Combining data from different sampling methods to study the development of an alien crab *Chionoecetes opilio* invasion in the remote and pristine Arctic Kara Sea (#36317)

First submission

Guidance from your Editor

Please submit by 2 May 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 7 Figure file(s)
- 3 Table file(s)
- 1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Combining data from different sampling methods to study the development of an alien crab *Chionoecetes opilio* invasion in the remote and pristine Arctic Kara Sea

Anna K Zalota $^{\text{Corresp., 1}}$, Olga L Zimina 2 , Vassily A Spiridonov 1

Corresponding Author: Anna K Zalota Email address: azalota@gmail.com

Data obtained using three different sampling gears is compared and combined to assess the size composition and density of the snow crab population *Chionoecetes opilio* in the Kara Sea previously practically free of introduced species. The Sigsbee trawl has small mesh and catches even recently settled crabs. The large bottom trawl is able to catch large crabs, but does not retain younger crabs, due to its large mesh. Video sampling allows us to observe larger crabs although some smaller crabs can also be spotted. The combined use of these gears could provide full scope data of the existing size groups in a population.

Density of crabs has been calculated from the video footage. The highest figures were in Blagopoluchiya Bay and in the Kara Gates Strait at 0.87 and 0.55 crabs/m² respectively. Male to female ratio was strikingly different between the bays of the Novaya Zemlya Archipelago and were figures for the Yamal Peninsula (0.8 and 3.8 respectively). Seventy five ovigerous females were caught in 2016. An size groups (instars) have been present in most sampled areas. This was not the case in Blagopoluchiya Bay, with high density of small crabs (<30 mm CW), and in Haug Bay with very few crabs.

The spatial and functional structure of the snow crab population in the Kara Sea is still in the process of formation. The presented data indicates that this process may lead to a complex system, which is based on local recruitment and transport of larvae from the Barents Sea and across the western Kara shelf; formation of nursery grounds; active migration of adults and their concentration in the areas of the shelf with appropriate feeding conditions.

¹ Laboratory of ecology of coastal bottom communities, Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

 $^{^{2}}$ Laboratory of zoobenthos, Murmansk Marine Biological Institute KSC, Russian Academy of Sciences, Murmansk, Russia

1	Combining data from different sampling methods to study the development of an alien
2	crab Chionoecetes opilio invasion in the remote and pristine Arctic Kara Sea
3	
4	Anna Konstantinovna Zalota ¹ , Olga Leonidovna Zimina ² , Vassily Albertovich
5	Spiridonov ¹
6	
7	¹ Shirshov Institute of Oceanology, Russian Academy of Sciences (SIO RAS), Moscow,
8	Russia
9	² Murmansk Marine Biological Institute KSC, Russian Academy of Sciences (MMBI KSC
10	RAS), Murmansk, Russia
11	
12	Corresponding Author:
13	Anna Zalota
14	36 Nakhimovskiy pr., Moscow, 117997, Russia
15 16	Email address: azalota@gmail.com
17	Abstract
18	Data obtained using three different sampling gears is compared and combined to assess
19	the size composition and density of the snow crab population <i>Chionoecetes opilio</i> in the Kara
20	Sea previously practically free of introduced species. The Sigsbee trawl has small mesh and
21	catches even recently settled crabs. The large bottom trawl is able to catch large crabs, but does
22	not retain younger crabs, due to its large mesh. Video sampling allows us to observe larger crabs
23	although some smaller crabs can also be spotted. The combined use of these gears could provide
24	full scope data of the existing size groups in a population.
25	Density of crabs has been calculated from the video footage. The highest figures were in
26	Blagopoluchiya Bay and in the Kara Gates Strait at 0.87 and 0.55 crabs/m² respectively. Male to
27	female ratio was strikingly different between the bays of the Novaya Zemlya Archipelago and
2728	female ratio was strikingly different between the bays of the Novaya Zemlya Archipelago and west of the Yamal Peninsula (0.8 and 3.8 respectively). Seventy five ovigerous females were
28	west of the Yamal Peninsula (0.8 and 3.8 respectively). Seventy five ovigerous females were

The spatial and functional structure of the snow crab population in the Kara Sea is still	in
the process of formation. The presented data indicates that this process may lead to a complex	
system, which is based on local recruitment and transport of larvae from the Barents Sea and	
across the western Kara shelf; formation of nursery grounds; active migration of adults and the	eir
concentration in the areas of the shelf with appropriate feeding conditions.	

INTRODUCTION

1	Λ
3	9

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

5758

59

60

61

62

63

64

65

66

67

68

38

The process of a non-indigenous species (NIS) invasion and naturalization can take a very long time (Byers et al., 2015). This is especially expected for a large predatory species that takes years to achieve sexual maturity, such as crabs Chionoecetes opilio. However, for a biologist and an ecologist, these are most interesting times. An ongoing invasion can expose the initial structure of an ecosystem; its response to an invader can reveal its resistance and resilience capacity; and the invader's process of acclimatization can manifest its biological and ecological features that were less apparent in stable conditions. In this respect, an invasion of a large predatory crab into the previously pristine Kara Sea benthic environment is an exceptional opportunity for science. Due to the warming climate, and the current decreasing sea ice cover in the Arctic, it is widely expected that the shipping and other human activity will greatly increase (Ho, 2010; Liua and Kronbak, 2010). Such productive and commercially important seas as the Bering and the Barents are very well studied and have ongoing large scientific projects within joint studies of Norwegian Institute of Marine Research (IMR) and the Knipovich Polar Institute of Fishery and Oceanography (PINRO) (Pavlov & Sundet, 2011; Hammer & Hoel, 2012; Sokolov et al., 2016). This is not the case for Siberian seas that have low productivity and until recently had very short ice-free seasons (Zenkevich, 1963; Vinogradov et al., 2000; Demidov & Mosharov, 2015; AARI, 2009). Biological research in the Kara Sea benthous conducted by occasional expeditions of the SIO RAS, MMBI (see authors' affiliation) and PINRO (olov et al., 2016). The intensity and area of sampling effort varies, and so does the sampling gear employed. Therefore, it is important to compare and understand the differences in the results obtained by different gear to be able to gather informative data in the future and to understand the present situation. The snow crab, *Chionoecetes opilio* (apoda: Oregonidae) is one of the few contemporary Arctic non-indigenous species (NIS), and it has invaded vast areas of the Barents and Kara Seas with an unprecedented speed for a shelf species (Pavlov, 2006; Pavlov & Sundet, 2011; Zimina, 2014; Bakanev, 2015; Sokolov et al., 2016; Spiridonov & Zalota, 2017; Zalota et al., 2018). The native range of this species covers the North-Western Atlantic (Newfoundland and Labrador waters, south-west Greenland shelf to southern Baffin Bay) (Squires, 1990); the North Pacific southward of the Aleutian Islands and the Sea of Japan (Slizkin, 1982), and the

69 Chukchi Sea westward to the boundary with the East Siberian Sea and eastward to the Beaufort 70 Sea (Slizkin et al., 2007; Sirenko & Vassilenko, 2008). There is only one record of snow crabs on 71 the border between the East Siberian and the Laptev Seas, off the New Siberian Islands (Sokolov 72 et al., 2009). Ch. opilio is an active benthic predator consuming a broad range of invertebrates, 73 and even fish (Tarverdieva, 1981; Chuchukalo et al., 2011; Lovvorn, 2010; Kolts et al., 2013; 74 Zalota, 2017). 75 The first record of snow crab opilio in the Barents Sea was in 1996 (*Kuzmin et al.*, 1998). 76 It is possible that the introduction took place approximately between the mid-1980s and 1993 77 (Alvsvåg et al., 2009; Strelkova, 2016). By the mid-2010s the snow crabs occupied the entire 78 central, eastern, and most of the northern part of the Barents Sea. Uncontrolled snow crab fishery 79 commenced in 2013 in the international fishery enclave between the EEZs of Russia and Norway 80 and the Spitsbergen fishery protection zone (Bakanev et al., 2017; Sundet & Bakanev, 2014). A 81 regulated snow crab fishery in Russia's EEZ of the Barents Sea began in 2016 (Bakanev et al., 82 2016). 83 The snow crab population grew in the Barents Sea and expanded towards the Kara Sea. 84 The first crabs were found on the boundary of the two seas in 2008 (Strelkova, 2016), then in the 85 north-west of the Kara Sea in 2010 and 2011 (Strelkova, 2016; Zalota et al., 2018). Both adults 86 and larvae were caught in the south-western Kara Sea in 2012 (Zimina, 2014). In less than five 87 years after the initial records, Ch. opilio was observed over the entire western Kara Sea shelf 88 (Zalota et al., 2018). A high abundance of adult snow crabs was recorded in 2013 in the south-89 western Kara Sea, between the Yamal Peninsula and the Kara Gate Strait, which is the entrance 90 from the Barents Sea (Strelkova, 2016). In 2014, several size groups of juveniles were present 91 throughout the western shelf and the fjords of the eastern Novaya Zemlya Archipelago, with the 92 most numerous groups presumably originating from larval settling in 2013 (Zalota et al., 2018). 93 It is still uncertain if the Kara snow crab population is fully established and independent of larvae 94 import and adult migration from the Barents Sea, and how far it can expand eastwards. 95 The oceanographic conditions of the Kara Sea are very different from the Barents Sea. 96 The western part is strongly influenced by the water exchange with the Barents Sea and by the 97 advection of fresh water from large Siberian rivers' runoff (Pavlov & Pfirman, 1995; Zatsepin et al., 2010a; Zatsepin et al., 2010b; Zatsepin et al., 2015; Polukhin & Zagretdinova, 2016). The 98 99 Kara Sea is covered with ice for most of the year, with extensive fast ice massifs and regular

