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ABSTRACT
Background. Although several risk factors for nosocomial diarrhea have been identi-
fied, the detail of association between these factors and onset of nosocomial diarrhea,
such as degree of importance or temporal pattern of influence, remains unclear. We
aimed to determine the association between risk factors and onset of nosocomial
diarrhea using machine learning algorithms.
Methods. We retrospectively collected data of patients with acute cerebral infarction.
Seven variables, including age, sex, modified Rankin Scale (mRS) score, and number of
days of antibiotics, tube feeding, proton pump inhibitors, and histamine 2-receptor
antagonist use, were used in the analysis. We split the data into a training dataset
and independant test dataset. Based on the training dataset, we developed a random
forest, support vector machine (SVM), and radial basis function (RBF) network model.
By calculating an area under the curve (AUC) of the receiver operating characteristic
curve using 5-fold cross-validation, we performed feature selection and hyperparameter
optimization in each model. According to their final performances, we selected the
optimalmodel and also validated it in the independent test dataset. Based on the selected
model, we visualized the variable importance and the association between each variable
and the outcome using partial dependence plots.
Results. Two-hundred and eighteen patients were included. In the cross-validation
within the training dataset, the random forest model achieved an AUC of 0.944, which
was higher than in the SVM and RBF network models. The random forest model also
achieved an AUC of 0.832 in the independent test dataset. Tube feeding use days,
mRS score, antibiotic use days, age and sex were strongly associated with the onset
of nosocomial diarrhea, in this order. Tube feeding use had an inverse U -shaped
association with the outcome. The mRS score and age had a convex downward and
increasing association, while antibiotic use had a convex upward association with the
outcome.
Conclusion. We revealed the degree of importance and temporal pattern of the
influence of several risk factors for nosocomial diarrhea, which could help clinicians
manage nosocomial diarrhea.
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INTRODUCTION
Nosocomial diarrhea is a common problem among hospitalized patients. It increases length
of stay and healthcare costs (Kyne et al., 2002a) and is important for hospital infection
control. Several risk factors for nosocomial diarrhea have been identified, including
history of hospitalization, gastrointestinal surgery, severity of disease, and tube feeding,
proton pump inhibitor (PPI), histamine 2-receptor antagonist (H2RA), and antibiotic use
(McFarland, 1995; Kyne et al., 2002b; Thorson, Bliss & Savik, 2008; Arevalo-Manso et al.,
2014; Eze et al., 2017; Thabit, Varugehese & Levine, 2019).

However, details about association between these risk factors and the onset of nosocomial
diarrhea remains unclear. There are few reports about the association between the risk of
onset of nosocomial diarrhea and the duration of antibiotic, PPI, H2RA, and tube feeding
use. Clinical knowledge of relative importance or temporal pattern of the influence of risk
factors for nosocomial diarrhea could result in minimizing administration of these drugs
or considering administration of probiotics for preventing nosocomial diarrhea (Hempel
et al., 2012; Goldenberg et al., 2017).

Recently, there have beenmany reports usingmachine learning algorithms in themedical
field, such as random forest, support vector machine (SVM), or radial basis function
(RBF) network (Bair et al., 2013; DuBrava et al., 2017; Kimura et al., 2019; Halladay,
Sillner & Rudolph, 2018; Le, Ho & Ou, 2018; Le et al., 2019a; Tamune et al., 2019; Cho et
al., 2018; Ding et al., 2018; Zarbakhsh & Addeh, 2018). These models are non-linear and
non-monotonous. They can deal with variables that have a complex association, such
as a U -shaped or convex association, with the outcome. They can analyze the duration
of exposure and presence or absence of exposure simultaneously. Traditional statistical
models, such as a logistic regression or Cox regression model, do not have such properties.
In addition, some machine learning models have high interpretability because they can
visualize the variable importance (Breiman, 2001; Fisher, Rudin & Dominici, 2018) or
association between the variables and the outcome by partial dependence plots (Friedman,
2001).

