

Combining data from different sampling methods to study the development of an alien crab *Chionoecetes opilio* invasion in the remote and pristine Arctic Kara Sea

Anna K Zalota $^{\text{Corresp., 1}}$, Olga L Zimina 2 , Vassily A Spiridonov 1

Corresponding Author: Anna K Zalota Email address: azalota@gmail.com

Data obtained using three different sampling gear is compared and combined to assess the size composition and density of a non-indigenous snow crab population *Chionoecetes opilio* in the previously free of alien species Kara Sea benthos. The Sigsbee trawl has small mesh and catches even recently settled crabs. The large bottom trawl is able to catch large crabs, but does not retain younger crabs, due to its large mesh. Video sampling allows observing larger crabs although some smaller crabs can also be spotted. The combined use of such gear could provide full scope data of the existing size groups in a population.

The density of the crabs was calculated from the video footage. The highest figures were in Blagopoluchiya Bay at 0.87 crabs/m², where the settlement seems to reach its first peak of population growth after the introduction. High density in the Kara Gates Strait at 0.55 crabs/m², could be due to the close proximity of the Barents Sea from where the crabs can enter by both larvae dispersal and active adult migration. All size groups have been present in most sampled areas, which suggest successful settlement and growth of crabs over a number of years. Again, this was not the case in Blagopoluchiya Bay with high density of small crabs (<30 mm CW), which confirms its recent population growth. Male to female ratio was strikingly different between the bays of the Novaya Zemlya Archipelago and west of the Yamal Peninsula (0.8 and 3.8 respectively). Seventy five ovigerous females were caught in 2016, which confirms the presence of a reproducing population in the Kara Sea.

The spatial structure of the snow crab population in the Kara Sea is still in the process of formation. The presented data indicates that this process may lead to a complex system, which is based on local recruitment and transport of larvae from the Barents Sea and across the western Kara shelf; formation of nursery grounds; active migration of adults and their concentration in the areas of the shelf with appropriate feeding conditions.

Shirshov Institute of Oceanology, Russian Academy of Sciences (SIO RAS), Moscow, Russia

² Murmansk Marine Biological Institute KSC, Russian Academy of Sciences (MMBI KSC RAS), Murmansk, Russia

1	Combining data from different sampling methods to study the development of an
2	alien crab Chionoecetes opilio invasion in the remote and pristine Arctic Kara Sea
3	
4	Anna Konstantinovna Zalota ¹ , Olga Leonidovna Zimina ² , Vassily Albertovich
5	Spiridonov ¹
6	
7	¹ Shirshov Institute of Oceanology, Russian Academy of Sciences (SIO RAS), Moscow,
8	Russia
9	² Murmansk Marine Biological Institute KSC, Russian Academy of Sciences (MMBI KSC
10	RAS), Murmansk, Russia
11	
12	Corresponding Author:
13	Anna Zalota
14	36 Nakhimovskiy pr., Moscow, 117997, Russia
15	Email address: azalota@gmail.com
16	
17	Abstrac
18	Data obtained using three different sampling gear is compared and combined to assess the
19	size composition and density of a non-indigenous snow crab population Chionoecetes opilio in
20	the previously free of alien species Kara Sea benthos. The Sigsbee trawl has small mesh and
21	catches even recently settled crabs. The large bottom trawl is able to catch large crabs, but does
22	not retain younger crabs, due to its large mesh. Video sampling allows observing larger crabs
23	although some smaller crabs can also be spotted. The combined use of such gear could provide
24	full scope data of the existing size groups in a population.
25	The density of the crabs was calculated from the video footage. The highest figures were
26	in Blagopoluchiya Bay at 0.87 crabs/m ² , where the settlement seems to reach its first peak of
27	population growth after the introduction. High density in the Kara Gates Strait at 0.55 crabs/m²,
28	could be due to the close proximity of the Barents Sea from where the crabs can enter by both
29	larvae dispersal and active adult migration. All size groups have been present in most sampled
30	areas, which suggest successful settlement and growth of crabs over a number of years. Again,
31	this was not the case in Blagopoluchiya Bay with high density of small crabs (<30 mm CW),

PeerJ

32	which confirms its recent population growth. Male to female ratio was strikingly different
33	between the bays of the Novaya Zemlya Archipelago and west of the Yamal Peninsula (0.8 and
34	3.8 respectively). Seventy five ovigerous females were caught in 2016, which confirms the
35	presence of a reproducing population in the Kara Sea.
36	The spatial structure of the snow crab population in the Kara Sea is still in the process of
37	formation. The presented data indicates that this process may lead to a complex system, which is
38	based on local recruitment and transport of larvae from the Barents Sea and across the western
39	Kara shelf; formation of nursery grounds; active migration of adults and their concentration in
40	the areas of the shelf with appropriate feeding conditions.

INTRODUCTION

43	

42

44	The process of a non-indigenous species (NIS) invasion can take a long time (Byers et al.,
45	2015) and often remains incompletely observed. An ongoing invasion of a large predatory snow
46	crab, Chionoecetes opilio, into the previously pristine Kara Sea benthic environment is an
47	exceptional opportunity for researchers as a rapid and observable from its starting point process
48	(Zalota et al., 2018). Due to the changing climate, and the current reduction of sea ice cover in
49	the Arctic, it is widely expected that the shipping and other human activity will greatly increase
50	(Ho, 2010; Liua and Kronbak, 2010). Such productive and important for fishery seas as the
51	Bering and the Barents Seas are well studied and have ongoing large scientific projects to study
52	their populations of snow crabs, such as joint Russian-Norwegian studies of the Barents Sea
53	(Pavlov & Sundet, 2011; Hammer & Hoel, 2012; Jørgensen et al., 2015; Sokolov et al., 2016).
54	This is not the case for the Siberian seas that have lower productivity, and until recently had very
55	short ice-free seasons (Zenkevich, 1963; Vinogradov et al., 2000; AARI, 2009; Demidov &
56	Mosharov, 2015). Biological research in the Kara Sea benthos is mostly conducted by occasional
57	expeditions of the Shirshov Institute of Oceanology, Russian Academy of Sciences (SIO),
58	Murmansk Marine Biological Institute, Russian Academy of Sciences (MMBI) and the
59	Knipovich Polar Institute of Fishery and Oceanography (PINRO) (Jørgensen et al., 1999;
60	Sokolov et al., 2016). The intensity and area of sampling effort varies, and so does the sampling
61	gear employed. Therefore, it is important to compare and understand the differences in the
62	results obtained by different gear to be able to gather informative data on the new snow crab
63	population.
64	The snow crab, Chionoecetes opilio (Decapoda: Oregonidae) has invaded vast areas of
65	the Barents and Kara seas with an unprecedented speed for a shelf species (Pavlov, 2006; Pavlov
66	& Sundet, 2011; Zimina, 2014; Bakanev, 2015; Sokolov et al., 2016; Spiridonov & Zalota, 2017;
67	Zalota et al., 2018). The native range of this species covers the North-Western Atlantic
68	(Newfoundland and Labrador waters, south-west Greenland shelf to southern Baffin Bay)
69	(Squires, 1990); the North Pacific northwards of the Aleutian Islands and the Sea of Japan
70	(Slizkin, 1982), and the Chukchi Sea westward to the boundary with the East Siberian Sea and
71	eastward to the Beaufort Sea (Slizkin et al., 2007; Sirenko & Vassilenko, 2008). There is only one
72	record of snow crabs on the border between the East Siberian and the Laptev Seas, off the New

PeerJ

73 Siberian Islands (Sokolov et al., 2009). Ch. opilio is an active benthic predator consuming a 74 broad range of invertebrates, and even fish (*Tarverdieva*, 1981; *Chuchukalo et al.*, 2011; 75 Lovvorn, 2010; Kolts et al., 2013; Zalota, 2017; Zakharov et al., 2018). 76 The first record of snow crab in the Barents Sea was in 1996 (*Kuzmin et al.*, 1998). It is possible that the introduction took place between the mid-1980s and 1993 (Alvsvåg et al., 2009; 77 78 Strelkova, 2016). By the mid-2010s the snow crabs occupied the entire central, eastern, and most 79 of the northern part of the Barents Sea. Uncontrolled snow crab fishery commenced in 2013 in 80 the international fishery enclave between the EEZs of Russia and Norway and in the Spitsbergen 81 fishery protection zone (Bakanev et al., 2017; Sundet & Bakanev, 2014). A regulated snow crab 82 fishery in Russia's EEZ of the Barents Sea began in 2016 (Bakanev et al., 2016). 83 The snow crab population grew in the Barents Sea and expanded towards the Kara Sea. 84 The first crabs were found on the boundary of the two seas in 2008 (Strelkova, 2016), then in the 85 north-west of the Kara Sea in 2010 and 2011 (Strelkova, 2016; Zalota et al., 2018). Both adults 86 and larvae were caught in the south-western Kara Sea in 2012 (Zimina, 2014). In less than five 87 years after the initial records, Ch. opilio was observed over the entire western Kara Sea shelf 88 (Zalota et al., 2018). A high abundance of adult snow crabs was recorded in 2013 in the south-89 western Kara Sea, between the Yamal Peninsula and the Kara Gate Strait, which is the entrance 90 from the Barents Sea (Strelkova, 2016). In 2014, several size groups of juveniles were present 91 throughout the western shelf and the fjords of the eastern Novaya Zemlya Archipelago, with the 92 most numerous groups presumably originating from larval settling in 2013 (Zalota et al., 2018). 93 It is still uncertain if the Kara snow crab population is fully established and independent of the 94 import of larvae and adult migration from the Barents Sea, and how far it can expand eastwards. 95 The oceanographic conditions of the Kara Sea are very different from the Barents Sea. 96 The western Kara Sea is strongly influenced by the water exchange with the Barents Sea and by 97 the advection of fresh water from large Siberian rivers' runoff (*Pavlov & Pfirman*, 1995; 98 Zatsepin et al., 2010a; Zatsepin et al., 2010b; Zatsepin et al., 2015; Polukhin & Zagretdinova, 2016). The Kara Sea is covered with ice for most of the year, with extensive fast ice massifs and 99 100 regular polynya formations (Gavrilo & Popov, 2011; Polukhin & Zagretdinova, 2016). 101 Beginning from the mid-2000s, the Kara Sea follows a general Arctic trend of delaying sea ice 102 formation in autumn and earlier decay in spring/early summer (Ashik et al., 2014). This