100 polynya formations (Gavrilo & Popov, 2011; Polukhin & Zagretdinova, 2016). Beginning from 101 the mid-2000s, the Kara Sea follows a general Arctic trend of delaying sea ice formation in 102 autumn and earlier decay in spring/early summer (Ashik et al., 2014). This coincided with the 103 commencement of *Ch. opilio* invasion from the Barents Sea (*Zalota et al.*, 2018). 104 In comparison to the Barents Sea, the Kara Sea has a much lower primary productivity 105 (Vinogradov et al., 2000; Romankevich & Vetrov, 2001; Demidov & Mosharov, 2015; Demidov et al., 2015) and benthic biomass (Zenkevich, 1963). Its cosystem is noticeably affected by 106 107 climate change and the lengthening of ice-free period (Ashik et al., 2014). In the nearest future it will be more and more influenced by several anthropogenic factors. These include the persisten 108 109 accumulation of organic pollution (AMAP Assessment, 2015), massive offshore and coastal oil and gas development, and shipping (Amiragyan, 2017). The establishment of a breeding snow 110 111 crab population, even if dependent on the Barents Sea stock, may have additional large scale 112 impact on the distinct Kara Sea ecosystem. On the other hand, the snow crabs could potentially 113 grow to commercial sizes and become regulated by fishery, which has never existed in the Kara 114 Sea before. It is therefore critical to study the development of the snow crab population in the 115 Kara Sea to forecast the future of the Siberian Shelf ecosystems, and the options for resource 116 management and biodiversity conservation. 117 The Barents Sea snow crab population is well monitored with comparable gear because of regular ecosystem survey of the IMR and PINRO (Jørgensen et al., 2015). Due to its limited 118 119 fishery resources, the Kara Sea is less visited and surveyed using standard fishery trawls, which 120 makes it very difficult to obtain a representative samples of adult snow crabs and to monitoring 121 their abundance (Zimina et al., 2015; Sokolov et al., 2016). Since 2007, smaller scientific gear, 122 such as Sigsbee trawls, has been used in regular expeditions of the Shirshov Institute of 123 Oceanology (SIO) to the Kara Sea. It provides a good representation of juvenile groups, but most 124 likely underestimates large crabs (Zalota et al., 2018). Therefore, to study the population of snow 125 crabs in the Kara and potentially in other Siberian seas in the long term, we have to be able to 126 use a combination of gears and exploit the methodological opportunities which present 127 themselves. 128 In the summer season of 2016 we employed three methods to study snow crab size composition and abundance. The authors from SIO RAS collected crabs using a Sigsbee trawl 129 130 along with video transects; and the MMBI affiliated author used a large Campelen-type bottom

131	trawl similar to those used in the IMR - PINRO surveys in the Barents Sea. The video survey,
132	conducted by SIO RAS, is less invasive, less costly and labour intensive method of rapid
133	assessment of density and size structure of crabs' settlements. However, the video data lacks
134	important information, such as differences in size composition due to sex dimorphism.
135	Therefore, it is important to identify the information that can be safely combined.
136	The purpose of the present paper is to compare the data on population composition and
137	abundance of snow crab in the Kara Sea obtained by these are methods in 2016. By identifying
138	specifics and merging the results obtained by these different gears we also aim to assess the
139	progress of the Ch. opilio invasion in the Kara Sea, and to compare it with earlier stages (2008 -
140	2014) described by Zimina (2014), Strelkova (2016) and Zalota et al. (2018).
141	
142	MATERIAL AND METHODS
143	The crabs Chionoecetes opilio were studied using three sampling methods during the
144	cruise of on the Research Vessel Dalniye Zelentsy (MMBI) and the RV Akademik Mstislav
145	Keldysh (SIO RAS) in August-September 2016 (for abbreviations see authors' affiliation). On
146	the RV Dalniye Zelentsy samples were collected using a Campelen-type bottom trawl with a 20
147	m horizontal by an 8-10 m vertical opening, equipped with a double net; the outer net with 135
148	mm mesh and lower insertion of the net with 12 mm mesh. On the RV Akademik Mstislav
149	Keldysh the material was collected using a Sigsbee trawl with a steel frame of 2 m breadth and
150	35 cm height. The trawl was equipped with a double net; the outer net had 45 mm mesh and
151	inner net had 4 mm mesh.
152	In combination with some trawling by SIO RAS, a video transect has been filmed by the
153	team of engineering and technical research. This was done using an uninhabited, towed,
154	submerged, inert vehicle (UTSI) Video Module developed and produced by the efforts of
155	technical and biological specialists of the SIO RAS (Pronin, 2017). UTSI Video Module is
156	equipped with a control and data transmission system that allows you to receive information and
157	to transfer control commands between the vessel and the towed entity via an optical cable in real
158	time. UTSI Video Module has a navigation system, power supply, three video cameras (one of
159	them is of high resolution, set up to carry out planimetric surveys), six floodlight projectors and
160	two laser scale indicators, with known distance between them (60 cm). If necessary, it is possible
161	to install additional equipment such as a hydrophysical probe, a submersible gamma

162	spectrometer, etc. The UTSI Video Module allowed us to obtain geo-referenced (including
163	depth), spatially oriented and scaled images of the bottom with organisms (Fig. 7
164	A,B,D)(Poyarkov et al., 2017; Pronin, 2017).
165	The team on the RV Dalniye Zelentsy has collected crabs from 53 stations (further
166	referred to as MMBI samples) on the west side of the Yamal Peninsula in the Kara Sea (Fig. 1,
167	circles.). The RV Akademik Mstislav Keldysh collected trawl samples (further referred as SIO
168	samples) in the vicinity of four Novaya Zemlya Archipelago bays and two in the area of the Kara
169	Gates Strait (Fig. 1, diamonds). The video transects (further referred as video samples) have been
170	done prior to trawling on four of these stations (Fig. 1, stars in the diamonds), and in the vicinity
171	of Tsivolka Bay without a trawling sample (Fig. 1, black star).
172	All crabs caught in trawls have been sexed, based on visual characteristics, and measured
173	(carapace width, CW) using callipers to the nearest millimetre on board the vessels. The videos
174	have been viewed using the Media Player Classic - Home Cinema program in full screen mode.
175	Manually, by screenshots, the videos have been divided into frames according to bottom features
176	to account for varying speed of towing, changing depth, and magnification. The height and width
177	of the frame, the distance between two laser points and the carapace width (CW) of crabs present
178	on the image have been measured using a ruler. All frame measurements were converted to
179	actual dimensions considering that the distance between the laser points on the bottom was 60
180	cm (Fig. 7 A,B,D).
181	Most of statistical calculations and analyses have been performed using RStudio (RStudio
182	Team, 2016; R Core Team, 2018). Size structure of collected crabs has been analyzed using
183	mixture model analysis in PAST software (Hammer, 2013). The best fit models have been
184	selected using the Akaike (Akaike, 1974) and log likelihood criteria. Correlations have been
185	calculated using Microsoft Excel package.
186	
187	RESULTS
188	Overall, the data has been collected from 64 sample stations. MMBI trawled at 53
189	stations and caught 662 crabs; SIO RAS caught 857 from 6 trawling stations and 884 crabs were

caught on camera at the 5 stations where Video Module was employed (Fig.1). In total 2402

191 192

190

crabs were measured, which includes 1520 crabs caught by trawls.

Size com	nosition	revealed l	by different	samnling	methods
Size com	position	i cycaicu i	by uniterent	samping	memous

Different methods of collection yielded diverse size distribution of crabs. Although size composition of adult male and female snow crabs usually differs, we discuss their aggregate composition in order to compare the trawl data to the video data, for which no sex differentiation is possible. The carapace width (CW) of crabs caught during SIO trawling ranged from 4 to 117 mm (Fig. 2 A). Mixture analysis of CWs identified 9 distinct size groups from the bulk of SIO crabs (7 groups from the analysis and 2 added manually to decrease noise during the analysis) (Table 1). The majority of crabs were of small size, with the mode CW at 14 mm (while the mean was 16 mm) and another abundant group at CW 10 mm.

Mixture analysis of crabs caught by MMBI trawling has resulted in only 5 size groups (1 of which has been added manually) (Table 1). Overall crabs caught by this method were of larger size, with the minimum carapace width of 22 mm and the maximum of 120 mm. The large portion of crabs was within the size group of 52 mm (mode at 52, mean of 57 mm) (Fig. 2 B). The analysis has merged smaller crabs into one group with large standard deviation (36±7 mm). However, the mixture analysis identified more distinct large size groups (over 52 mm) in MMBI samples, than from SIO trawling and video sampling.