We hypothesized that such machine learning algorithms could reveal the unknown
association, such as degree of importance and temporal pattern of the influence of risk
factors for nosocomial diarrhea, which would be helpful for clinicians. The present study
aimed to determine the association between the risk factors and onset of nosocomial
diarrhea using machine learning algorithms. We used the data of patients hospitalized
with acute cerebral infarction because they often have several risk factors for nosocomial
diarrhea, such as PPI, H2RA, and tube feeding use.
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MATERIALS & METHODS
Ethics approval
This study was approved by the Institutional Review Board of Showa General Hospital
(approval number: REC-180). In the present study, because of the anonymous nature of
the data and the non-invasive study, the requirement for informed consent was waived.
Instead, we released the research project on the website of Showa General Hospital so that
patients could reject utilization of their data.

Design and study population
This retrospective cohort study was conducted in Showa General Hospital, a single tertiary
center in Japan. We collected data from electronic medical records.

We included patients admitted from April 2017 to March 2018 for acute cerebral
infarction, except for those diagnosed with subtype 4 infarction according to the Trial
of Org 10172 in Acute Stroke Treatment (TOAST) classification (Adams Jr et al., 1993),
who stayed for more than 3 days. To our knowledge, there is no theoretical method to
determine the sample size in machine learning models. Therefore, we included patients
admitted during one fiscal year. Cerebral infarction of subtype 4 according to the TOAST
classification includes diseases, such as vertebral artery dissection. Because cases of subtype
4 cerebral infarction are relatively rare (Kolominsky-Rabas et al., 2001), we did not use
them to reduce patient heterogeneity. The present study focused on nosocomial diarrhea,
which occurs more than 3 days after admission (Bauer et al., 2001). Therefore, patients
who stayed for more than 3 days were eligible.

The exclusion criteria were history of abdominal surgery, gastrointestinal disease as
a comorbidity, regular use of laxatives, and the onset of diarrhea within 3 days from
admission. Patients with a history of abdominal surgery and those with gastrointestinal
disease as a comorbidity were excluded to streamline the analysis. Patients who were using
laxatives regularly were excluded because it was difficult to conclude whether diarrhea
in these patients was caused by the regular use of laxatives. Patients who presented with
diarrhea within 3 days from admission were excluded for the same reason as those who left
the hospital within 3 days from admission.

Outcome
According to the criteria established by the WHO (2018) and used in previous research
(Arevalo-Manso et al., 2014), diarrhea was defined as the passage of 3 or more liquid stools
or stools of types 5–7 according to the Bristol Stool Form Scale (Lewis & Heaton, 1997)
within 24 h. If patients had diarrhea but were using laxatives temporarily within 3 days
of the onset of diarrhea, we considered that their diarrhea was likely to be caused by the
laxatives, regardless of the risk factors, and we categorized them into the non-diarrhea
group.

The observational period was from admission to the onset of diarrhea in patients who
had diarrhea and from admission to discharge in patients who did not have diarrhea.

We used C Diff Quik Chek (Abbott, Lake Bluff, Ill.), a tool of enzyme immunoassay for
Clostridioides difficile (CD) glutamate dehydrogenase (GDH) antigen and CD toxins A and
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B, as the diagnostic tool for CD infection (CDI). It is reported that sensitivity and specificity
for GDH antigen is over 90%, sensitivity for CD toxin is almost 50%, and specificity for CD
toxin is over 90% in Japanese hospitals (Kawada et al., 2011; Kosai et al., 2017;Morinaga et
al., 2018).

Variables
The following seven variables were considered as risk factors or confounding factors for
nosocomial diarrhea and were included in the analysis: age, sex, severity of illness, and
number of days of use of tube feeding, PPI,H2RA, and antibiotics (McFarland, 1995;Kyne et
al., 2002b; Thorson, Bliss & Savik, 2008; Arevalo-Manso et al., 2014; Eze et al., 2017; Thabit,
Varugehese & Levine, 2019). The modified Rankin Scale (mRS) (Van Swieten et al., 1988)
was used as the index of disease severity and was scored 2 days after admission. The number
of days of exposure to the risk factors was calculated at the end of the observational period:
at the onset of diarrhea for patients in the diarrhea group and at discharge for patients in
the non-diarrhea group. For patients without exposure, each variable was set to 0.

Analysis of demographic data
All analyses were conducted using the open source software R version 3.6.1 (R Core Team,
2019). The threshold for statistical significance was set to P < .05.

We used the Student’s t test to compare the averages of continuous variables and the
chi-squared test to compare the proportions of categorical variables between the diarrhea
and non-diarrhea groups. The multicollinearity of the independent variables was evaluated
using variance inflation factors (VIFs).

