) and NMT
RB809 (right). J - Trait 10, mesial vs distal denticle density, NMT RB810 (left) and NMT RB809
(right). K - Trait 11, denticle shape variation along crown, NMT RB810 (left) and NMT RB48
(right).

Peer] reviewing PDF | (2019:07:39444:0:0:NEW 15 Jul 2019)



PeerJ Manuscript to be reviewed

Peer] reviewing PDF | (2019:07:39444:0:0:NEW 15 Jul 2019)


Keegan
Sticky Note
Please have the dotted line on the right side continue to the base of the tooth.

Keegan
Sticky Note
What is this crooked black line, should that be there?


PeerJ

Figure 4 (on next page)
Disparity of teeth measured by sum of variance

Disparity divided by taxon or morphotype. In the case of Parringtonia the two isolated teeth
are an order of magnitude larger than the in situ teeth of this taxon, so this taxon was split.
The sample sizes reflect the number of teeth with at least one of three measurements that

was used to generate the predictive intervals.
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Figure 5(on next page)

Relationship between height and base shape of teeth divided by taxon.

The taxonomically unidentified teeth fall within a variety of the morphospaces generated by
known taxa, rendering unambiguous referrals impossible. Some genera exhibit much greater
variation in base shape ratio than others, potentially indicating a greater level of within-taxon

variation.
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Figure 6(on next page)

Relationship between base width and fore-aft base length divided by taxon.

The overall ratio of base shape appears to be highly conserved with little deviation from the

general trend. Differentiation between genera appears to be driven primarily by size.
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Figure 7 (on next page)

Ordination plot of first two major NMDS axes of tooth morphospace.

Colored, transparent polygons represent the convex hulls of known taxa. Each point
represents a separate tooth scoring. Parringtonia and NMT RB187 (undescribed taxon) share
almost the same morphospace and there is substantial overlap between Nundasuchus and
‘Pallisteria’ also. Morphotype A appears to be more variable than Morphotype B, which is
clustered closer together within a subsection of overall Morphotype A morphospace. The
proximity of Asilisaurus to Nundasuchus and ‘Pallisteria’ is likely an artifact of incomplete

scorings for Asilisaurus teeth.
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Figure 8(on next page)

Ordination plot of first two primary NMDS axes of tooth "averages" morphospace.

Taxa scoring represent “average” scores for each taxon. Only Morphotype C is represented
by a single tooth. When using typical scores for taxa we find Asilisaurus is no longer near

Nundasuchus and ‘Pallisteria’ morphospace, but on the far side of ordination space.
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Table 1l(on next page)

Discrete character descriptions

Summary of the discrete, binary traits used for scoring teeth in the NMDS analysis.
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Description

Tooth apex, location, relative to the distal margin of the tooth base: tip mesial to or in the
same vertical plane as the distal edge (0) or tip is located more distal than the distal edge

(=recurved) (1)

Tooth lingual/labial, surfaces: texture is smooth (lack of crenulations, ridges, etc.) (0) or

surface texture possess a series of parallel ridges from tooth apex to base (=fluted) (1)

Tooth labial/lingual, shape: crown curvature unequal (one side expanded relative to other)

(0) or equal labial and lingual curvature (1)

Mesial tooth margin, shape: curvature angles change gradually (0) or angle changes abruptly

at a single discrete point along mesial edge (1)

Tooth crown, size: labiolingual widths dorsal to the tooth crown base are all less than the
crown base width (0) or a crown labiolingual width dorsal to the tooth crown base is greater

than the crown base width (1)

Mesial/distal crown margins, surfaces: denticle caudae (= grooves on crown surface from

between individual denticles) are absent (0) or present (1) (from Abler, 1992)

Mesial margin, length: mesial denticle row ends at a point sub-equal with distal denticle row
(0) or mesial denticle row ends significantly further apically on crown than distal row (1).

Can only be scored for teeth with both mesial and distal denticle series.

Mesial/distal margins, denticle density: number of mesial and distal denticles is < 3 per mm
(0), or greater than or equal to 3 per mm (1). Measurements are taken near the middle of the

carina.

Mesial margin, location: vertical axis of the mesial carina is in line the mesial-distal long

axis (0) or laterally offset from the mesial distal long axis (1)

10

Mesial/distal margins, size: average size of mesial and distal denticles are the same (0) or

the average size of the mesial and distal denticles is different (1)

11

Mesial/distal margins, shape: lateral profile shape of mesial and distal denticles remains

constant (0) or denticles’ lateral profile changes shape (e.g. rounded to square) (1)
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Table 2(on next page)

Results of linear model (base ~ total crown height + taxon)

All measures of significance are calculated in reference to the intercept, Asilisaurus.
Therefore, while the undescribed pseudosuchian and Parringtonia can be differentiated in the

model from Asilisaurus, the interrelationships are unknown.
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Estimate Standard Error t-value p-value
Asilisaurus (intercept) 1.1285 0.1011 11.156 <0.0001
Total Crown Height 0.0059 0.0035 1.714 0.0933
(mm)
Undescribed 0.3718 0.1148 3.237 0.0022
Nundasuchus 0.0995 0.1247 0.798 0.4290
‘Pallisteria’ -0.1249 0.2007 -0.622 0.5369
Parringtonia 0.2490 0.1127 2.210 0.0321
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Table 3(on next page)

Pairwise comparisons of taxa used in the linear model.

The undescribed pseudosuchian is readily differentiable from most taxa, with the exception

of Parringtonia. Confidence intervals were generated using a 95% confidence level.
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Taxon Ismeans  Standard Error df Lower CL Upper CL
Asilisaurus 1.2354 0.1150 46 1.0039 1.4669
Undescribed 1.6071 0.0568 46 1.4929 1.7214
Nundasuchus 1.3348 0.0505 46 1.2332 1.4365
‘Pallisteria’ 1.1105 0.1225 46 0.8640 1.3570
Parringtonia 1.4844 0.0595 46 1.3645 1.6042
1
Contrast Estimate SE df  tratio p-value
Asilisaurus — Undescribed -0.3718 0.1148 46  -3.237  0.0181
Asilisaurus — Nundasuchus -0.0995 0.1247 46  -0.798 0.9299
Asilisaurus — ‘Pallisteria’ 0.1249 0.2007 46  0.622 0.9708
Asilisaurus — Parringtonia -0.2490 0.1127 46  -2.210  0.1944
Undescribed — Nundasuchus 0.2723 0.0751 46  3.625 0.0062
Undescribed — ‘Pallisteria’ 0.4967 0.1571 46  3.162 0.0222
Undescribed — Parringtonia 0.1228 0.0677 46  1.813 0.3788
Nundasuchus — ‘Pallisteria’ 0.2244 0.1343 46 1.671 0.4614
Nundasuchus — Parringtonia -0.1495 0.0770 46  -1.942  0.3107
‘Pallisteria’ — Parringtonia -0.3739 0.1631 46  -2.292  0.1659
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