The smallest crab identified on video had 7 mm CW and the largest 127 mm. Mixture analysis yielded 4 size groups for this method (Table 1). Most frequently crabs were within two broad size groups with CW 15±3 mm and 46±11 mm (Fig. 2 C). The mode CW was 15 mm, however for this method the mean CW differed at 32 mm.

The trawling stations of SIO RAS closely followed the rout of video samples and we can therefore compare them directly (Fig. 4 A, B). Both, video and trawling sampling was done in the vicinity of Blagopoluchiya, Haug, and Abrosimovo bays, as well as in the southern region of the Kara Gates Strait (further referred to as Kara Gates 2) (Fig. 1).

The boxes in Figure 2 (contain 50 % of the data, from the first to third quartile) of Blagopoluchiya Bay are very similar for both methods, and include CW below 20 mm. The mode, median and means for the trawling and video samplings in Blagopoluchiya Bay are also very similar (all three at 14 mm for trawling; and 15 mm mode/median and 17 mm mean for video). However, the maximum size observed by video (50 mm) was larger than in the Sigsbee trawling sample (38 mm), while the minimum was very similar (7 and 8 mm respectively). Both methods yielded large number of crabs: 735 by trawling and 388 caught on video. The mixture

PeerJ

224 analysis has identified only one more distinct size group in SIO than in the Video sample (Table 225 1), but the distinction and precision of these size groups are much more apparent in the SIO 226 sample even to the naked eye (Fig. 3). 227 The two methods have shown similar results for the south of the Kara Gates Strait (Kara Gates 2, Fig. 4). The central 50% of crabs had CW between 43 and 57 mm (47 mm mode and 228 median, and 48 mm mean for trawling; and 43, 48, and 51 mm for video respectively). Trawl 229 230 sampling collected 20 crabs, and we observed 186 crabs on the video. While the minimum CW 231 of crabs from trawling and video were very similar, 27 and 22 mm respectively, the video 232 detected much larger crabs (127 mm) than the trawling (71 mm). However, we caught large 233 crabs (up to 117 mm, 50% between 24 and 45 mm; mode, median, mean at 25, 35, 39 mm; for 234 27 crabs) while trawling in the nearby location (Kara Gates 1, 2, Figs. 1, 4). We detected a very low number of crabs in Haug Bay by both trawling and video (4 and 7 235 236 respectively). However, their sizes were very different: in trawl sample all crabs were 15-16 mm; 237 on the video the size range from 27 to 50 mm, while the majority (mode, median and mean) was 238 within 42-47 mm. 239 The most distinct difference was observed in Abrosimov Bay (Fig. 4 A, B). The trawl 240 brought a large proportion of smaller crabs (minimum and mode at 4 mm CW, median 16 mm, 241 mean 22 mm; 50% of crabs were between 4 and 32 mm), while on the video we could not 242 observe such small crabs (minimum 9 mm), and the central half of the crabs were between 34 243 and 48 mm CW, (mode, median, mean: 48, 43, 40 mm respectively). The maximum size of the 244 crabs in both methods was very similar (50 mm trawling, 58 video). We measured twice as many 245 crabs (88) on the video than from the trawling sample (43). 246 Sedov and Tsivolka Bays were sampled using different methods and cannot be compared 247 directly. Trawling sample in Sedov Bay brought 28 crab with 45 mm maximum and 10 mm 248 minimum CW. The central half of crabs were within 14-21 mm CW range; with mode, median 249 and mean at 25, 16 and 19 respectively. On the Tsivolka Bay video we identified 215 crabs from 250 9 to 58 mm CW. The central half of the crabs fell between 34 and 52 mm CW; mode, median 251 and mean are 50, 46 and 41 respectively. 252 At the 53 MMBI trawling stations the minimum CW ranged from 22 to 72, and the 253 maximum from 39 to 120. The modes and means ranged from 32 to 94 and 34 to 75 respectively. 254 Most often (mode), the minimum CW was 47 mm, maximum was 57 mm; mode and mean were

52 mm. Two to sixty one crabs were caught at the MMBI sampling stations, most commonly 3,but 12 crabs on average.

To analyze possible trends of crabs' size distribution in space, we looked at the correlation between the depth of sampling stations and different statistical parameters of the CW (Table 2). For the 53 MMBI trawling stations, the maximum, mode and mean CW sizes only weakly correlated with the depth. In both SIO trawling and video samples the maximum CW sizes had strong correlation with the depth, although the sample size was very small.

When we mapped the maximum CW size for each station, we observed a trend in the MMBI samples along the Yamal Peninsula (Fig. 5). Larger crabs tend to be found in the south and northwards along the Yamal Peninsula; towards the centre of the western Kara Sea maximum CW of the crabs decrease. Maximum MMBI CW sizes weakly correlated with the mode and mean CW sizes of those stations (maximum to mode CW: p = 0.5, $R^2 = 0.3$; maximum to mean CW p = 0.9, p = 0.9, p = 0.9, p = 0.9). Similar mapping of ovigerous female findings did not show any observable trends.

Sex ratio and sex related differences in size composition

Trawling allowed identifying and comparing crabs of different sexes. The male to female ratios were strikingly different between SIO RAS (bays of the Novaya Zemlya Archipelago) and MMBI (west of the Yamal Peninsula) (Fig. 1): 0.8 and 3.8 respectively. There were only 8 ovigerous and 366 non ovigerous females in the SIO RAS samples (ratio 0.02), while there were 72 ovigerous and only 67 non ovigerous females in the MMBI samples (ratio 1.07).

The central half of the CW size distribution of crabs differed between samples for all sexes, except for ovigerous females (Fig. 6). Ovigerous females were within a narrow size range of 44 and 58 mm (mode, median, mean at 55, 54, 52 mm) in the SIO RAS samples, and between 42 and 72 in the MMBI samples (mode and mean of 62 mm, median 61 mm, the central 50% CW ranged from 58 to 66).

The non ovigerous females from SIO RAS trawling samples ranged from 11 to 47 mm (central half between 14-16 mm; mode, median and mean CW of 14, 15 and 17 mm respectively). The MMBI non ovigerous females were larger and ranged from 22 to 63 mm (central half between 33-52 mm; with mode, media and mean CW of 48, 45 and 42 mm).

Overall, male sizes also differed between these two sampling methods and area of collection:

The CW of 293 crabs caught by SIO RAS ranged from 11 to 117 mm (mid 50% within 14-16 mm; mode, median and mean of 14, 15, and 18 mm); and the CW of 523 crabs caught by MMBI ranged from 23 to 120 mm (mid 50% within 51-66 mm; mode, median and mean of 52, 55, and 59 mm). The small mesh in the Sigsbee trawl of SIO RAS allowed us to collect 190 small "juvenile" crabs. In this paper we apply this term to all crabs with CW less than 11 mm, whose sex cannot be easily identified.

Abundance estimation

Population density of crabs was calculated from the video transects (Table 3). In these videos no native *Hyas araneus* crabs were spotted. However, in videos made in different years (not discussed in this work) the native crabs could be successfully differentiated from the snow crabs opilio in the vicinity of the Kara Gate Strait. Each video frame was visually inspected by A. Zalota and only frames with tolerable visibility were used. As this is our first attempt to record and analyze such videos, the quality was not always of the same standard and a large proportion of the data could not be used. Not all measured crabs were used in density calculations, since some frames had to be cut around the edges to standardize the method. Overall 3132 frames were analyzed, resulting in 3776 m² of bottom inspected.

 The maximum density was observed near the Kara Gate Strait and in Blagopoluchiya Bay (0.87 and 0.55 crabs/m² respectively). In the other bays (located between the Kara Gate Strait and Blagopoluchiya Bay) the population density of crabs was several times or one order of magnitude lower, reaching the minimum value of 0.01 crabs/m² in Haug Bay (Table 3).