Model selection
We developed machine learning models that classified the data into diarrhea group or
non-diarrhea group. First, we split the data for 9 months (from April 2017 to December
2017) into the training dataset, and data for 3 months (from January 2018 to March 2018)
into the test dataset. Next, based on the training dataset, we developed the random forest,
SVM, and RBF network model, using R libraries named ‘‘randomForest’’ (version 4.6.14),
‘‘e1071’’ (version 1.7.2), and ‘‘RSNNS’’ (version 0.4.11), respectively.

By calculating the area under the curve (AUC) of the receiver operating characteristic
curve using 5-fold cross-validation (DuBrava et al., 2017; Le et al., 2019b; Le, Ho & Ou,
2017; Ukita, Yoshida & Ohki, 2019), we performed feature selection and hyperparameters
optimization to determine the models. Calculation of AUC was performed using an R
library named ‘ROCR’ (version 1.0.7). The sets of hyperparameters were determined so
that the AUC calculated by the cross-validation was optimized. Feature selection was
performed using the backward elimination method for the variables filtered by statistical
significance between the diarrhea group and non-diarrhea group within the training dataset
(Tangaro et al., 2015;Milošević et al., 2017).

According to the final AUC of each model, we selected the optimal model for the
following analysis. The selected model was also validated using the independent test
dataset.
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Figure 1 Flow chart of the study cohort. Flow chart shows the number of included and excluded pa-
tients and the reasons for exclusion.

Full-size DOI: 10.7717/peerj.7969/fig-1

Visualization of variables’ nature
We visualized the variable importance in the selected model. We also visualized the
association between the variables and the outcome by partial dependence plots using an R
library named ‘‘pdp’’ (version 0.7.0).

RESULTS
Participant characteristics
Three hundred twenty-three patients with acute cerebral infarction were potentially eligible
for inclusion in the present study, and after applying the exclusion criteria, 218 patients
were included (Fig. 1).

Table 1 shows the descriptive data for the diarrhea and non-diarrhea groups. Among
the 218 patients, 48 had diarrhea during the observation period. In the diarrhea group,
the test of CDI was performed in 12 (25%) patients. Among them, two (4%) patients were
positive for the GDH antigen and none were positive for the CD toxin. The time of onset
of nosocomial diarrhea ranged from 4 to 45 days from admission. There were no missing
data for each variable. The patients in the diarrhea group were older, had a higher mRS
score, had higher rates of antibiotic, tube feeding, and H2RA use. They also had longer
duration of antibiotic and tube feeding use than those in the non-diarrhea group.

The VIF for each variable was <2, indicating there was no multicollinearity.

Model selection
Comparison of the model performance is shown in Table 2. Three variables (sex, H2RA use
days, and PPI use days) were not significant between the diarrhea group and non-diarrhea
group within the training dataset, which is similar to the results of the whole dataset shown
in Table 1. Because eliminating some variables improved the performance, these variables
were not used in the following analysis. The optimal hyperparameters were also determined
for each model and used in the following analysis.

The three models achieved almost the same AUC on the 5-fold cross-validation. The
random forest model achieved a higher performance than the other two models. In
addition, visualization of variable importance and partial dependence plots are widely used
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Table 1 Characteristics of the study population.

Variable Diarrhea group
(n= 48)

Non-diarrhea group
(n= 170)

P value

Observational period, median (range), days 13 (4–45) 17.5 (5–59)
Age, mean (SD), years 80.6 (10.0) 75.6 (10.9) .004a

mRS score, mean (SD) 4.25 (0.86) 2.45 (1.50) <.001a

Male sex, n (%) 35 (73) 97 (57) .047b

Antibiotic use, n (%) 25 (52) 19 (11) <.001b

Number of days of use, median (range) 3 (0–18) 0 (0–14) <.001a

Tube feeding use, n (%) 25 (52) 6 (4) <.001b

Number of days of use, median (range) 1 (0–33) 0 (0–42) <.001a

PPI use, n (%) 33 (69) 120 (71) .81b

Number of days of use, median (range) 6 (0–45) 11 (0–59) .09a

H2RA use, n (%) 31 (65) 77 (45) .02b

Number of days of use, median (range) 2 (0–32) 0 (0–32) .36a

Tests for Clostridioides difficile (CD) infection
Examination conducted, n (%) 12 (25)

CD toxin A and B positive, n (%) 0 (0)
GDH antigen positive, n (%) 2 (4)

No examination conducted, n (%) 36 (75)

Not applicable

Notes.
H2RA, histamine 2-receptor antagonist; mRS, modified Rankin Scale; PPI, proton pump inhibitor; GDH, glutamate dehydrogenase.

aStudent’s t test.
bChi-squared test.