103 coincided with the commencement of *Ch. opilio* invasion from the Barents Sea (*Zalota et al.*, 104 2018). 105 In comparison to the Barents Sea, the Kara Sea has a much lower primary productivity 106 (Vinogradov et al., 2000; Romankevich & Vetrov, 2001; Demidov & Mosharov, 2015; Demidov 107 et al., 2015) and benthic biomass (Zenkevich, 1963; Denisenko et al., 2003; Kulakov et al., 2004; Udalov et al., 2016; Chava et al., 2017). Its ecosystem is noticeably affected by climate change 108 109 and the lengthening of ice-free season (Ashik et al., 2014). Persistent accumulation of organic 110 pollution (AMAP Assessment, 2015) and a massive offshore and coastal oil and gas development, 111 and shipping (Amiragyan, 2017) will influence the Kara Sea in the nearest future. The 112 establishment of a breeding snow crab population, even if itremains dependent on the Barents 113 Sea stock, may have additional large scale impact on the distinct Kara Sea ecosystem. On the 114 other hand, the snow crabs could potentially grow to the commercial size and become a target for 115 a regulated offshore fishery, which has never existed in the Kara Sea before. It is therefore 116 critical to study the development of the snow crab population in the Kara Sea to forecast the 117 future of the Siberian Shelf ecosystems, and the options for resource management and 118 biodiversity conservation. 119 The Barents Sea snow crab population is spatially and temporally monitored in a 120 standardized way (*Jørgensen et al.*, 2015; Strelkova, 2016). Due to its limited fishery resources, 121 the Kara Sea is less visited and surveyed using standard fishery trawls, which makes it very 122 difficult to obtain a representative samples of adult snow crabs and to monitor their abundance 123 (Zimina et al., 2015; Sokolov et al., 2016). Since 2007, smaller scientific gear, such as Sigsbee 124 trawls, has been used in regular expeditions of the SIO to the Kara Sea. It provides a good representation of juvenile groups, but most likely underestimates large crabs (Zalota et al., 125 126 2018). Therefore, to study the population of snow crabs in the Kara and potentially in other 127 Siberian seas in the long term, we need to learn how to combine the data supplied by different 128 gear to draw meaningful conclusions and obtain data any time there is an opportunity 129 In the summer season of 2016 we employed three methods to study snow crab size 130 composition and abundance: Sigsbee trawl, video transects; and a large Campelen-type bottom 131 trawl. The video survey is—a non-destructive for seabed, less costly and less labor intensive method of rapid assessment of the density and size structure of crabs' settlements. However, the 132

video data lacks important information, such as differences in size composition related to sex ratio. Therefore, it is important to identify the information that can be safely combined.

The purpose of the present paper is to compare and understand the differences in the results obtained by different gear to study an ongoing invasion of an alien crab in the remote Kara Sea. The data from three types of sampling gear is analyzed to obtain the size and sex composition, and the density of snow crab settlements in the Kara Sea in 2016. By identifying specifics and merging the results obtained by these different gear we aim to assess the progress of the *Ch. opilio* invasion in the Kara Sea, and to compare it with earlier stages (2008 – 2014) described by *Zimina* (2014), *Strelkova* (2016) and *Zalota et al.* (2018).

MATERIAL AND METHODS

The crabs *Chionoecetes opilio* were studied using three sampling methods, during the cruises of the Research Vessel *Dalniye Zelentsy* (MMBI) and the RV *Akademik Mstislav Keldysh* (SIO), in August-September 2016. MMBI samples were collected using a Campelen-type bottom trawl with a 20 m horizontal by an 8-10 m vertical opening, equipped with a double net; the outer net with 135 mm mesh and lower insertion of the net with 12 mm mesh. The SIO samples were collected using a Sigsbee trawl with a steel frame of 2 m breadth and 35 cm height. The trawl was equipped with a double net; the outer net had 45 mm mesh and inner net had 4 mm mesh.

A video transect was filmed by the SIO team of engineering and technical research in combination with four trawlings (Fig. 1). This was done using an uninhabited, towed, submerged, inert vehicle (UTSI) *Video Module* (*Pronin*, 2017), equipped with a control and data transmission system through which information is received and control commands are transferred via an optical cable in real time. UTSI *Video Module* has a navigation system, power supply, three video cameras (one of them is of high resolution, set up to carry out planimetric surveys), six floodlight projectors and two laser scale indicators, with a known distance between them (60 cm). The use of UTSI *Video Module* allowed us to obtain geo-referenced (including depth), spatially oriented and scaled images of the bottom with organisms.

The team on the RV *Dalniye Zelentsy* collected crabs from 53 stations (further referred to as MMBI samples) on the west side of the Yamal Peninsula in the Kara Sea (Fig. 1, circles.). The RV *Akademik Mstislav Keldysh* collected trawl samples (further referred as SIO samples) in the

164 vicinity of four Novaya Zemlya Archipelago bays and two in the area of the Kara Gates Strait (Fig. 1, diamonds). The video transects (further referred as video samples) were done prior to 165 166 trawling at four of these stations (Fig. 1, stars in the diamonds), and in the vicinity of Tsivolka Bay without a trawling sample (Fig. 1, black star). The trawling stations of SIO closely followed 167 the rout of the video transects and can therefore be directly compared. Both, video and trawling 168 169 sampling was done in the vicinity of Blagopoluchiya, Haug, and Abrosimov bays, as well as in 170 the southern region of the Kara Gates Strait (further referred to as Gates 2) (Fig. 1). 171 All crabs caught in trawls were sexed, based on visual characteristics, and measured (carapace width, CW) using a calliper to the nearest millimeter onboard the vessels. In this 172 173 studycrabs with CW less than 11 mm, whose sex cannot be easily identified by visual inspection, 174 are referred to as the "juveniles". The videos were viewed using the Media Player Classic -175 Home Cinema program in full screen mode. Manually, by screenshots, the videos were divided 176 into still frames according to the changes in the bottom features to account for varying speed of 177 towing, changing depth, and magnification. The height and width of the frame, the distance 178 between two laser points and the carapace width (CW) of crabs present on the image were 179 measured using a ruler. All frame measurements were converted to the actual dimensions 180 considering that the distance between the laser points on the bottom was 60 cm. 181 No native crabs, *Hyas araneus*, were spotted in these videos. However, in the videos 182 taken in other years (not discussed in this work) the native crabs could be successfully 183 differentiated from the snow crabs opilio in the vicinity of the Kara Gate Strait. Each video frame was visually inspected by one person (A. Zalota). This was done to minimize the errors 184 185 related to different interpretations by various observers, which are unavoidable in such a 186 subjective analysis. The frames where the viewer could not identify organisms easily were not 187 used. This happened when the video module was raised too high over the sea floor (due to 188 waves), but subject to visibility. Not all measured crabs were used in the density calculations, 189 since some frames had to be cut around the edges to standardize the method of area calculations 190 (in cases where the camera zoomed out and a circular lens was visible on the frame). 191 Most of statistical calculations and analyses were performed using RStudio (RStudio 192 Team, 2016; R Core Team, 2018). Size structure of collected crabs was analyzed using mixture 193 model analysis in PAST software (*Hammer*, 2013). The best fit models were selected using the 194 Akaike (Akaike, 1974) and log likelihood criteria. To analyze possible trends of crabs' size

distribution in space, we looked at the correlation between the depth of sampling stations and different statistical parameters of the CW. Correlations were calculated using Microsoft Excel package.

RESULTS

Overall, the data was collected from 64 sample stations. MMBI trawled at 53 stations and caught 662 crabs; SIO caught 857 from 6 trawling stations and 884 crabs were caught on camera at the 5 stations where *Video Module* was employed (Fig.1). In total 2402 crabs were measured, which includes 1520 crabs caught in trawls.

Size composition revealed by different sampling methods

Different methods of collection yielded diverse size distribution of crabs. Although the size composition of adult male and female snow crabs usually differs, we discuss their aggregate composition in order to compare the data from trawling with the video data, for which no sex differentiation is possible. The carapace width (CW) of crabs caught during SIO trawling ranged from 4 to 117 mm (Fig. 2 A). Mixture analysis of CWs identified 9 distinct size groups from the bulk of SIO crabs (7 groups from the analysis and 2 were added manually to decrease noise during the analysis) (Table 1). The majority of crabs were of small size, with CW mode at 14 mm (while the mean was 16 mm) and another abundant group at CW 10 mm.

The mixture analysis of crabs caught by MMBI trawling resulted in only 5 size groups (1 of which was added manually) (Table 1). Overall, crabs caught by this method were of larger size, with the minimum carapace width of 22 mm and the maximum of 120 mm. A large portion of crabs was within the 52 mm size group (mean was 57 mm) (Fig. 2 B). The analysis merged smaller crabs into one group with large standard deviation (36±7 mm). However, the mixture analysis identified more distinct large size groups (over 52 mm) in MMBI samples, than from SIO trawling and video sampling.