DISCUSSION

Advantages and disadvantages of the applied methods to study invasive snow crab population

The three methods discussed here revealed different aspects of the *Chionoecetes opilio* population size structure in the Kara Sea. The Sigsbee trawl used by SIO RAS has small mesh and catches crabs as small as 4 mm CW, which is the size of recently settled crabs (*Conan et al.*, 1996). However, it also has a small opening, and some of large agile crabs escape it. The video

317 recording of the same area shows that large crabs are present, although not always caught. The 318 large bottom trawl is able to catch large crabs, but does not retain younger crabs, due to its large 319 mesh (22-120 mm CW). We do however know that at least at some of the MMBI stations 320 juvenile crabs were present. In some cases a similar to the SIO RAS Sigsbee trawl has been used, but the data was not dully recorded, and is thus omitted from the results. The combined use of 321 322 these trawling gears could provide full scope data of the existing size groups in a population. 323 The video sampling allows us to observe larger crabs, although some smaller crabs can 324 also be spotted (up to 7 mm CW) (Fig 7 A). The *Video Module* floats over the bottom with very F little impact. Due to the muddy sediments in the studied area, every sudden movement of large 325 326 agile organisms (crabs, fish) create a notable cloud and could easily be spotted on the video. In 327 all of the recorded footage, there were very few cases of such clouds: in most of them it was a 328 fish, and sometimes crabs would run forward, and stop, therefore still recorded by us (Fig 7 C). It 329 is safe to say that larger crabs (CW 30 mm and above) are quantitatively recorded on the video. 330 However, crabs smaller than approximately 30 mm are probably substantially underestimated. 331 Snow crabs are known to borrow in the sediments, especially in younger stages (Conan et al., 332 1996; Dionne et al., 2003). In some cases with good visibility, an outline of submerged crabs 333 could be seen on the surface of the muddy sediments (Fig 7 B). Although, it is possible that a 334 few crabs were not counted due to low visibility and deep burrowing. Therefore, the crab densities calculated from the video footage can be largely underestimated. 335 336 The highest density of crabs recorded in 2016 was in Blagopoluchiya Bay (0.87 337 crabs/m²). The crabs were very small in both the Sigsbee and the video samples (majority of 338 crabs with CW below 20 mm). Even though the mixture analysis has identified two distinct small 339 sized groups (8-9 mm and 14-15 mm) for both methods, there was a much sharper difference 340 between the groups, and the larger groups were much more distinct in trawl samples (Fig. 3 A,B, 341 Table 1). Such differences could be due to possible errors in size measurements of filmed crabs. 342 In case of the trawling samples, the CW was measured directly, using callipers. In the video 343 samples, the CW was measured by a ruler, which has lower precision. In addition, the measurements were recalculated based on the distance between the two laser points that were 344 345 also measured by a ruler. The crabs were not always in absolutely plain position towards the camera, and the visibility often did not permit to see the edges of carapace clearly. Therefore, 346 there is a lot of guessing involved in attaining the CW measurements from video footage. 347

348	However, the most important error in the identification of size groups using video
349	samples was due to sexual dimorphism. The size groups (instars) of <i>Chionoecetes opilio</i> have
350	been well studied and the young crabs (pre puberty molting <20-30 mm) seem the similar
351	size groups across their range of habitat (Ito, 1970; Ogata, 1973; Kon, 1980; Sainte-Marie et al.,
352	1995; Ernst et al., 2012). These instars are in accordance with those observed for young crabs in
353	the Kara Sea in 2014 (Zalota et al., 2018) and in 2016 (present study, Table 1). After puberty
354	molting (which was shown to be at 37-40 mm for males and 17 mm for females, in the Gulf of
355	St. Lawrence) crabs' growth rate and possible skipping of moults in females is strongly affected
356	by temperature (Sainte-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998; Dawe et al.,
357	2012) which is less than 0 and -1°C in most areas of the Kara shelf (Polukhin & Zagretdinova,
358	2016; see also Zalota et al., 2018). Further growth and survival success of larger crabs may also
359	be affected by low food availability for benthic predators in the Kara Sea (Zenkevich, 1963). As
360	they age further, they molt approximately once a year, or even rarer until they reach their
361	terminal molt (males at CW (postmoult) as small as 40 mm up to 150 mm; females 30-95 mm)
362	(Ito, 1970; Robichaud et al., 1989; Comeau et al., 1998; Sainte-Marie & Hazel, 1992; Sainte-
363	Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998).
364	Taking into account these errors, caused by aggregating males and females in video
365	samples, it is not surprising that crabs larger than 20 mm blur into one large size group in the
366	video obtained data, while crabs caught by the large MMBI trawl and measured more accurately
367	can be separated into at least 4 size groups (Table 1, Fig. 2 B, C). Even finer size structure in the
368	MMBI samples can be seen if crabs over 20 mm are separated according to sex (Table 1). Males
369	have 7 distinct size groups over 20 mm CW, whereas, females' groups are more blurred. This
370	can be due to differences in molting and growth rates. Since video data cannot provide
371	information on sexual dimorphism, the work done to study exact differences in the size structure
372	of immature and mature crabs in the Kara Sea is not presented in this paper. Nevertheless, the
373	obtained data still permits to identify generalized size groups and to approximate their relative
374	quantities.
375	
376	Development of snow crabs' invasion and possible role in Blagopoluchiya Bay

PeerJ reviewing PDF | (2019:04:36317:0:0:NEW 4 Apr 2019)

379 samples. Most of the crabs, both caught in the trawl and in the video footage, were less than 20 380 mm, and form 2 high frequency groups at around 15 and 10 mm CW (Figs. 3 A,B, 4; Table 1). 381 These size groups correspond to the age of less than 2 years. In the Gulf of St. Lawrence it takes 382 16 to 17 months for crabs to achieve CW 10 mm, and another 16 months to achieve size 20 mm through multiple molting events (Ogata, 1973; Sainte-Marie et al., 1995). Therefore, the 383 384 majority of these crabs could not have settled much earlier than 2014. That year we caught crabs no bigger than 5 mm in the vicinity of that bay (station 51 in Zalota et al., 2018). Indeed, that 385 386 was the first year when the crabs have been observed across the entire western Kara Sea and in 387 most cases they were young, with high abundance of just settled crabs (Zalota et al., 2018). 388 There were a few larger crabs in Blagopoluchiya Bay that were caught on camera. Their 389 sizes are not big enough to assume their active migration from other areas. This suggests that 390 there were earlier successful settlings of crabs, but the proportion of larger crabs is almost 391 negligible (Fig. 3 A, B). The density of the young crabs in the bay is very high (0.87 crabs per 392 m²) and in some cases we observed up to 8 crabs in one video frame (approximately 0.5 m²). 393 Such high densities of young crabs suggest that the recent particular combination of 394 oceanographic and sea ice conditions in the area facilitated massive settling and rapid increase of 395 the juveniles snow crab numbers. The larvae that settled in Blagopoluchiya Bay were likely 396 transported by the Eastern Novava Zemlya current. 397 This current originates from the Barents Sea water, entering the Kara Sea off the northern 398 coast of the Novaya Zemlya and is directed to the south-west along the eastern coast of this 399 archipelago (Paylov & Pfirman, 1995). Previously, the bays of the Novaya Zemlya, especially in 400 the north such as Blagopoluchiya Bay, have been blocked by the ice longer than most of the 401 western Kara Sea (AARI, 2007-2014). Although a narrow Northern Novaya Zemlya Polynya 402 occurred from time to time (Gavrilo & Popov, 2011). Since 2011, changing sea conditions of the 403 2000 – 2010s manifested in an abrupt sea ice decrease in June (NOAA, Snow and Ice, 1979-2018). Although, there was more ice in the spring of 2014 (in comparison to 2011), the sea ice 404 405 cover along the Novaya Zemlya Archipelago, was the first to retreat and an extensive polynya 406 was formed (AARI, 2007-2014). Early sea ice decay could have facilitated seasonal development of phyto- and zooplankton, and hence favourable conditions for feeding and successful settling 407 of crab larvae. 408

Blagopoluchiya Bay appears to have very different size structure compared to all

109	This settling took place in the practical absence of benthic predators. Adult snow crabs
410	were not yet present, and the native crab species, Hyas araneus, is very rare in that area
411	(Anisimova et al., 2007; authors' observations). In addition, predatory demersal fishes have
412	substantially lower diversity and abundance than in the Barents Sea (Dolgov at al., 2009, 2014;
413	Dolgov & Benzik, 2016). The snow crabs could have settled in the southern bays and in the
414	central part of the Kara Sea (which adults could have also reached by active migration) before
415	they reached the northern bays of the Novaya Zemlya Archipelago. Hence, we can observe such
416	difference in the population size structure of Blagopoluchiya Bay in comparison to the rest of
417	studied areas.
418	
419	Indication of formation of spatial population structure
420	
421	Overall there seems to be a pattern in the snow crabs' size distribution across the western
122	Kara Sea. All MMBI stations (large bottom trawl) do not have strong correlation between the
423	CW and the depth. These stations are positioned on a broad, slightly sloping shallow shelf (46 to
124	195 m). However there is a visually observable trend of maximum sizes prevailing in the Kara
125	Gates Strait and northwards along the Yamal Peninsula (Fig. 5). This closely resembles
426	prevailing current path of the Barents Sea waters, known as Yamal Current (Pavlov & Pfirman,
127	1995; Zatsepin et al., 2010a). The area along the Yamal Peninsula and the Novaya Zemlya
428	Archipelago has higher benthic biomass rates than in the centre of the western Kara Sea
129	(Antipova & Semenov, 1989; Kulakov et al., 2004; Kozlovskiy et al., 2011). The decrease of the
430	maximum CW from the Yamal Peninsula towards the centre of the western Kara Sea could be
431	due to lower food availability in the centre, and thus the crabs have insufficient nutrition to
432	achieve larger sizes.
433	There could also be behavioural separation, where smaller sized crabs are forced to move
134	to the less rich in food territory to escape cannibalism, which is very common among this species
435	(Conan et al., 1996; Comeau et al., 1998). No such trends can be observed along the Novaya
436	Zemlya Archipelago, probably due to low sampling effort. There are reports of difference in the
437	habitat preferences of different sized snow crabs in their native habitat areas (Comeau et al.,
438	1998; Ernst et al., 2012). The bays of the Novaya Zemlya have the potential to act as a nursery
139	for smaller, more vulnerable specimens, as it has been observed in the Gulf of St. Laurence



(*Comeau et al.*, 1998). Whether this separation exists or will ever exist in the Kara Sea is hard to say at this point. However, the vicinity of deep trough along the Novaya Zemlya Archipelago could attract larger crabs and lead to size based migration out of the bays.