Table 2 The performance of the machine learning models.

AUC Variables eliminated Hyperparameters

5-fold cross-validation
Random forest 0.944 PPI, H2RA Number of features: 1

Number of trees: 500
SVM 0.937 H2RA Gamma: 0.0063

Cost: 0.016
RBF network 0.934 Sex Size of hidden layer: 22

Independent test dataset
Random forest 0.832 PPI, H2RA Number of features: 1

Notes.
SVM, Support vector machine; RBF, Radial basis function; AUC, Area under the curve.

in the random forest model (Bair et al., 2013; DuBrava et al., 2017; Kimura et al., 2019;
Halladay, Sillner & Rudolph, 2018), unlike SVM or RBF network. Therefore, among the 3
models, we selected the random forest model for the following analysis.

The random forest model also achieved an AUC of 0.83 in the dependent test dataset,
which was suitable for the following discussion regarding each variable.
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Figure 2 Variable importance according to mean decrease in Gini coefficient. Bar graphs show the
mean decrease in the Gini coefficient of each variable, which is considered as the index of importance.
mRS, modified Rankin Scale.

Full-size DOI: 10.7717/peerj.7969/fig-2

Variable importance
Variable importance according to the mean decrease of Gini coefficient is shown in Fig. 2.
The order of importance was as follows: tube feeding use days, mRS score, antibiotic use
days, age, and sex.

Partial dependence plots
Partial dependence plots of each variable are shown in Fig. 3. The value of the y-axis in
the Figure was calculated using the partial dependence function, which approximately
represented the probability of onset of nosocomial diarrhea.

Tube feeding use had an almost inverse U -shaped association with the outcome; the
use of a feeding tube drastically increased the risk of nosocomial diarrhea in the first few
days, but gradually decreased it thereafter. Overall, patients without use of tube feeding
had a lower risk than those with such use. The mRS score increased the risk of nosocomial
diarrhea with a convex downward and increasing association; especially patients with an
mRS score >3 had a high risk of nosocomial diarrhea. Antibiotic use had convex upward
association; the use of antibiotics rapidly increased the risk in the first few days, and slowly
increased it thereafter. Patients without use of antibiotics had a lower risk than those with
such use. The association between age and nosocomial diarrhea was convex downward and
increasing; especially patients aged >90 years had a high risk of nosocomial diarrhea. Male
sex slightly increased the risk of nosocomial diarrhea.
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Figure 3 Partial dependence plots. (A) Temporal changes in the influence of tube feeding use. (B) The
association between mRS score and influence. (C) Temporal changes in the influence of antibiotics use.
(D) The association between age and influence. (E) The association between sex and influence. mRS,
modified Rankin Scale.

Full-size DOI: 10.7717/peerj.7969/fig-3

DISCUSSION
In our study, the random forest model achieved high performance. The model showed
that tube feeding use days, mRS score, antibiotic use days, age, and sex were important, in
this order. Tube feeding use had an inverse U -shaped association with the outcome. The
mRS score and age showed a convex downward and increasing association. Antibiotic use
showed a convex upward association with the outcome. Male patients had a slightly higher
risk of nosocomial diarrhea.

Tube feeding had the strongest association with the onset of nosocomial diarrhea in the
analysis. This result is consistent with that in previous studies (McFarland, 1995; Thorson,
Bliss & Savik, 2008; Arevalo-Manso et al., 2014). However, the model showed that when
it was used for >4 days, the risk conversely decreased, which could be a new finding.
These results implied that if nosocomial diarrhea occurred with prolonged use of tube
feeding, clinicians should consider a differential diagnosis other than diarrhea owing to
tube feeding.

The mRS score, which was used for disease severity, was the second strongest factor
associated with nosocomial diarrhea. Patients with a low mRS score were often transferred
on foot or with light assistance, whereas those with a high mRS score were often transferred
by a wheelchair or on a stretcher. This might imply that activities of daily living, such
as mode of movement, were associated with the onset of nosocomial diarrhea. Previous
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research revealed that regular exercise prevents episodes of diarrhea (Ma et al., 2014), and
another study revealed that exercise alters the composition and functional capacity of gut
microbiota (Mailing et al., 2019). In addition, the severity of disease was reported to have
an association with nosocomial diarrhea in previous studies (Kyne et al., 2002b; Thorson,
Bliss & Savik, 2008). These results may provide a mechanism for the present findings.