The smallest crab identified on the video had 7 mm CW and the largest 127 mm. Mixture analysis yielded 4 size groups for this method (Table 1). Most frequently crabs were within two broad size groups with CW 15±3 mm and 46±11 mm (Fig. 2 C). The mode CW was 15 mm, however for this method the mean CW differed at 32 mm.

225	The boxes in Figure 2 (interquartile range containing 50 % of the data) of Blagopoluchiya
226	Bay are very similar for both methods, and include CW below 20 mm. The mode, median and
227	means for the trawling and video samplings in Blagopoluchiya Bay are also very similar (Table
228	2). However, the maximum size observed in video (50 mm) was larger than in the Sigsbee
229	trawling sample (38 mm), while the minimum was very similar (7 and 8 mm respectively). Both
230	methods yielded large number of crabs: 735 by trawling and 388 caught on video. The SIO
231	trawling sample revealed more distinct and sharp size groups than the video sample (Fig. 3).
232	However, the mixture analysis identified only one additional size group in the SIO trawling
233	sample (Table 1).
234	The two methods had similar results for the south of the Kara Gates Strait (Gates 2, Fig.
235	4; Table 2). The central 50% of crabs had CW between 43 and 57 mm. Trawl sampling collected
236	20 crabs, and we observed 186 crabs on the video. While the minimum CW of crabs from
237	trawling and video were very similar, 27 and 22 mm respectively, the video detected much larger
238	crabs (127 mm) than the trawling (71 mm). However, we caught large crabs (up to 117 mm)
239	while trawling in the nearby location (Gates 1, 2, Figs. 1, 4, Table 2).
240	We detected a very low number of crabs in Haug Bay using both methods (4 and 7
241	respectively). However, their sizes were very different. In trawl sample all crabs were 15-16 mm;
242	in the video sample the sizes ranged from 27 to 50 mm, while the majority was within 42-47
243	mm.
244	The most distinct difference was observed in Abrosimov Bay (Fig. 4 A, B, Table 2). A
245	large proportion of the trawl catch were small crabs (minimum and mode at 4 mm CW), and the
246	central half of crabs were between 4 and 32 mm. On the video we could observe only larger
247	crabs (minimum 9 mm), and the central half of the crabs were much larger, between 34 and 48
248	mm. The largest crabs in both methods were very similar (50 mm trawling, 58 video). We
249	measured twice as many crabs (88) on the video than in the trawling sample (43).
250	Sedov and Tsivolka Bays were sampled using different methods and cannot be compared
251	directly. Trawling sample in Sedov Bay brought 28 crabs with 45 mm maximum and 10 mm
252	minimum CW. On the Tsivolka Bay video we identified 215 crabs from 9 to 58 mm CW.
253	At the 53 MMBI trawling stations the minimum CW ranged from 22 to 72, and the
254	maximum from 39 to 120. The modes and means ranged from 32 to 94 and 34 to 75 respectively.
255	Most often, the minimum CW was 47 mm, maximum was 57 mm; mode and mean were 52 mm.

Two to sixty one crabs were caught at the MMBI sampling stations, most commonly 3 crabs per station, but 12 crabs on average.

At the 53 MMBI trawling stations, the maximum, mode and mean CW sizes only weakly correlated with the depth (Table 3). In both SIO trawling and video samples the maximum CW sizes had strong correlation with the depth, although the sample size was very small.

When we mapped the maximum CW size for each station, we observed a trend in the MMBI samples, where larger crabs tend to be found in the south and northwards along the Yamal Peninsula. Towards the center of the western Kara Sea the maximum CW of the crabs decreases (Fig. 5). Similar mapping of ovigerous female findings did not show any observable trends.

Sex ratio and sex related differences in size composition

Trawling allowed identifying and comparing crabs of different sexes. The male to female ratios were strikingly different between SIO (bays of the Novaya Zemlya Archipelago) and MMBI (west of the Yamal Peninsula) (Fig. 1): 0.8 and 3.8 respectively. There were only 8 ovigerous and 366 non ovigerous females in the SIO samples (ratio 0.02), while there were 72 ovigerous and only 67 non ovigerous females in the MMBI samples (ratio 1.07).

The central half of the CW size distribution of crabs differed between samples for all sexes, except for ovigerous females (Fig. 6). Ovigerous females were within a narrow size range of 44 and 58 mm in the SIO samples, and between 42 and 72 in the MMBI samples (Table 4). The non ovigerous females from SIO trawling samples ranged from 11 to 47 mm. The MMBI non ovigerous females were larger and ranged from 22 to 63 mm. Overall, male sizes also differed between these two sampling methods and area of collection. The CW of 293 crabs caught by SIO Sigsbee trawl ranged from 11 to 117 mm, and of the 523 crabs caught by MMBI large trawl ranged from 23 to 120 mm. Small mesh in the Sigsbee trawl allowed us to collect 190 juvenile crabs (less than 11 mm).

Abundance estimation

Population density of crabs was calculated from the video transects (Table 5). Overall 3132 frames were analyzed, resulting in 3776 m² of bottom inspected. The maximum density was observed near the Kara Gate Strait and in Blagopoluchiya Bay (0.87 and 0.55 crabs/m²

respectively). In the other bays (located between the Kara Gate Strait and Blagopoluchiya Bay) the population density of crabs was several times or an order of magnitude lower, reaching the minimum value of 0.01 crabs/m² in Haug Bay (Table 5).

DISCUSSION

Advantages and disadvantages of the applied methods to study the snow crab population in the Kara Sea

The three methods discussed here revealed different aspects of the *Chionoecetes opilio* population size structure in the Kara Sea. The Sigsbee trawl used by SIO has small mesh and catches crabs as small as 4 mm CW, which is the size of recently settled crabs (*Conan et al.*, 1996). However, it also has a small opening, and some large and agile crabs can escape. The video recording of the same area shows that large crabs are present, although not always caught. The large bottom trawl is able to catch large crabs (22-120 mm CW), but does not retain younger crabs, due to its large mesh. We do however know that at least at some of the MMBI stations juvenile crabs were present. In some cases a similar to the SIO Sigsbee trawl was used, but the data was not dully recorded, and is thus omitted from the results. The combined use of this trawling gear could provide the full picture of the existing size groups in a population.

It is easy to observe larger crabs on the video, although some smaller crabs can also be spotted (up to 7 mm CW) (Fig 7 A). The *Video Module* floats over the bottom with very little impact. Due to the muddy sediments in the studied area, every sudden movement of large agile organisms (crabs, fish) creates a cloud and can easily be spotted on the video. In all of the recorded footage, there were very few cases of such clouds: in most of them it was a fish, and sometimes crabs would run forward, and stop, therefore still recorded by us (Fig 7 C). It is safe to say that larger crabs (CW 30 mm and above) are quantitatively recorded on the video. However, crabs smaller than approximately 30 mm are probably substantially underestimated. Snow crabs are known to borrow in the sediments, especially in younger stages (*Conan et al.*, 1996; *Dionne et al.*, 2003). In some cases with good visibility, an outline of submerged crabs could be seen on the surface of the muddy sediments (Fig 7 B). Although, it is possible that a

PeerJ

317 few crabs were not counted due to low visibility and deep burrowing. Therefore, the crab densities calculated from the video footage can be largely underestimated. 318 319 The highest density of crabs recorded in 2016 was in Blagopoluchiya Bay (0.87 320 crabs/m²). The crabs were small in both the Sigsbee trawl and on the video (majority of crabs 321 with CW below 20 mm). Even though the mixture analysis identified two distinct small sized 322 groups (8-9 mm and 14-15 mm) for both sampling methods, the trawling sample had much 323 sharper differences between the groups, and the larger groups were much more distinct (Fig. 3 A,B, Table 1). Such differences could be due to possible errors in size measurements of filmed 324 325 crabs. In the video samples, the CW was measured by a ruler, which has lower precision. In 326 addition, the measurements were recalculated based on the distance between the two laser points that were also measured by a ruler. The crabs were not always in absolutely plain position 327 328 towards the camera, and the visibility often did not permit to see the edges of carapace clearly. 329 Therefore, there could be some additional noise in CW measurements from the video footage in 330 comparison to the direct measurements by calipers of live organisms. 331 However, the most important error in the identification of size groups using video 332 samples was due to sexual dimorphism. The size groups (instars) of *Ch. opilio* are extensively 333 described in the literature and the young crabs (pre puberty molting <20-30 mm) seem to have 334 similar size groups across their range of habitat (Ito, 1970; Ogata, 1973; Kon, 1980; Sainte-335 Marie et al., 1995; Ernst et al., 2012). These instars are in accordance with those observed for 336 young crabs in the Kara Sea in 2014 (Zalota et al., 2018) and in 2016 (present study, Table 1). 337 After puberty molting (which was shown to be at 37-40 mm for males and 17 mm for females, in 338 the Gulf of St. Lawrence) crabs' growth rate and possible skipping of molts in females is 339 strongly affected by temperature (Sainte-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 340 1998; Dawe et al., 2012), which is less than 0 and -1°C in most areas of the Kara shelf (Polukhin 341 & Zagretdinova, 2016; see also Zalota et al., 2018). Further growth and survival success of larger crabs may also be affected by low food availability for benthic predators in the Kara Sea 342 (Zenkevich, 1963; Kulakov et al., 2004). As they age further, they molt approximately once a 343 344 year, or even rarer until they reach their terminal molt (males at CW (postmoult) as small as 40 345 mm up to 150 mm; females 30-95 mm) (Ito, 1970; Robichaud et al., 1989; Comeau et al., 1998; Sainte-Marie & Hazel, 1992; Sainte-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998). 346

Taking into account these errors, caused by aggregating males and females in video samples, it is not surprising that crabs larger than 20 mm blur into one large size group in the video data, while crabs caught by the large MMBI trawl and measured more accurately can be separated into at least 4 size groups (Table 1, Fig. 2 B, C). Even finer size structure in the MMBI samples can be seen if crabs over 20 mm are separated according to sex (Table 1). Males have 7 distinct size groups over 20 mm CW, whereas, females' groups are more blurred. This can be due to the differences in molting and growth rates. Since video data cannot provide information on sexual dimorphism, the work done to study exact differences in the size structure of immature and mature crabs in the Kara Sea is not presented in this paper. Nevertheless, the obtained data still permits to identify general size groups and to approximate their relative quantities.