The recruitment of crabs in the Kara Sea at early stages of invasion might be mostly due to the inflow of the larvae from the Barents Sea (*Zalota et al.*, 2018). Here we present findings of substantial number of ovigerous females, most of which have been found along the Yamal Peninsula (with no apparent spatial or depth distribution patterns), and none in the bays. With the present data it is hard to say whether this was due to sampling gear limitation to catch representative sample of larger crabs or a reflection of the real picture. All ovigerous females had CW larger than 40 mm (Fig. 6). This corresponds to the size of female's terminal (sexual maturity) molt reported in the literature (starting from 35 mm) (*Sainte-Marie et al.*, 1995; *Alunno-Bruscia & Sainte-Marie*, 1998). Crabs of these sizes had a low catchment rate in the SIO trawling samples along the Novaya Zemlya Archipelago. In most cases the video samples suggest that the crabs with CW larger than 40 mm prevail in the vicinity of most sampled bays (Fig. 4). Therefore, it is likely that there are reproducing crabs in most sampled areas. It is safe to say, that at present the snow crab opilio has a reproducing population in the Kara Sea.

The spatial and functional structure of the snow crab population in the Kara Sea is still in process of formation. The data of 2016 indicate that this process may lead to a quite complex system, which is based on local recruitment, transport of larvae from the Barents Sea and across the western Kara shelf, formation of nursery grounds, and an active migration of adults and their concentration in particular shelf areas with appropriate feeding conditions. This system on the other hand can't be static as it is influenced by changing advection of the Barents Sea water and its interaction with the water of river discharge origin (*Zatsepin et al.*, 2010b), sea ice regime, trophic conditions and predation pressure on juvenile crabs.

CONCLUSION

The present study compares and combines the results obtained using three different sampling gears to assess the size composition and density of the snow crab population (Sigsbee trawl survey, video transects, and a survey performed using a large commercial type trawl). These methods prove to be complementary in assessing a complex structure of the developing

171	snow crab population in the Kara Sea. Optimally they have to be used alongside. The data of
172	2016 has finally proven that the Kara Sea population has attained some complexity with all age
173	groups present and is reproducing, although presumably still influenced by the larval transport
174	from the Barents Sea. We observed initial nursery areas in the bays of the eastern coast of the
175	Novaya Zemlya Archipelago and areas with large adult concentrations near the Kara Gate Strait
176	and the western coast of the Yamal Peninsula. Only further studies of the invading Chionoecetes
177	opilio population can show how persistent these features are.
178	
179	ACKNOWLEDGEMENTS
180	
181	We would like to thank the Captains, the crews and the science teams and their leaders
182	that participated during the RV Akademik Mstislav Keldysh SIO RAS and RV Dalniye Zelentsy
183	MMBI KSC RAS cruises to the Kara Sea in 2016. We are particularly grateful to the team of
184	engineering and technical research of SIO RAS for creating and using an uninhabited, towed,
185	submerged, inert vehicle (UTSI) Video Module to film the footage during the SIO RAS
186	expedition.
187	
188	REFERENCES
189	AARI, 2007-2014, General maps of sea ice cover. St. Petersburg: Arctic and Antarctic Research
190	Institute (AARI),
191	http://www.aari.ru/odata/_d0004.php?m=Kar⟨=0&mod=0&yy=2014 (Accessed
192	25.11.2018).
193	AARI, 2009, Winter Kara Sea Atlas,
194	http://www.aari.ru/resources/a0013_17/kara/Atlas_Kara_Sea_Winter/text/rejim.htm
195	(Accessed 25.11.2018).
196	Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on
197	Automatic Control 19:716-723.
198	Alunno-Bruscia, M., Sainte-Marie, B. 1998. Abdomen allometry, ovary development, and
199	growth of female snow crab, Chionoecetes opilio (Brachyura, Majidae), in the
500	northwestern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences.
501	55(2): 459-477.

502	Alvsvåg, J., Agnalt, A. & Jørstad, K. 2009. Evidence for a permanent establishment of the snow
503	crab (Chionoecetes opilio) in the Barents Sea. Biological Invasions, 11: 587-595.
504	AMAP Assessment. 2015. Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic
505	Monitoring and Assessment Programme (AMAP), Oslo, Norway. vi+71pp
506	Amiragyan, A. 2017. Development of oil and gas resources of the Russian Arctic shelf: problems
507	and prospects. Business journal Neftegaz Ru. 8:16-22. (In Russian)
508	Anisimova, N.A., Ljubin, P.A., Menis, D.T. 2007. Benthos. In: PrischepaB.F. (ed) Ecosystem of
509	the Kara Sea. PINRO publishing, Murmansk: 43-105 (in Russian).
510	Antipova, T.V., Semenov, V.N. 1989. Composition and distribution of benthos in the
511	southwestern regions of typical sea waters of the Kara Sea. Ecology and Bioresources of
512	the Kara Sea. Apatity: Publishing house KSC RAS: 127-137. (In Russian).
513	Ashik, I.M., Karklin, V.P., Kirillov, S.A., Radionov, V.F., Timokhov, L.A. 2014. Impact of
514	climate change on marine natural systems. Arctic Seas of Russia. In The second
515	assessment report on climatic changes and their consequences in the territory of Russian
516	Federation. Moscow, State Hydrometeorological Service: 578-615.
517	http://voeikovmgo.ru/index.php?option=com_content&view=article&id=649&Itemid=24
518	⟨=ru (Access 01.12.2018) (In Russian).
519	Byers, J.E., Smith R.S., Pringle, J.M., Clark, G.F., Gribben, P.E., Hewitt, C.L., Inglis, G.J., et al.
520	2015. Invasion Expansion: Time since Introduction Best Predicts Global Ranges of
521	Marine Invaders. Scientific Reports, 5: 12436. https://doi.org/10.1038/srep12436
522	Bakanev, S.V. 2015. Dispersion and assessment of possible distribution of snow crab opilio
523	(Chionoecetes opilio) in the Barents Sea. Principles of Ecology, 3:27-29. (In Russian)
524	Bakanev, SV, Dvoretsky, A., Pavlov, V.A., Pinchukov, M., Zacharov, D., Zolotarev, P. 2016
525	Commercial shellfsh: status of commercial stocks. In: Joint Norwegian—Russian
526	environmental status 2013. Report on the Barents Sea Ecosystem. Part II—Complete
527	report. Ed. by M.M. McBride, J.R. Hansen, O. Korneev, O. Titov. Co-ed. by J.E.
528	Stiansen, J. Tchernova, A. Filin, A. Ovsyannikov. IMR/PINRO Joint Report Series,
529	1:224–241.
530	Bakanev, S.V., Pavlov, V.A., Goryanina, S.V. 2017. Material justifying correction of the total
531	allowable catch of the snow crab in the EEZ of Russia in the Barents Sea in 2017. NM
532	Knipovich Polar Institute of Fishery and Oceanography, Murmansk

533	www.pinro.ru/15/images/stories/news/cor-odu-opilio201/.docx. (Access 20.05.201/) (In
534	Russian)
535	Comeau, M., Conan, G., Maynou, F., Robichaud, G., Therriault, J., Starr, M. 1998. Growth,
536	spatial distribution, and abundance of benthic stages of the snow crab (Chionoecetes
537	opilio) in Bonne Bay, Newfoundland, Canada. Canadian Journal of Fisheries and Aquatic
538	Sciences, 55:262-279.
539	Conan, G., Starr, M., Comeau, M., Therriault, J., Robichand, G., Hernàndez, F. 1996. Life
540	history strategies, recruitment fluctuations, and management of the Bonne Bay Fjord
541	Atlantic snow crab (Chionoecetes opilio). Proceedings of the international symposium on
542	biology, management, and economics of crabs from high latitude habitats. University of
543	Alaska Sea Grant College Program Report: 96-102.
544	Chuchukalo, V.I., Nadtochiy, V.A., Fedotov, P.A., Bezrukov, R.G. 2011. Feeding habits and
545	some aspects of biology of snow crab opilio (Chionoecetes opilio) in Chukchi Sea. Izv.
546	TINRO, 167:197–206.
547	Dawe E.G., Mullowney D.R., Moriyasu M., Wade E., 2012, Effects of temperature on size-at-
548	terminal molt and molting frequency in snow crab Chionoecetes opilio from two
549	Canadian Atlantic ecosystems, Marine Ecology Progress Series Mar Ecol Prog Ser Vol.
550	469: 279–296, 2012
551	Demidov, A.B., Mosharov. S.A. 2015. Vertical distribution of primary production and
552	chlorophyll a in the Kara Sea. Oceanology. 55:521-534.
553	Demidov, A.B., Mosharov, S.A., Makkaveev, P.N. 2015. Evaluation of environmental factors
554	infuence on Kara Sea primary production in autumn. Oceanology 55:535-546
555	Dionne, M., B. Sainte-Marie, E. Bourget, and D. Gilbert. 2003. Distribution and habitat selection
556	of early benthic stages of snow crab, Chionoecetes opilio. Marine Ecology Progress
557	Series, 259:117–128
558	Dolgov, A.V., Benzik, A.N. 2016. Snow crab opilio as a prey for fish in the Barents Sea. In
559	Snow crab Chionoecetes opilio in the Barents and Kara Seas. Ed. by Sokolov K.M.,
560	Strelkova, N.A., Manushin, I.E. and Sennikov A.V. PINRO Publishing, Murmansk: 140-
561	155. (In Russian)