Antibiotic use had an almost convex upward association with the outcome. The use of
antibiotics rapidly increased the risk of nosocomial diarrhea in the first 4 days. After 5 days
of use, its use slowly increased the risk. Although previous studies revealed that antibiotic
use is an important risk factor for nosocomial diarrhea (McFarland, 1995;Arevalo-Manso et
al., 2014; Eze et al., 2017), this convex upward association could be a new finding. A recent
study showed that the diversity of gut microbiome is affected by antibiotic administration
and that the component of gut microbiome changes with time (Bulow et al., 2018). The
former rapid slope and latter gradual slope in the present study might arise owing to the
effect of different microorganisms. Another recent study showed that the median of onset
of CDI was about one week after antibiotic therapy (Thabit, Varugehese & Levine, 2019),
which does not conflict with our result, although our study had a limitation regarding CDI.
Because our study might include a small number of patients with CDI, as discussed below,
these results might apply mainly to antibiotic-associated nosocomial diarrhea other than
CDI. After all, the result of the present study might imply that clinicians should consider
discontinuing antibiotics as soon as possible to prevent nosocomial diarrhea.

The association between age and nosocomial diarrhea was convex downward and
increasing. Especially, age >90 years rapidly increased the risk of nosocomial diarrhea. This
result is consistent with that of a previous study (McFarland, 1995).

Male patients had a slightly higher risk of nosocomial diarrhea than female patients.
However, to our knowledge, there is no rational explanation of this result; it might imply
that the collected data had some bias, and that the sex variable acted like a confounding
factor.

Number of days of PPI and H2RA use were not significantly different between the
diarrhea group and the non-diarrhea group. They were also removed from the analysis
by backward elimination, which implied that these variables were not important for
prediction. Although previous studies showed that PPI and H2RA use were independent
risk factors for nosocomial diarrhea (Eze et al., 2017), their importance was relatively low
in the present study. The insignificance of antacid drugs was also observed in another study
focusing on CDI (Thabit, Varugehese & Levine, 2019). These results might imply that the
effect of acid suppression therapy on risk of nosocomial diarrhea is lower than those of
other risk factors, such as tube feeding, disease severity and antibiotics.

The primary limitation is that the causes of diarrhea were not precisely diagnosed and
not included in the analysis. In particular, the present study included only 2 GDH antigen
positive patients and no patients who were positive for CD toxin. Even considering the low
sensitivity of our diagnosis tool for CDI (Kawada et al., 2011; Kosai et al., 2017; Morinaga
et al., 2018), this rate is lower than that reported in hospitals in the US, where there were
20–30% cases of nosocomial antibiotic-associated diarrhea (McDonald et al., 2018). We
considered that there are two rational explanations for this result. The first is that there
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were many patients with CDI overlooked in the study. A systematic review shows that
prevalence of CDI in Japanese hospitals is lower than that of US and European countries
because of under-diagnosis (Riley & Kimura, 2018). Another study shows that numerous
patients with CDI are being overlooked due to inadequate diagnostic testing in Japan
(Kato et al., 2019). These studies could support the first explanation. Another explanation
is that there was actually a small number of patients with CDI. As reported in a previous
study (Morii et al., 2018), antimicrobial stewardship was widely implemented in Showa
General Hospital from October 2010. Because antimicrobial stewardship greatly reduces
the frequency of CDI (Baur et al., 2017), the number of patients with CDI might actually be
low, as reported in Table 1. However, these hypotheses could not be verified retrospectively,
and we consider this point to be the primary limitation. Other limitations are as follows:
the present study was conducted in a single center, so external validity was not confirmed;
the types and amounts of medications and tube feeding were not considered; and some
risk factors or confounding factors, such as serum albumin level, were not considered in
the analysis.

CONCLUSIONS
We revealed the degree of importance and temporal pattern of the influence of several risk
factors for nosocomial diarrhea, such as tube feeding, mRS score, antibiotic use, and age.
These findings could help clinicians manage nosocomial diarrhea.
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