Development of snow crabs' invasion and its possible role in Blagopoluchiya Bay

Blagopoluchiya Bay appears to have very different size structure of the snow carb population compared to all other sampled areas. Most of the crabs, both caught in the trawl and in the video footage, were less than 20 mm, and form 2 high frequency groups at around 10 and 15 mm CW (Figs. 3 A,B, 4; Table 1). These size groups correspond to the age of less than 2 years. In the Gulf of St. Lawrence it takes 16 to17 months for crabs to achieve CW 10 mm, and another 16 months to achieve size 20 mm through multiple molting events (*Ogata*, 1973; *Sainte-Marie et al.*, 1995). Therefore, the majority of these crabs could not have settled much earlier than 2014. That year we caught crabs no bigger than 5 mm in the vicinity of that bay (station 51 in *Zalota et al.*, 2018). Indeed, that was the first year when the crabs have been observed across the entire western Kara Sea and in most cases they were young, with high abundance of just settled crabs (*Zalota et al.*, 2018).

There were a few larger crabs in Blagopoluchiya Bay that were caught on camera. Their sizes are not big enough to assume that they actively migrated from other areas. This suggests that there were earlier successful settlings of crabs, but the proportion of larger crabs is almost negligible (Fig. 3 A, B). The density of the young crabs in the bay is very high (0.87 crabs per m²) and in some cases we observed up to 8 crabs in one video frame (approximately 0.5 m²). Such high densities suggest that a recent combination of favorable oceanographic and sea ice

conditions in this area facilitated a massive settling and survival of snow crabs. The larvae that settled in Blagopoluchiya Bay were likely transported by the Eastern Novaya Zemlya current.

This current originates from the Barents Sea water, entering the Kara Sea off the northern coast of the Novaya Zemlya and is directed to the south-west along the eastern coast of this archipelago (*Pavlov & Pfirman*, 1995). Previously, the bays of the Novaya Zemlya, especially in the north, such as Blagopoluchiya Bay, have been blocked by ice longer than most of the western Kara Sea (*AARI*, 2007-2014). Although, a narrow Northern Novaya Zemlya Polynya occurred from time to time (*Gavrilo & Popov*, 2011). Since 2011, changing sea conditions of the 2000 – 2010s manifested in an abrupt sea ice decrease in June (*NOAA*, *Snow and Ice*, 1979-2018). Although, there was more ice in the spring of 2014 (in comparison to 2011), the sea ice cover along the Novaya Zemlya Archipelago, was the first to retreat and an extensive polynya was formed (*AARI*, 2007-2014). Early sea ice decay could have facilitated seasonal development of phyto- and zooplankton, and hence favorable conditions for feeding and successful settling of crab larvae.

When the first snow crabs were settling, they experienced small predator pressure in the Kara Sea benthos. Adult snow crabs that are highly cannibalistic were not yet present, and the native crab species, *Hyas araneus*, are very rare in that area (*Anisimova et al.*, 2007; authors' observations). In addition, predatory demersal fishes have substantially lower diversity and abundance in the Kara than in the Barents Sea (*Dolgov at al.*, 2009, 2014; *Dolgov & Benzik*, 2016).

Initially snow crabs could have settled in the southern bays and in the central western part of the Kara Sea (in addition to larvae transportation adults could have reached it by active migration) before they reached the northern bays of the Novaya Zemlya Archipelago. Hence, we can observe such difference in the population size structure of Blagopoluchiya Bay (narrow range of size groups) in comparison to the southern areas (all size groups are present).

Indication of formation of spatial population structure

Overall, there seems to be a pattern in the snow crabs' size distribution across the western Kara Sea. In the southern Kara Sea these patterns are not related to depth since there is no strong correlation between the CW and the depth across all MMBI stations (large bottom trawl). These

408 stations are positioned on a broad, slightly sloping shallow shelf (46 to 195 m). However there is 409 a visually observable trend of maximum sizes prevailing in the Kara Gates Strait and northwards 410 along the Yamal Peninsula (Fig. 5). This closely resembles prevailing current path of the Barents Sea waters, known as the Yamal Current (Pavlov & Pfirman, 1995; Zatsepin et al., 2010a). The 411 area along the Yamal Peninsula and the Novaya Zemlya Archipelago has higher benthic biomass 412 413 rates than in the center of the western Kara Sea (Antipova & Semenov, 1989; Denisenko et al., 414 2003; Kulakov et al., 2004; Kozlovskiy et al., 2011). The decrease of the maximum CW from the Yamal Peninsula towards the center of the western Kara Sea could be due to lower food 415 416 availability further away from the Barents Sea influence, and thus the crabs have insufficient 417 nutrition to achieve larger sizes. However, this hypothesis needs further confirmation. There could also be behavioral separation, where smaller sized crabs are forced to move 418 419 to a territory with less food to escape cannibalism, which is very common among this species 420 (Conan et al., 1996; Comeau et al., 1998). No such trends can be observed along the Novaya 421 Zemlya Archipelago, probably due to low sampling effort. There are reports of difference in the 422 habitat preferences of different sized snow crabs in their native habitat areas (Comeau et al., 423 1998; Ernst et al., 2012). The bays of the Novaya Zemlya have the potential to act as a nursery 424 for smaller, more vulnerable specimens, as it has been observed in the Gulf of St. Laurence 425 (Comeau et al., 1998). Whether this separation exists or will ever exist in the Kara Sea is hard to 426 say at this point. However, the vicinity of deep trough along the Novaya Zemlya Archipelago 427 could attract larger crabs and lead to size related migration out of the bays. 428 The recruitment of crabs at the early stages of population establishing in the Kara Sea 429 might be mostly due to the inflow of the larvae from the Barents Sea (Zalota et al., 2018). Here we present findings of substantial number of ovigerous females, most of which have been found 430 431 along the Yamal Peninsula (with no apparent spatial or depth distribution patterns), and none in 432 the bays. It is hard to say whether this was due to sampling gear limitation to catch representative 433 sample of larger crabs or a reflection of the real picture. All ovigerous females had CW larger than 40 mm (Fig. 6). This corresponds to the size of female's terminal (sexual maturity) molt 434 435 reported in the literature (starting from 35 mm) (Sainte-Marie et al., 1995; Alunno-Bruscia & 436 Sainte-Marie, 1998). Crabs of these sizes had a low catchment rate in the SIO trawling samples along the Novaya Zemlya Archipelago. In most cases the video samples suggest that crabs with 437 438 CW larger than 40 mm prevail in the vicinity of most sampled bays (Fig. 4). Therefore, it is

likely that reproducing crabs are present in most sampled areas. It is safe to say, that at present the snow crab opilio has a reproducing population in the Kara Sea.

The spatial structure of the snow crab population in the Kara Sea is still in process of formation. The data of 2016 indicate that this process may lead to a quite complex system, which is based on local recruitment, transport of larvae from the Barents Sea and across the western Kara shelf, formation of nursery grounds, and an active migration of adults and their concentration in particular shelf areas with appropriate feeding conditions. This system on the other hand can't be static as it is influenced by changing advection of the Barents Sea water and its interaction with the water of river discharge origin (*Zatsepin et al.*, 2010b), sea ice regime, trophic conditions and predation pressure on juvenile crabs.

CONCLUSION

The present study compares and combines the results obtained using three different sampling gear to assess the size composition and density of the snow crab population. Smaller Sigsbee trawl allows catching of small crabs, even those that are just settled. A large commercial type trawl catches large agile crabs and results in a larger number of ovigerous females. Video transects probably underestimates smaller crabs, but gives a rapid and accurate estimate of larger crabs' densities. This method is helpful to monitor the spatial progress of the crabs' invasion and the appearance of commercial sized crabs. Trawling is necessary to study reproductive biology of crabs in new conditions and to carefully identify size structure of the population. The data of 2016 has finally proven that the Kara Sea snow crab opilio population is reproducing, although presumably still strongly influenced by the larval transport from the Barents Sea. We observed initial nursery areas in the bays of the eastern coast of the Novaya Zemlya Archipelago. A number of commercial sized crabs can be observed near the Kara Gate Strait and along the western coast of the Yamal Peninsula with higher food availability than the rest of the Kara Sea.