62	Dolgov, A.V., Benzik, A.N., Chetyrkina, O.Yu. 2014. Feeding peculiarities of non-target fish
563	and their role in productivity of the Kara Sea ecosystem. Trudy VNIRO, 152:190-208.
564	(In Russian)
565	Dolgov, A.V., Smirnov, O., Drevetnyak, K.V., Chetyrkina, O.Yu. 2009. New data on
566	composition and structure of the Kara Sea ichthyofauna. ICES CM 2009/E:32.Ernst, B.,
567	Armstrong. D.A., Burgos, J., Orensanz, J.M. 2012. Life history schedule and periodic
568	recruitment of female snow crab (Chionoecetes opilio) in the eastern Bering Sea.
569	Canadian Journal of Fisheries and Aquatic Sciences 69:532-550.
570	Ernst B, Armstrong DA, Burgos J, Orensanz JM, 2012, Life history schedule and periodic
571	recruitment of female snow crab (Chionoecetes opilio) in the eastern Bering Sea. Can J
572	Fish Aquat Sci 69:532–550
573	Gavrilo, V.V., Popov, A.V. 2011. Sea ice biotopes and biodiversity hotspots of the Kara and the
574	north-eastern Barents Sea. In Atlas of the Marine and Coastal Biodiversity of the Russian
575	Arctic. Ed. by V.A, Gavrilo, M.V., Nikolaeva, N.G., Krasnova. Moscow, WWF Russia:
576	34–35.
577	Hammer, Ø. 2013. PAST: Paleontological Studies Version 3.0: Reference Manuel. Natural
578	History Museum. Olso. http://folk.uio.no/ohammer/past/past3manual.pdf (Accessed
579	03.10.2016).
580	Hammer, M. and Hoel, A.H. 2012. The Development of Scientific Cooperation under the
581	Norway-Russia Fisheries Regime in the Barents Sea. Arctic Review on Law and Politics,
582	3(2):244–274. ISSN 1891-625
583	Ho, J. 2010. The implications of Arctic sea ice decline on shipping. Marine Policy, 34(3):713-
84	715.
585	Ito, K. 1970. Ecological studies on the edible crab. Chionoecetes opilio (O. Fabricius) in the
86	Japan Sea. II. Age and growth as estimated on the basis of the seasonal changes in the
887	carapace width frequencies and the carapace hardness. Bull. Jpn. Sea Reg. Fish. Res.
888	Lab., 22: 81-116.
589	Jørgensen, L.L., Lyubin, P.A., Skjoldal, H.R., Ingvaldsen, R.B., Anisimova, N.A., Manushin,
590	I.E. 2015. Distribution of benthic megafauna in the Barents Sea: Baseline for an
591	ecosystem approach to management. ICES Journal of Marine Science, 72:595-613.

592	Kolts, J.M., Lovvorn, J.R., North, C.A., Grebmeier, J.M., Cooper L.W. 2013. Effects of body
593	size, gender, and prey availability on diets of snow crabs in the northern Bering Sea.
594	Marine Ecology Progress Sereis, 483:209-220.
595	Kon, T. 1980. Studies on the life history of the zuwai crab, Chionoecetes opilio (O. Fabricius).
596	Spec. Publ. Sado Mar. Biol. Stn., Niigata Univ. 2:64 pp.
597	Kozlovskiy, V.V., Chikina, M.V., Kucheruk, N.V., Basin, A.B. 2011. Structure of the
598	macrozoobenthic communities in the Southwestern Kara Sea. Oceanology, 51(6):1012-
599	1020.
600	Kulakov, M.Yu., Pogrebov, V.B., Timofeyev, S.F., Chernova, N.V., Kiyko, O.A. 2004. Chapter
601	29. Ecosystem of the Barents and Kara Seas, coastal segment (22,P). In The Sea, Volume
602	14. Ed. by A.R. Robinson and K.H. Brink ISBN 0-674- ©2004 by the President and
603	Fellows of Harvard College. pp 1135-1172.
604	Kuzmin, S.A., Akhtarin, S.M., Menis, D.T. 1998. The first finding of snow crab Chionoecetes
605	opilio (Decapoda, Majidae) in the Barents Sea. Zoologicheskiy Zhurnal. 77:489 – 491.
606	(In Russian)
607	Liua, M., Kronbak, J. 2010. The potential economic viability of using the Northern Sea Route
608	(NSR) as an alternative route between Asia and Europe. Journal of Transport Geography
609	Volume 18(3):434-444.
610	Lovvorn, J. 2010. Predicting snow crab growth and size with climate warming in the northern
611	Bering Sea. North Pacific Research Board, Final Report, 713. 24 pp.
612	NOAA, Snow and Ice, Regional Sea Ice, 1979-2018, https://www.ncdc.noaa.gov/snow-and-
613	ice/regional-sea-ice/extent/Kara/6 (Accessed 25.11.2018).
614	Ogata, T. 1973. Studies on the population biology of the edible crab, Chionoecetes opilio O.
615	Fabricius in the Japan Sea Region. Mar. Sci. Men., 5(3):27-33.
616	Pavlov, V. A. 2006. New data on snow crab (Chionoecetes opilio (Fabricius, 1798)) in the
617	Barents Sea. In VII All-Russian Conference on Commercial Invertebrates, Murmansk, 9-
618	13 October 2006. Moscow, VNIRO Publishing: 109-111. (In Russian)
619	Pavlov, V.K., Pfirman, S.L. 1995. Hydrographic structure and variability of the Kara Sea:
620	implications for pollutant distribution. Deep Sea Res II 42:1369–1390.

621	Pavlov, V.A., Sundet, J.H. 2011. Snow crab. <i>In</i> The Barents Sea ecosystem, resources,
622	management. Half a century of Russian-Norwegian cooperation. Trondheim, Tapir
623	Academic Publishing: 168–172.
624	Polukhin, A.A., Zagretdinova, D.R. 2016. Oceanographical characteristics of the Kara Sea. In
625	Russian Arctic Sea Atlases. Ecological Atlas. Kara Sea. Ed. by Isachenko, A.I. Moscow,
626	Arctic Science Center: 53–76. (In Russian)
627	Poyarkov, S.G., Rimsky-Korsakov, N.A., Flint, M.V. 2017. Technical aspects of environmental
628	research of the western part of the Kara Sea. Oceanological Research. 45:181-186. (In
629	Russian)
630	Pronin, A.A. 2017. Methodology of collecting and presenting material of video footage of
631	bottom with the help if uninhabited, submerged vehicle "Video module". International
632	journal of applied and fundamental research, 12(1):142-147. (In Russian)
633	R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for
634	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
635	Robichaud, D. A., Bailey, R. F. J., Elner, R. W. 1989. Growth and distribution of snow crab,
636	Chionecetes opilio, in the southeastern Gulf of St. Lawrence. J. Shellf. Res., 8:13-23.
637	Romankevich, E.A., Vetrov, A.A. 2001. Carbon Cycle in the Arctic Seas of Russia. Nauka,
638	Moscow. (In Russian)
639	RStudio Team. 2016. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL
640	http://www.rstudio.com/.
641	Sainte-Marie B, Hazel F, 1992, Moulting and mating of snow crabs (Chionoecetes opilio O.
642	Fabricius), in shallow waters of the northwestern Gulf of Saint Lawrence. Can J Fish
643	Aquat Sci 49:1282–1293
644	Sainte-Marie, B., Raymond, S., Brêthes, JC. 1995. Growth and maturation of the benthic stages
645	of male snow crab, Chionoecetes opilio (Brachyura: Majidae). Canadian Journal of
646	Fisheries and Aquatic Sciences, 52(5):903–924.
647	Sirenko, B.I. and Vassilenko, S.V. 2008. Crabs (Crustacea, Decapoda, Brachyura) of the
648	Chukchi Sea. In Fauna and zoogeography of the Chukchi Sea. Explorations of fauna of
649	the sea, Volume 61. Ed. by Sirenko B.I. St. Petersburg: Zoological Institute of Russian
650	Academy of Sciences, 142–148 pp. (In Russian)

an)
111 <i>)</i>
d some aspects
a. Marine
70 th birthday
o SV (eds)
jacent deep
, Hyperiidea,
d Brachyura.
w crab
3N 978-5-
of
s. Journal of the
Bulletin of
he Kara Seas.
I. Ed. by K.M.
nsk. (In
vasive crab
CM
and Ch. bairdi
mponents of
of Corg from the

682	Zalota, A.K., 2017. Non indigenous species of Crustacea Decapoda in Russian seas and
683	contiguous waters. PhD dissertation. Moscow. 234 pp. (In Russian)
684	Zalota, A.K., Spiridonov, V.A., Vedenin, A.A. 2018 Development of snow crab Chionoecetes
685	opilio (Crustacea: Decapoda: Oregonidae) invasion in the Kara Sea. Polar Biology,
686	41(10):1983-1994. DOI:10.1007/s00300-018-2337-y
687	Zatsepin, A.V., Morozov, E.V., Paka, V.T., Demidov, A,N., Kondrashov, A.A., Korzh, A.O.,
688	Krementskiy, V.V., Poyarkov, S.G., Soloviev, D.M. 2010a. Circulation in the
689	southwestern part of the Kara Sea in September 2007. Oceanology, 50: 643-656.
690	Zatsepin, A.G., Zavialov, P.O., Kremenetskiy, V.V., Poyarkov, S.G., Soloviev, D.M. 2010b. The
691	upper desalinated layer water propagation and transformation in the Kara Sea.
692	Oceanology, 50: 657–667.
693	Zatsepin, A.G., Poyarkov, S.G., Kremenetskiy, V.V., Nedospasov, A.A., Shchuka. S.A.,
694	Baranov, V.I., Kondrashov, A.A., Korzh, A.O. 2015. Hydrophisical features of deep
695	water troughs in the Kara Sea. Oceanology, 55: 472-484.
696	Zenkevich, L.A. 1963. Biology of USSR seas. Moscow, press ASci USSR. 740 pp.
697	Zimina, O.L. 2014. Finding the snow crab Chionoecetes opilio (O. Fabricius, 1788) (Decapoda:
698	Majidae) in the Kara Sea. Russian Journal of Marine Biology, 40:490-492.
699	Zimina, O.L., Lyubin, P.A., Jørgensen, L.L., Zakharov, D.V., Lyubina, O.S. 2015. Decapod
700	crustaceans of the Barents Sea and adjacent waters: species composition and peculiarities
701	of distribution. Arthropoda Selecta, 24:417–428.

Table 1(on next page)

Results of mixture model analysis of *Chionoecetes opilio* carapace width (CW) measured from trawl (MMBI and SIO) sampling and video footage from the Kara Sea in 2016.

* An additional size group added manually; ** 3 size groups of crabs with CW less than 19 mm; *** 4 size groups of crabs with CW over 19 mm.

Mean CW ± standard deviation (mm)									Akaike	Log				
Size groups/Instars		I-II	III-IV	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	VI	VII	VIII	IX	X	>X		IC	lk.hood
All CIO		4*	10±1	14±1	16±1	23±2	34±3	45±2	52	+0		100*	1743	-866**
All SIO		4	10±1	14-1	10±1	2312	34±3	43±2	52±9		100	567	-275***	
All MMBI							36±7	•	52±3	65±5	85±6	100*	3957	-1970
All Video			8±1	15	±3			46±11				100*	5406	-2697
		•					•				•	•		
Only from	SIO		10±1	14	±1	22±1	34±2						2166	-1050
Blag-chiya														
Bay	Video		8±1	15	±4		32±8						1722	-855
												•		
All SIO	Female	<19*		22±2	32±3	45±2	55±2				324	-153		
All SIO Male <19*		24±2	34±4	45±3		63±5		114±3	269	-121				
All MMBI	Female						34±7		50±3	60±4	70±2		820	-401
All MMBI	Male					24±1	38± 6	48±1	53±3	65±2	79±10	116±3	3153	-1562

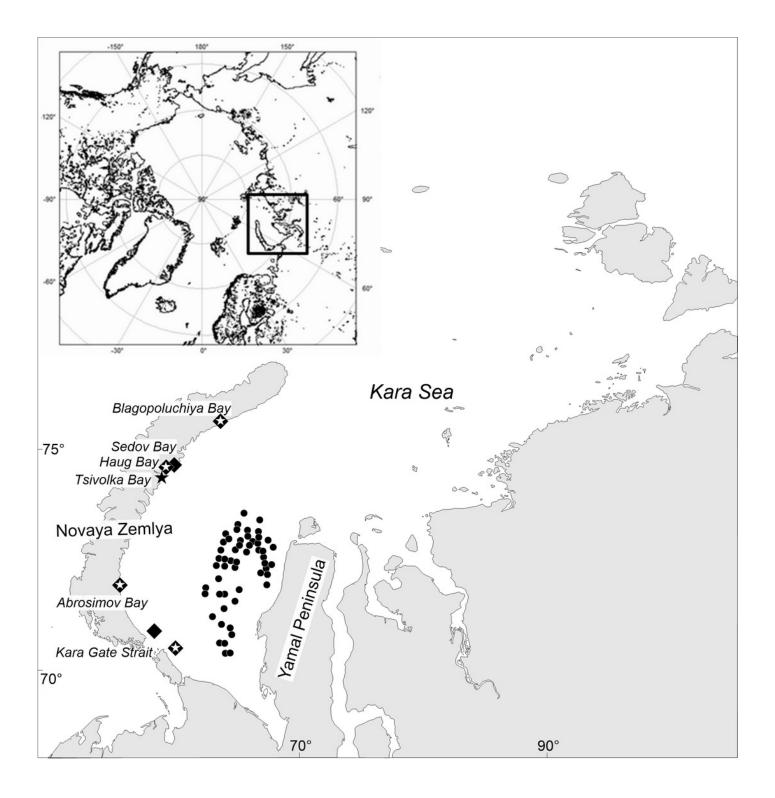
Table 2(on next page)

Correlation of carapace width parameters with sample stations' depth for SIO RAS trawling (6 stations) and video (5 stations), and MMBI trawling (53) stations.

		Minimum	Maximum	Mode	Mean
MMBI	p	0.004	0.48	0.54	0.37
IVIIVIDI	R ²	2.0E ⁻⁰⁵	0.24	0.29	0.14
IO	p	0.36	0.93	0.56	0.86
10	R ²	0.13	0.87	0.31	0.73
Video	p	0.53	0.91	0.07	0.53
Video	R ²	0.28	0.83	0.004	0.28

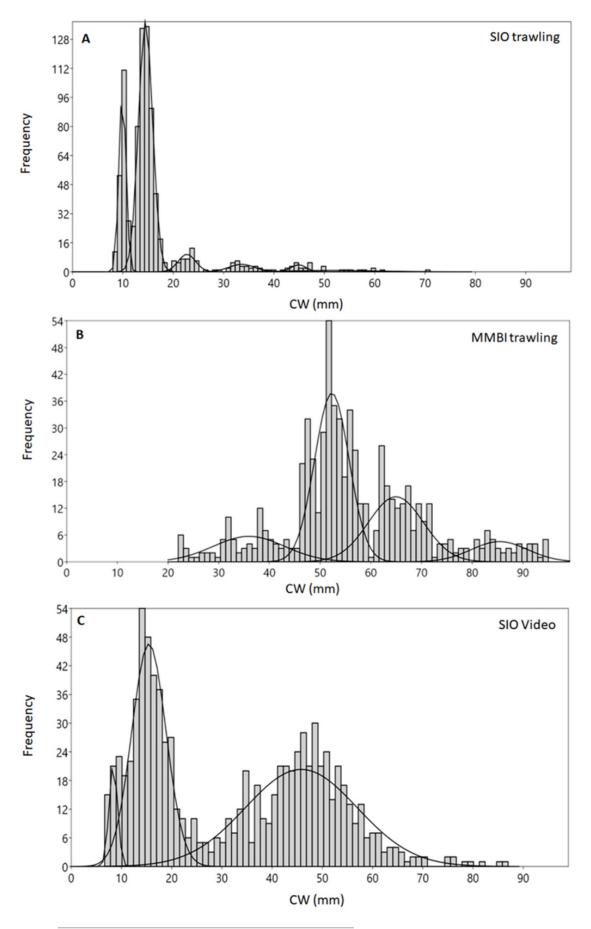
Table 3(on next page)

Results of the analysis of video data of *Chionoecetes opilio* captured during the SIO RV *Akademik Mstislav Keldysh* cruise to the Kara Sea in 2016.