ACKNOWLEDGEMENTS

We would like to thank the Captains, the crews and the science teams and their leaders that participated during the RV *Akademik Mstislav Keldysh* SIO and RV *Dalniye Zelentsy* MMBI

ł/U	cruises to the Kara Sea in 2016. We are particularly graterul to the team of engineering and
171	technical research of SIO for creating and using an uninhabited, towed, submerged, inert vehicle
172	(UTSI) Video Module to film the footage during the SIO expedition.
173	
174	REFERENCES
175	AARI, 2007-2014, General maps of sea ice cover. St. Petersburg: Arctic and Antarctic Research
176	Institute (AARI),
177	http://www.aari.ru/odata/_d0004.php?m=Kar⟨=0&mod=0&yy=2014 (Accessed
178	25.11.2018).
179	AARI, 2009, Winter Kara Sea Atlas,
180	http://www.aari.ru/resources/a0013_17/kara/Atlas_Kara_Sea_Winter/text/rejim.htm
181	(Accessed 25.11.2018).
182	Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on
183	Automatic Control 19:716-723.
184	Alunno-Bruscia, M., Sainte-Marie, B. 1998. Abdomen allometry, ovary development, and
185	growth of female snow crab, Chionoecetes opilio (Brachyura, Majidae), in the
186	northwestern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences.
187	55(2): 459-477.
188	Alvsvåg, J., Agnalt, A. & Jørstad, K. 2009. Evidence for a permanent establishment of the snow
189	crab (Chionoecetes opilio) in the Barents Sea. Biological Invasions, 11: 587-595.
190	AMAP Assessment. 2015. Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic
191	Monitoring and Assessment Programme (AMAP), Oslo, Norway. vi+71pp
192	Amiragyan, A. 2017. Development of oil and gas resources of the Russian Arctic shelf: problems
193	and prospects. Business journal Neftegaz Ru. 8:16-22. (In Russian)
194	Anisimova, N.A., Ljubin, P.A., Menis, D.T. 2007. Benthos. In: PrischepaB.F. (ed) Ecosystem of
195	the Kara Sea. PINRO publishing, Murmansk: 43–105 (in Russian).
196	Antipova, T.V., Semenov, V.N. 1989. Composition and distribution of benthos in the
197	southwestern regions of typical sea waters of the Kara Sea. Ecology and Bioresources of
198	the Kara Sea. Apatity: Publishing house KSC RAS: 127-137. (In Russian).
199	Ashik, I.M., Karklin, V.P., Kirillov, S.A., Radionov, V.F., Timokhov, L.A. 2014. Impact of
500	climate change on marine natural systems. Arctic Seas of Russia. In The second

501	assessment report on climatic changes and their consequences in the territory of Russian
502	Federation. Moscow, State Hydrometeorological Service: 578–615.
503	http://voeikovmgo.ru/index.php?option=com_content&view=article&id=649&Itemid=24
504	⟨=ru (Access 01.12.2018) (In Russian).
505	Byers, J.E., Smith R.S., Pringle, J.M., Clark, G.F., Gribben, P.E., Hewitt, C.L., Inglis, G.J.,
506	Johnston, E.L., Ruiz, G.M., Stachowicz, J., Bishop, M.J. 2015. Invasion Expansion: Time
507	since Introduction Best Predicts Global Ranges of Marine Invaders. Scientific Reports, 5:
508	12436. https://doi.org/10.1038/srep12436
509	Bakanev, S.V. 2015. Dispersion and assessment of possible distribution of snow crab opilio
510	(Chionoecetes opilio) in the Barents Sea. Principles of Ecology, 3:27-29. (In Russian)
511	Bakanev, SV, Dvoretsky, A., Pavlov, V.A., Pinchukov, M., Zacharov, D., Zolotarev, P. 2016
512	Commercial shellfsh: status of commercial stocks. In: Joint Norwegian—Russian
513	environmental status 2013. Report on the Barents Sea Ecosystem. Part II—Complete
514	report. Ed. by M.M. McBride, J.R. Hansen, O. Korneev, O. Titov. Co-ed. by J.E.
515	Stiansen, J. Tchernova, A. Filin, A. Ovsyannikov. IMR/PINRO Joint Report Series,
516	1:224–241.
517	Bakanev, S.V., Pavlov, V.A., Goryanina, S.V. 2017. Material justifying correction of the total
518	allowable catch of the snow crab in the EEZ of Russia in the Barents Sea in 2017. NM
519	Knipovich Polar Institute of Fishery and Oceanography, Murmansk
520	www.pinro.ru/15/images/stories/news/cor-odu-opilio2017.docx. (Access 20.05.2017) (In
521	Russian)
522	Comeau, M., Conan, G., Maynou, F., Robichaud, G., Therriault, J., Starr, M. 1998. Growth,
523	spatial distribution, and abundance of benthic stages of the snow crab (Chionoecetes
524	opilio) in Bonne Bay, Newfoundland, Canada. Canadian Journal of Fisheries and Aquatic
525	Sciences, 55:262-279.
526	Conan, G., Starr, M., Comeau, M., Therriault, J., Robichand, G., Hernàndez, F. 1996. Life
527	history strategies, recruitment fluctuations, and management of the Bonne Bay Fjord
528	Atlantic snow crab (Chionoecetes opilio). Proceedings of the international symposium on
529	biology, management, and economics of crabs from high latitude habitats. University of
530	Alaska Sea Grant College Program Report: 96-102.

531	Chava, A.I., Udalov, A.A., Vedenin, A.A., Simakov, M.I., Shchuka, S.A., Mokievsky, V.O.
532	2017, Benthic Fauna of Tsivolki Bay (Novaya Zemlya Archipelago, Kara Sea).
533	Oceanology. 57(1):160–170.
534	Chuchukalo, V.I., Nadtochiy, V.A., Fedotov, P.A., Bezrukov, R.G. 2011. Feeding habits and
535	some aspects of biology of snow crab opilio (Chionoecetes opilio) in Chukchi Sea. Izv.
536	TINRO, 167:197–206.
537	Dawe E.G., Mullowney D.R., Moriyasu M., Wade E., 2012, Effects of temperature on size-at-
538	terminal molt and molting frequency in snow crab Chionoecetes opilio from two
539	Canadian Atlantic ecosystems, Marine Ecology Progress Series Mar Ecol Prog Ser Vol.
540	469: 279–296, 2012
541	Demidov, A.B., Mosharov. S.A. 2015. Vertical distribution of primary production and
542	chlorophyll a in the Kara Sea. Oceanology. 55:521-534.
543	Demidov, A.B., Mosharov, S.A., Makkaveev, P.N. 2015. Evaluation of environmental factors
544	infuence on Kara Sea primary production in autumn. Oceanology 55:535-546.
545	Denisenko, N.V., Rachor, E., Denisenko, S.G. 2003. Benthic fauna of the southern Kara Sea. In
546	Siberian river run off in the Kara Sea. Ed. by Stein R., Fahl K., Fütterer D.K., Galimov
547	E.M., Stepanets O.V. Elsevier Science: 2013-236.
548	Dionne, M., B. Sainte-Marie, E. Bourget, and D. Gilbert. 2003. Distribution and habitat selection
549	of early benthic stages of snow crab, Chionoecetes opilio. Marine Ecology Progress
550	Series, 259:117–128
551	Dolgov, A.V., Benzik, A.N. 2016. Snow crab opilio as a prey for fish in the Barents Sea. <i>In</i>
552	Snow crab Chionoecetes opilio in the Barents and Kara Seas. Ed. by Sokolov K.M.,
553	Strelkova, N.A., Manushin, I.E. and Sennikov A.V. PINRO Publishing, Murmansk: 140-
554	155. (In Russian)
555	Dolgov, A.V., Benzik, A.N., Chetyrkina, O.Yu. 2014. Feeding peculiarities of non-target fish
556	and their role in productivity of the Kara Sea ecosystem. Trudy VNIRO, 152:190-208.
557	(In Russian)
558	Dolgov, A.V., Smirnov, O., Drevetnyak, K.V., Chetyrkina, O.Yu. 2009. New data on
559	composition and structure of the Kara Sea ichthyofauna. ICES CM 2009/E:32.Ernst, B.,
560	Armstrong. D.A., Burgos, J., Orensanz, J.M. 2012. Life history schedule and periodic

561	recruitment of female snow crab (Chionoecetes opilio) in the eastern Bering Sea.
562	Canadian Journal of Fisheries and Aquatic Sciences 69:532-550.
563	Ernst B, Armstrong DA, Burgos J, Orensanz JM, 2012, Life history schedule and periodic
564	recruitment of female snow crab (Chionoecetes opilio) in the eastern Bering Sea. Can J
565	Fish Aquat Sci 69:532–550
566	Gavrilo, V.V., Popov, A.V. 2011. Sea ice biotopes and biodiversity hotspots of the Kara and the
567	north-eastern Barents Sea. In Atlas of the Marine and Coastal Biodiversity of the Russian
568	Arctic. Ed. by V.A, Gavrilo, M.V., Nikolaeva, N.G., Krasnova. Moscow, WWF Russia:
569	34–35.
570	Grobe, H., Diepenbroek, M., Siems, U. 2003. PanMap - a Mini-GIS (Geographical Information
571	System) to draw point and vector data in maps including geographical resources. Alfred
572	Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven,
573	PANGAEA, https://doi.org/10.1594/PANGAEA.104840
574	Hammer, Ø. 2013. PAST: Paleontological Studies Version 3.0: Reference Manuel. Natural
575	History Museum. Olso. http://folk.uio.no/ohammer/past/past3manual.pdf (Accessed
576	03.10.2016).
577	Hammer, M. and Hoel, A.H. 2012. The Development of Scientific Cooperation under the
578	Norway-Russia Fisheries Regime in the Barents Sea. Arctic Review on Law and Politics
579	3(2):244–274. ISSN 1891-625
580	Ho, J. 2010. The implications of Arctic sea ice decline on shipping. Marine Policy, 34(3):713-
581	715.
582	Ito, K. 1970. Ecological studies on the edible crab. Chionoecetes opilio (O. Fabricius) in the
583	Japan Sea. II. Age and growth as estimated on the basis of the seasonal changes in the
584	carapace width frequencies and the carapace hardness. Bull. Jpn. Sea Reg. Fish. Res.
585	Lab., 22: 81-116.
586	Jørgensen, L.L., Pearson, T.H., Anisimova, N.A., Gulliksen, B., Dahle, S., Denisenko, S.G.,
587	Matishov, G.G. 1999. Environmental influences on benthic fauna associations of the Kara
588	Sea (Arctic Russia). Polar Biol. 22: 395-416.
589	Jørgensen, L.L., Lyubin, P.A., Skjoldal, H.R., Ingvaldsen, R.B., Anisimova, N.A., Manushin,
590	I.E. 2015. Distribution of benthic megafauna in the Barents Sea: Baseline for an
591	ecosystem approach to management. ICES Journal of Marine Science, 72:595-613.

592	Kolts, J.M., Lovvorn, J.R., North, C.A., Grebmeier, J.M., Cooper L.W. 2013. Effects of body
593	size, gender, and prey availability on diets of snow crabs in the northern Bering Sea.
594	Marine Ecology Progress Sereis, 483:209-220.
595	Kon, T. 1980. Studies on the life history of the zuwai crab, <i>Chionoecetes opilio</i> (O. Fabricius).
596	Spec. Publ. Sado Mar. Biol. Stn., Niigata Univ. 2:64 pp.
597	Kozlovskiy, V.V., Chikina, M.V., Kucheruk, N.V., Basin, A.B. 2011. Structure of the
598	macrozoobenthic communities in the Southwestern Kara Sea. Oceanology, 51(6):1012-
599	1020.
600	Kulakov, M.Yu., Pogrebov, V.B., Timofeyev, S.F., Chernova, N.V., Kiyko, O.A. 2004. Chapter
601	29. Ecosystem of the Barents and Kara Seas, coastal segment (22,P). In The Sea, Volume
602	14. Ed. by A.R. Robinson and K.H. Brink ISBN 0-674- ©2004 by the President and
603	Fellows of Harvard College. pp 1135-1172.
604	Kuzmin, S.A., Akhtarin, S.M., Menis, D.T. 1998. The first finding of snow crab Chionoecetes
605	opilio (Decapoda, Majidae) in the Barents Sea. Zoologicheskiy Zhurnal. 77:489 – 491.
606	(In Russian)
607	Liua, M., Kronbak, J. 2010. The potential economic viability of using the Northern Sea Route
608	(NSR) as an alternative route between Asia and Europe. Journal of Transport Geography
609	Volume 18(3):434-444.
610	Lovvorn, J. 2010. Predicting snow crab growth and size with climate warming in the northern
611	Bering Sea. North Pacific Research Board, Final Report, 713. 24 pp.
612	NOAA, Snow and Ice, Regional Sea Ice, 1979-2018, https://www.ncdc.noaa.gov/snow-and-
613	ice/regional-sea-ice/extent/Kara/6 (Accessed 25.11.2018).
614	Ogata, T. 1973. Studies on the population biology of the edible crab, Chionoecetes opilio O.
615	Fabricius in the Japan Sea Region. Mar. Sci. Men., 5(3):27-33.
616	Pavlov, V. A. 2006. New data on snow crab (Chionoecetes opilio (Fabricius, 1798)) in the
617	Barents Sea. In VII All-Russian Conference on Commercial Invertebrates, Murmansk, 9-
618	13 October 2006. Moscow, VNIRO Publishing: 109–111. (In Russian)
619	Pavlov, V.K., Pfirman, S.L. 1995. Hydrographic structure and variability of the Kara Sea:
620	implications for pollutant distribution. Deep Sea Res II 42:1369–1390

521	Pavlov, V.A., Sundet, J.H. 2011. Snow crab. <i>In</i> The Barents Sea ecosystem, resources,
522	management. Half a century of Russian-Norwegian cooperation. Trondheim, Tapir
523	Academic Publishing: 168–172.
524	Polukhin, A.A., Zagretdinova, D.R. 2016. Oceanographical characteristics of the Kara Sea. In
525	Russian Arctic Sea Atlases. Ecological Atlas. Kara Sea. Ed. by Isachenko, A.I. Moscow,
526	Arctic Science Center: 53–76. (In Russian)
527	Pronin, A.A. 2017. Methodology of collecting and presenting material of video footage of
528	bottom with the help if uninhabited, submerged vehicle "Video module". International
529	journal of applied and fundamental research, 12(1):142-147. (In Russian)
530	R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for
531	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
532	Robichaud, D. A., Bailey, R. F. J., Elner, R. W. 1989. Growth and distribution of snow crab,
533	Chionecetes opilio, in the southeastern Gulf of St. Lawrence. J. Shellf. Res., 8:13-23.
534	Romankevich, E.A., Vetrov, A.A. 2001. Carbon Cycle in the Arctic Seas of Russia. Nauka,
535	Moscow. (In Russian)
536	RStudio Team. 2016. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL
537	http://www.rstudio.com/.
538	Sainte-Marie B, Hazel F, 1992, Moulting and mating of snow crabs (Chionoecetes opilio O.
539	Fabricius), in shallow waters of the northwestern Gulf of Saint Lawrence. Can J Fish
540	Aquat Sci 49:1282–1293
541	Sainte-Marie, B., Raymond, S., Brêthes, JC. 1995. Growth and maturation of the benthic stages
542	of male snow crab, Chionoecetes opilio (Brachyura: Majidae). Canadian Journal of
543	Fisheries and Aquatic Sciences, 52(5):903–924.
544	Sirenko, B.I. and Vassilenko, S.V. 2008. Crabs (Crustacea, Decapoda, Brachyura) of the
545	Chukchi Sea. In Fauna and zoogeography of the Chukchi Sea. Explorations of fauna of
646	the sea, Volume 61. Ed. by Sirenko B.I. St. Petersburg: Zoological Institute of Russian
547	Academy of Sciences, 142–148 pp. (In Russian)
548	Slizkin, A.G. 1982. Distribution of snow crabs of the genus Chionoecetes and their habitat in the
549	northern part of the Pacific Ocean. Izvestia TINRO. 106:26-33. (In Russian)
550	Slizkin, A.G., Fedotov, P.A., Khen, G.V. 2007. Spatial structure of settlements and some aspects
551	of the biology of snow crab opilio in the Russian sector of the Chukchi Sea. Marine

552	commercial invertebrates and seaweeds. Biology and fishery. In honor of 70th birthday
553	anniversary of B.G. Ivanov. Moscow, VNIRO: 144 – 157.
554	Sokolov VI, Petryashov VV, Vassilenko SV, 2009 Order Decapoda. In: Vasilenko SV (eds)
555	Illustrated keys to free living invertebrates of Eurasian Arctic Seas and adjacent deep
556	waters, Vol. 1. Rotifera, Pycnogonida, Cirripedia, Leptostraca, Mysidacea, Hyperiidea,
557	Caprellidea, Euphausiacea, Dendrobranchiata, Pleocyemata, Anomura, and Brachyura.
558	Alaska Sea Grant, University of Alaska Fairbanks, pp 12-178.
559	Sokolov, K.M., Strelkova, N.A., Manushin, I.E., Sennikov, A.V. (eds). 2016. Snow crab
660	Chionoecetes opilio in the Barents and Kara Seas. PINRO, Murmansk ISBN 978-5-
661	86349-221-6. (In Russian).
662	Spiridonov, V.A. and Zalota, A.K. 2017. Understanding and forecasting dispersal of
663	non-indigenous marine decapods in East European and North Asian waters. Journal of the
664	Marine Biological Association of the UK, 97:591-611.
665	Squires, H.J. 1990. Decapod crustacea of the Atlantic coast of Canada. Canadian Bulletin of
666	Fishery and Aquatic Science, 221:1–532.
667	Strelkova, N.A. 2016. On acclimatization of snow crab opilio in the Barents and the Kara Seas.
668	In Snow crab Chionoecetes opilio in the Barents and Kara Seas. pp. 17–34. Ed. by K.M.
669	Sokolov, N.A. Strelkova, I.E. Manushin, A.V. Sennikov. PINRO, Murmansk. (In
570	Russian)
571	Sundet, J.H., and Bakanev, S. 2014. Snow crab (Chionoecetes opilio) - A new invasive crab
572	species becoming an important player in the Barents Sea ecosystem. ICES CM
573	2014/F:04.
574	Tarverdieva, M.I. 1981. On the feeding habits of snow crabs Chionoecetes opilio and Ch. bairdi
575	in the Bering Sea. Zoological journal, 60(7):287-293.
576	Udalov, A.A., Vedenin, A.A., Simakov, M.I. 2016. Benthic Fauna of Blagopoluchiya Bay
577	(Novaya Zemlya Archipelago, Kara Sea). Oceanology, 56(5): 720-730.
578	Vinogradov, M.E., Vedernikov, V.I., Romankevich, E.A., Vetrov, A.A. 2000. Components of
579	the carbon cycle in the Russian Arctic seas: primary production and flux of Corg from the
580	photic layer. Oceanology, 40:204–215.