	Number of video frames	Total video area m ²	Number crabs	Density crabs/m ²
Blagopoluchiya				
Bay	405	449	389	0.87
Haug Bay	578	629	7	0.01
Tsivolka Bay	1077	1355	204	0.15
Abrosimov Bay	629	1130	86	0.08
Kara Gates 2	443	213	118	0.55

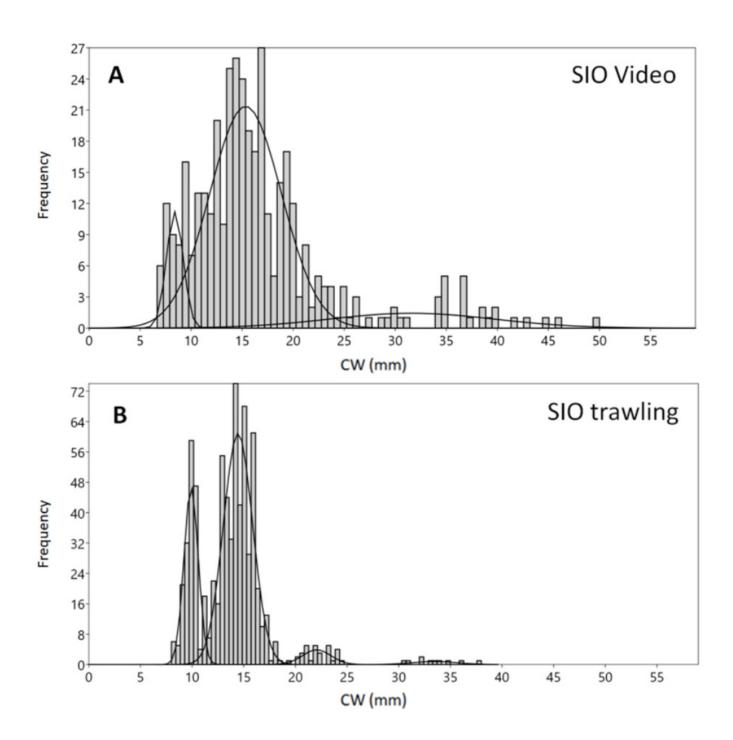
Map of stations surveyed the RV *Dalniye Zelentsy* (MMBI) and the cruise of RV *Akademik Mstislav Keldysh* (SIO RAS) in August-September 2016 in the Kara Sea.

CIRCLES - MMBI bottom trawling stations; **DIAMONDS** - SIO RAS Sigsbee trawling stations, and STARS stations with video footage of the bottom using UTSI *Video module*.

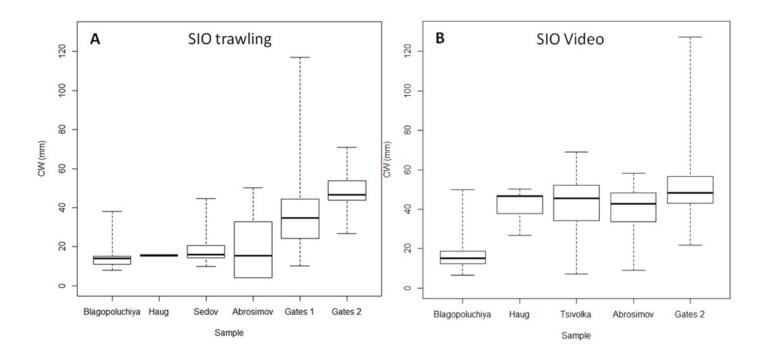


Carapace width (CW) size group frequencies of *Chionoecetes opilio* collected and measured by different methods from the Kara Sea in 2016.

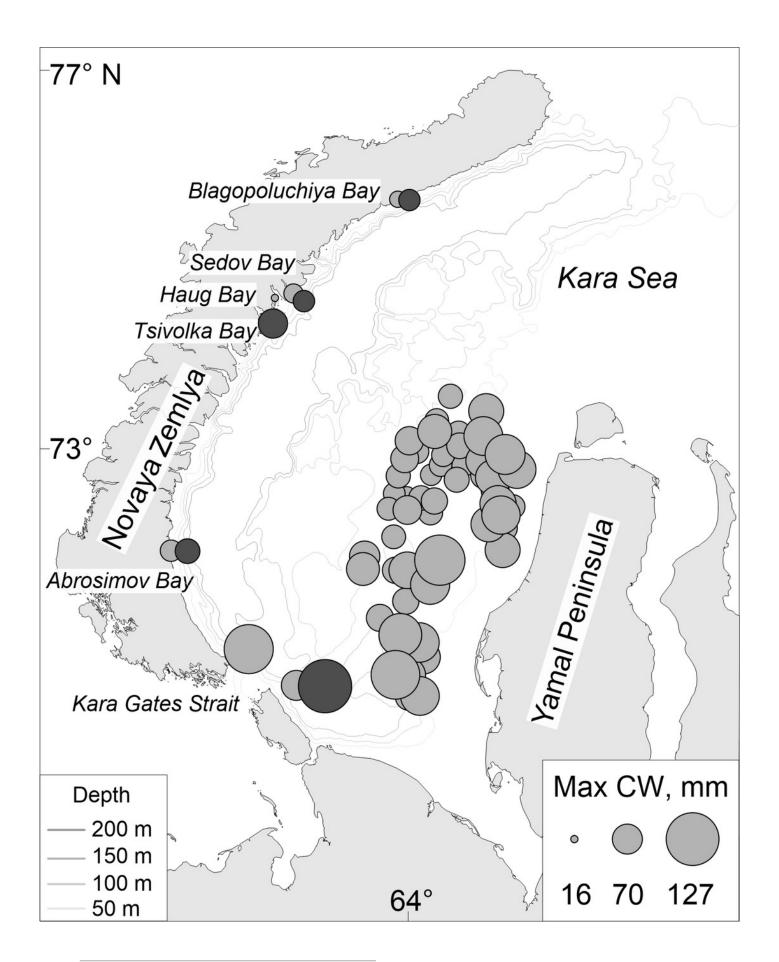
A. All SIO samples collected by Sigsbee trawl; **B.** MMBI samples collected by a large bottom trawl; **C.** All data collected from video footage.



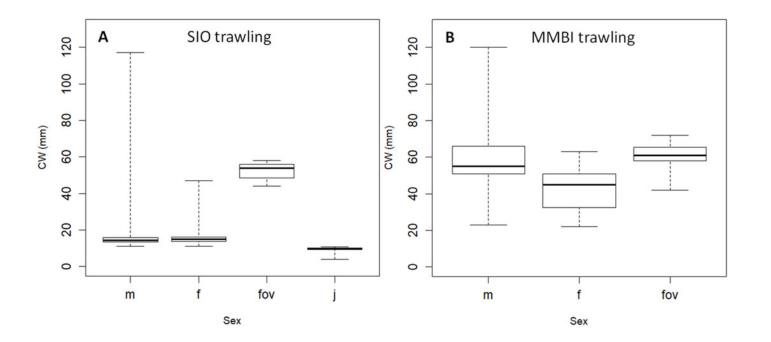
Carapace width (CW) size group frequencies of *Chionoecetes opilio* collected and measured by different methods from the vicinity of Blagopoluchiya Bay in 2016.

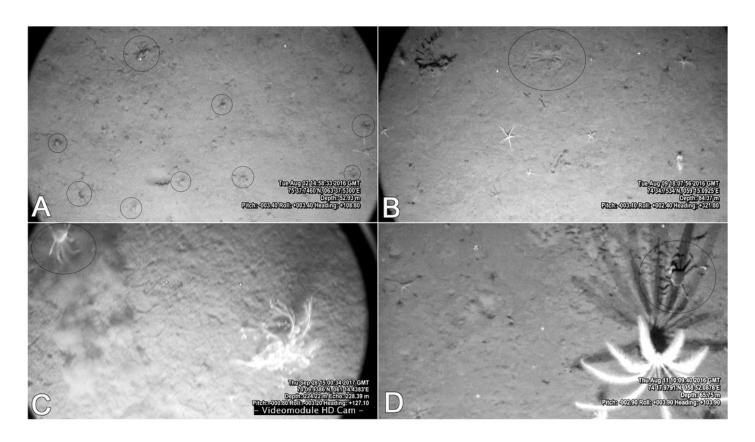

A. Video data collected prior to trawling; **B**. SIO Sigsbee trawling.

Box plots of carapace width (CW) distribution of crabs caught at SIO RAS stations.


(A) Trawling stations; (B) Video sampling stations. Boxes reflect data between first and third quartile (50 %), thick line is the median, and whiskers extend to the maximum and minimum CWs.

Map of maximum carapace width of *Chionoecetes opilio* distribution collected in the Kara Sea in August-September 2016.


Crabs collected using (**light grey circles**) MMBI large bottom trawl and SIO Sigsbee trawling; and from (**dark grey circles**) video footage of the bottom.


Box plots of carapace width (CW) distribution of Chionoecetes opilio of different sexes.

(**A**) SIO RAS and (**B**) MMBI trawling samples. (**m**) – males; (**f**) – non ovigerous females; (**fov**) – ovigerous females; (**j**) – juveniles with CW less than 11 mm. Boxes reflect the data between the first and third quartile (50 %), thick line is the median, and whiskers extend to the maximum and minimum CWs.

Frames from the video footage recorded by UTSI Video module.

A. Blagopoluchiya Bay frame with 8 crabs. **B**. Imprint of borrowed crab on muddy sediments of Haug Bay. **C.** A crab creating a sediment cloud while running away in the Kara Gates Straight (filmed in 2017). **D**. Snow crab in the shadow of a sea lily in Tsivolka Bay. Crosses outline the original position of laser points 60 cm apart.