581	Zakharov, D.V., Manushin, I.E., Strelkova, N.A., Pavlov, V.A., Nosova T.B., 2018. Diet of the
582	snow crab in the Barents Sea and macrozoobenthic communities in the area of its
583	distribution. Trudy VNIRO, 172:70-90.
584	Zalota, A.K., 2017. Non indigenous species of Crustacea Decapoda in Russian seas and
585	contiguous waters. PhD dissertation. Moscow. 234 pp. (In Russian)
586	Zalota, A.K., Spiridonov, V.A., Vedenin, A.A. 2018 Development of snow crab Chionoecetes
587	opilio (Crustacea: Decapoda: Oregonidae) invasion in the Kara Sea. Polar Biology,
588	41(10):1983-1994. DOI:10.1007/s00300-018-2337-y
589	Zatsepin, A.V., Morozov, E.V., Paka, V.T., Demidov, A,N., Kondrashov, A.A., Korzh, A.O.,
590	Krementskiy, V.V., Poyarkov, S.G., Soloviev, D.M. 2010a. Circulation in the
591	southwestern part of the Kara Sea in September 2007. Oceanology, 50: 643-656.
592	Zatsepin, A.G., Zavialov, P.O., Kremenetskiy, V.V., Poyarkov, S.G., Soloviev, D.M. 2010b. The
593	upper desalinated layer water propagation and transformation in the Kara Sea.
594	Oceanology, 50: 657–667.
595	Zatsepin, A.G., Poyarkov, S.G., Kremenetskiy, V.V., Nedospasov, A.A., Shchuka. S.A.,
596	Baranov, V.I., Kondrashov, A.A., Korzh, A.O. 2015. Hydrophisical features of deep
597	water troughs in the Kara Sea. Oceanology, 55: 472-484.
598	Zenkevich, L.A. 1963. Biology of USSR seas. Moscow, press ASci USSR. 740 pp.
599	Zimina, O.L. 2014. Finding the snow crab <i>Chionoecetes opilio</i> (O. Fabricius, 1788) (Decapoda:
700	Majidae) in the Kara Sea. Russian Journal of Marine Biology, 40:490-492.
701	Zimina, O.L., Lyubin, P.A., Jørgensen, L.L., Zakharov, D.V., Lyubina, O.S. 2015. Decapod
702	crustaceans of the Barents Sea and adjacent waters: species composition and peculiarities
703	of distribution. Arthropoda Selecta, 24:417–428.

Table 1(on next page)

Results of mixing model analysis of all *Chionoecetes opilio* carapace width (CW) measured from trawling (MMBI and SIO) collections and video footage from the Kara Sea in 2016.

			Mean CW \pm standard deviation (mm)							Akaike	Log			
Size group	I-II	III-IV	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	VI	VII	VIII	IX	X	>X		IC	lk.hood	
All S	IO	4*	10±1	14±1	16±1	23±2	34±3	45±2	52	±9		100*	1743	-866**
All S	10	-	10±1	14=1	10±1	2312	34±3	±3 43±2	32	2±9		100	567	-275***
All MN	MBI						36±7		52±3	65±5	85±6	100*	3957	-1970
All Vi	deo		8±1	15	±3			46±11				100*	5406	-2697
		1											'	
Only from	SIO		10±1	14	±1	22±1	34±2						2166	-1050
Blag-chiya														
Bay	Video		8±1	15	±4		32±8						1722	-855
		1	'			•					'			
All SIO	Female			<19*		22±2	32±3	45±2	55±2				324	-153
All SIO	Male			<19*		24±2	34±4	45±3		63±5		114±3	269	-121
All MMBI	Female						34±7		50±3	60±4	70±2		820	-401
All MMBI	Male					24±1	38± 6	48±1	53±3	65±2	79±10	116±3	3153	-1562

1

Table 2(on next page)

General statistics of the carapace width (CW) distribution of crabs caught at SIO trawling (A) and video sampling (B) stations.

n- number of crabs measured; min-mas – minimum and maximum CW, central 50% - reflect the data between first and third quartile (50 %) of CW distribution (see Fig. 4).

PeerJ

1 **A**

SIO trawling	Blagopoluchiya	Haug	Sedov	Abrosimov	Gates 1	Gates 2
n	735	4	28	43	27	20
min-max	8-38	15-16	10-45	4-50	10-117	27-71
central 50%	11-15	15-16	14-21	4-33	24-45	44-54

mode/median/mean 14/14/14 16/16/16 25/16/19 4/16/21 25/35/39 47/47/48

2

3 **B**

SIO video	Blagopoluchiya	Haug	Tsivolka	Abrosimov	Gates 2
n	388	7	215	88	186
min-max	7-50	27-50	7-69	9-58	22-127
central 50%	12-19	38-47	34-52	34-48	43-57
mode/median/mean	15/15/17	47/47/42	50/46/41	48/43/40	43/48/51

4

Table 3(on next page)

Correlation of carapace width parameters with the sample stations' depth of SIO RAS trawling (6 stations) and video (5 stations), and MMBI (53) stations.

		Minimum	Maximum	Mode	Mean
MMBI	p	0.004	0.48	0.54	0.37
IVIIVIDI	R ²	2.0E ⁻⁰⁵	0.24	0.29	0.14
IO	p	0.36	0.93	0.56	0.86
10	R ²	0.13	0.87	0.31	0.73
Video	p	0.53	0.91	0.07	0.53
v ideo	R ²	0.28	0.83	0.004	0.28

Table 4(on next page)

General statistics of the carapace width (CW) distribution of crabs of different sexes caught in SIO and MMBI trawling samples.

n- number of crabs measured; min-mas – minimum and maximum CW, central 50% - reflect the data between first and third quartile (50 %) of CW distribution (see Fig. 6).

PeerJ

1 **A**

		Ovigerous			
IO trawling	Males	Females	females	Juveniles	
n	293	366	8	190	
min-max	11-117	11-47	44-58	4-11	
central 50%	14-16	14-16	49-56	9-10	

mode/median/mean 14/15/18 14/15/17 55/54/52 10/10/9

2 3

B

			Ovigerous
MMBI trawling	Males	Females	females
n	523	67	72
min-max	23-120	22-63	42-72
central 50%	51-66	33-51	58-66

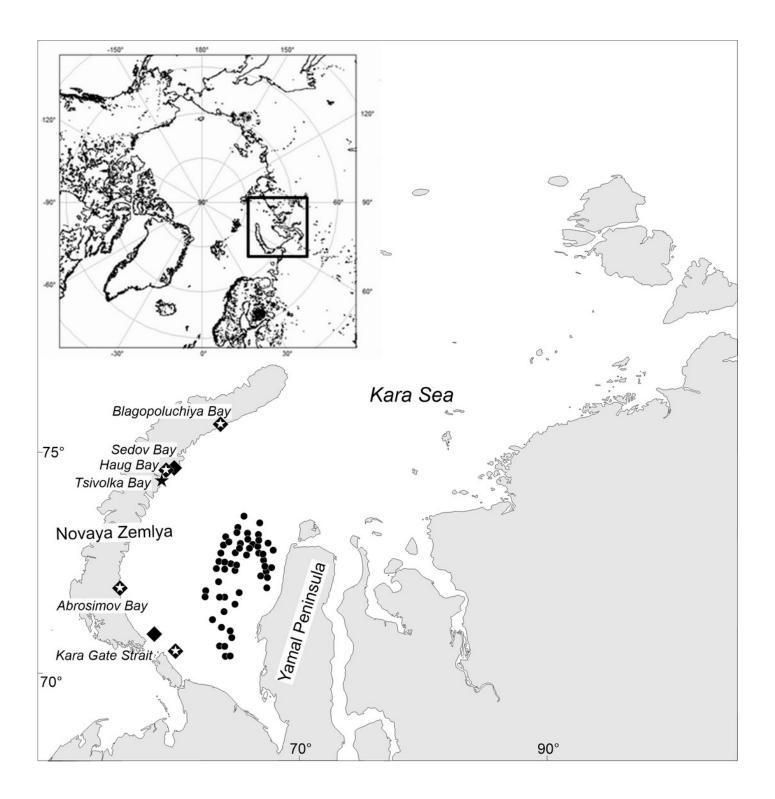
mode/median/mean 52/55/58 48/45/42 62/61/61

4

Table 5(on next page)

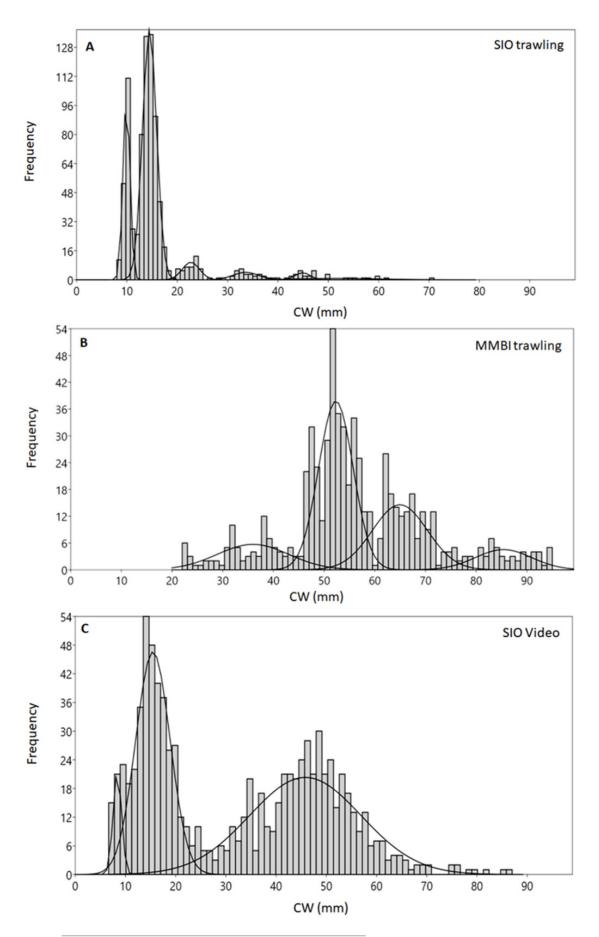
The results of the analysis of video data of *Chionoecetes opilio* filmed by SIO RAS in the Kara Sea in 2016.

	Number of	Total video	Number	Density
	video frames	area m ²	crabs	crabs/m ²
Blagopoluchiya				
Bay	405	449	389	0.87
Haug Bay	578	629	7	0.01
Tsivolka Bay	1077	1355	204	0.15
Abrosimov Bay	629	1130	86	0.08
Kara Gates 2	443	213	118	0.55


1

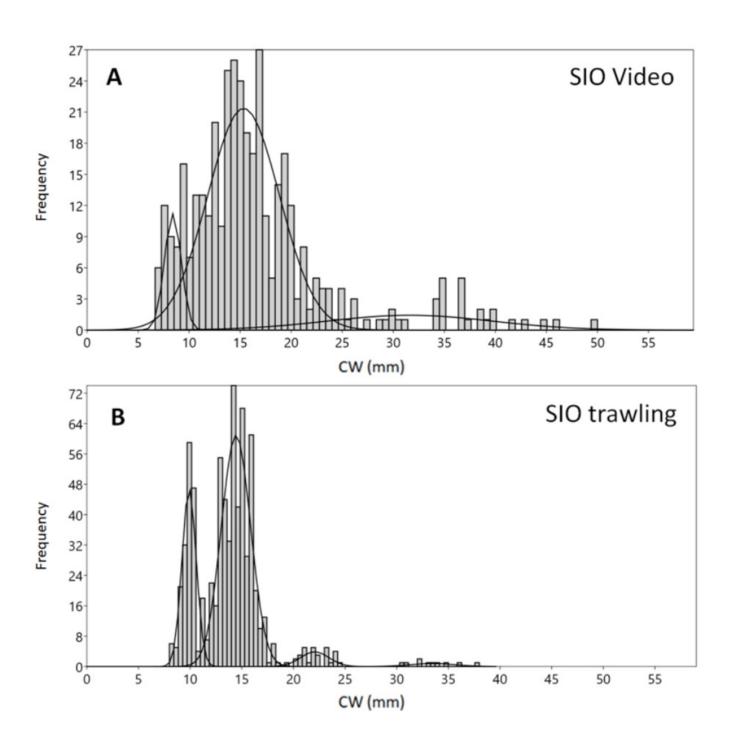
Map of stations surveyed by the RV *Dalniye Zelentsy* (MMBI) and the RV *Akademik Mstislav Keldysh* (SIO RAS) in August-September 2016 in the Kara Sea.

CIRCLES - MMBI bottom trawling stations; **DIAMONDS** - SIO RAS Sigsbee trawling stations; and **STARS** - stations with video footage of the bottom using UTSI *Video module*. (Maps created using PanMap; *Grobe et al.*, 2003)

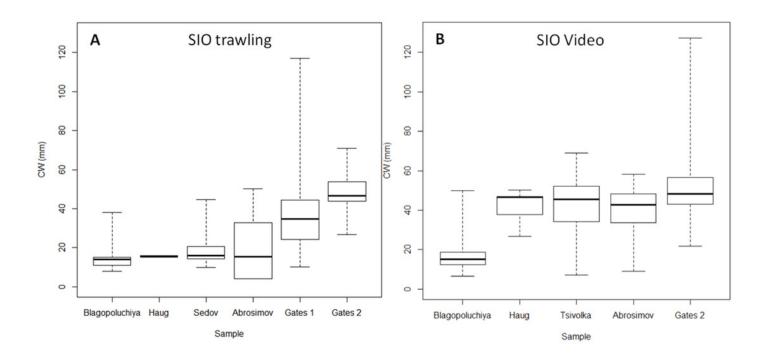


Carapace width (CW) size group frequencies of *Chionoecetes opilio* collected and measured by different methods from the Kara Sea, 2016.

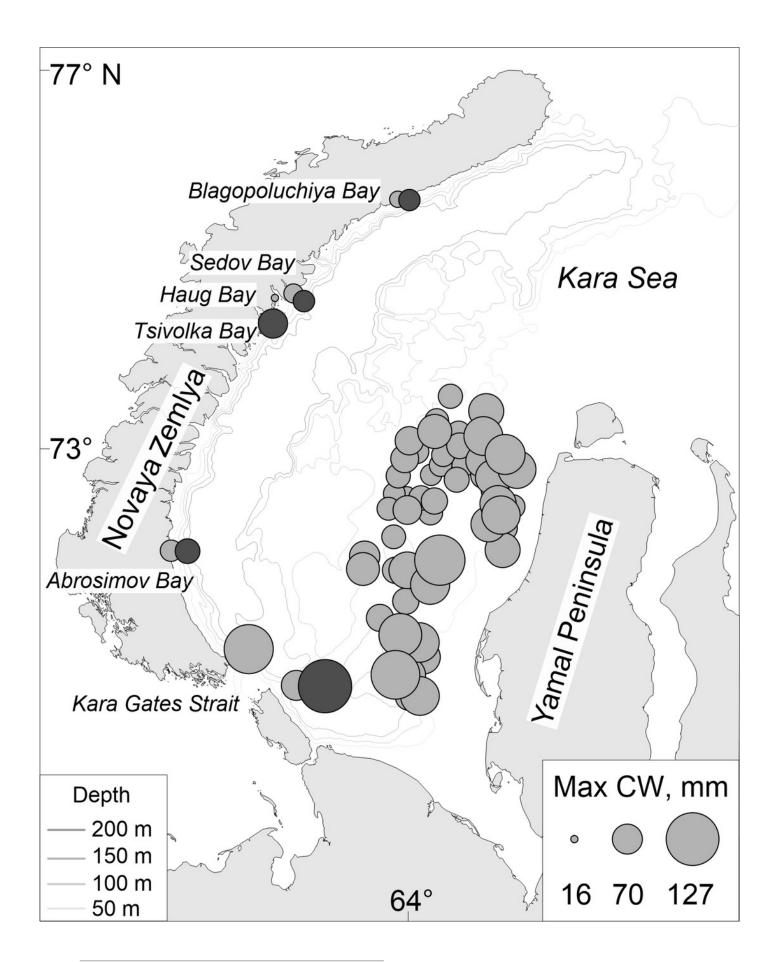
A. All SIO samples collected by Sigsbee trawl; **B.** MMBI samples collected by a large bottom trawl; **C.** All data obtained from video footage.



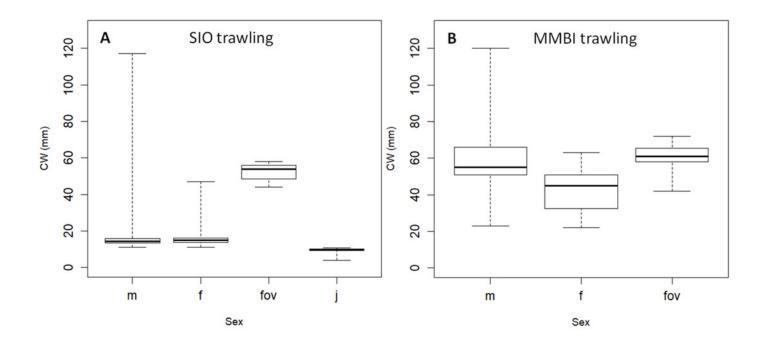
Carapace width (CW) size group frequencies of *Chionoecetes opilio* collected and measured by different methods from the vicinity of Blagopoluchiya Bay in 2016.

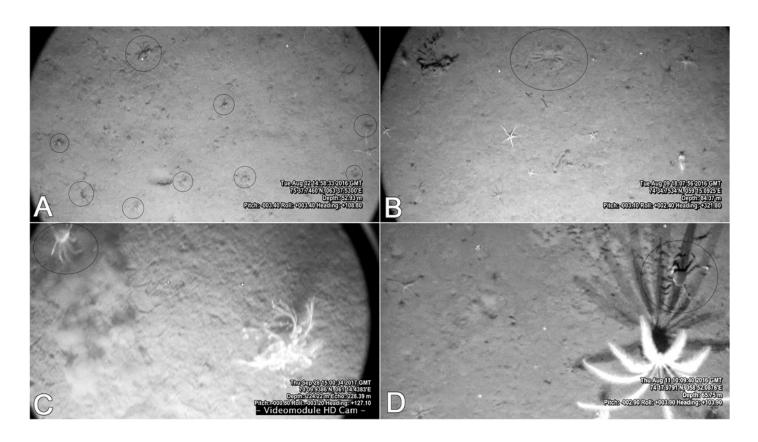

A. Video data collected prior to trawling; **B**. SIO Sigsbee trawling.

Box plots of carapace width (CW) distribution of crabs caught at SIO RAS stations.


A. Trawling stations; **B.** Video sampling stations. Boxes reflect data between first and third quartile (50 %), thick line is the median, and whiskers extend to the maximum and minimum CWs (see Table 2).

Map of maximum carapace width of *Chionoecetes opilio* distribution collected using (light grey circles) MMBI bottom and SIO Sigsbee trawling and from (dark grey circles) video footage of the Kara Sea bottom in August-September 2016.


(Map created using PanMap; Grobe et al., 2003)


Box plots of carapace width (CW) distribution of Chionoecetes opilio of different sexes.

A. SIO RAS, and **B**. MMBI trawling samples. **m** – males; **f** – non ovigerous females; **fov** – ovigerous females; **j** – juveniles with CW less than 11 mm. Boxes reflect the data between the first and third quartile (50 %), thick line is the median, and whiskers extend to the maximum and minimum CWs (see Table 4).

Frames from the video footage recorded by the UTSI Video module.

A. Blagopoluchiya Bay frame with 8 crabs. **B**. Imprint of borrowed crab on muddy sediments of Haug Bay. **C.** A crab creating a sediment cloud while running away in the Kara Gates Straight (filmed in 2017). **D**. Snow crab in the shadow of a sea lily in Tsivolka Bay. Crosses outline the original position of laser points 60 cm apart.

