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ABSTRACT
Background. Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important
crops in many developing countries and provides a candidate source of bioenergy.
However, neither a complete reference genome nor large-scale full-length cDNA
sequences for this outcrossing hexaploid crop are available, which in turn impedes
progress in research studies in I. batatas functional genomics and molecular breeding.
Methods. In this study, we sequenced full-length transcriptomes in I. batatas and
its diploid ancestor I. trifida by single-molecule real-time sequencing and Illumina
second-generation sequencing technologies.With the generated datasets, we conducted
comprehensive intraspecific and interspecific sequence analyses and experimental
characterization.
Results. A total of 53,861/51,184 high-quality long-read transcripts were obtained,
which covered about 10,439/10,452 loci in the I. batatas/I. trifida genome. These
datasets enabled us to predict open reading frames successfully in 96.83%/96.82% of
transcripts and identify 34,963/33,637 full-length cDNA sequences, 1,401/1,457 tran-
scription factors, 25,315/27,090 simple sequence repeats, 1,656/1,389 long non-coding
RNAs, and 5,251/8,901 alternative splicing events. Approximately, 32.34%/38.54% of
transcripts and 46.22%/51.18% multi-exon transcripts underwent alternative splicing
in I. batatas/I. trifida. Moreover, we validated one alternative splicing event in each
of 10 genes and identified tuberous-root-specific expressed isoforms from a starch-
branching enzyme, an alpha-glucan phosphorylase, a neutral invertase, and several ABC
transporters. Overall, the collection and analysis of large-scale long-read transcripts
generated in this study will serve as a valuable resource for the I. batatas research
community, which may accelerate the progress in its structural, functional, and
comparative genomics studies.
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INTRODUCTION
Sweet potato (Ipomoea batatas (L.) Lam.) is the seventh most important crop in the
world and it ensures food supply and safety in many developing countries. I. batatas is a
hexaploid plant with a complex and heterozygous genome (2n = 6 × = 90, 3–4 gigabase
pairs in genome size (Magoon, Krishnan & Vijaya, 1970; Ozias-Akins & Jarret, 1994)). A
preliminary genome estimate has revealed two genome polyploidization events occurring
about 0.8 and 0.5 million years ago (Yang et al., 2017). Nevertheless, the complete reference
genome of I. batatas remains lacking, which hinders the progress in molecular dissections
of its evolutionary scenario and agronomically important traits. Moreover, I. batatas is
a self-incompatible and thus obligate, outcrossing species (Martin, 1965). It is almost
impossible to develop typical mapping populations such as F2 and recombinant inbred
lines for constructing high-density linkage maps and classical genetic analyses. To date,
no successful investigation in forward genetics (i.e., quantitative trait locus mapping
and subsequently map-based cloning) of I. batatas has been reported. Therefore, RNA
sequencing (i.e., RNA-seq, whole transcriptome shotgun sequencing (Wang, Gerstein &
Snyder, 2009)) has beenwidely used as an attractive alternative to whole genome sequencing
for gene mining in I. batatas (Schafleitner et al., 2010; Wang et al., 2010; Nurit et al., 2013).
However, all reported transcriptomes in I. batatas were derived from second-generation
sequencing platforms, which generate relatively short reads (i.e., hundreds of base pairs per
read) and are disadvantageous in obtaining full-length transcripts (Koren et al., 2012). To
date, the collection and analysis of large-scale full-length cDNA sequences have not been
done in I. batatas, which is fundamental to its structural and functional genomics studies.

Ipomoea trifida (H.B.K.) G. Don has been considered as the diploid ancestor of
I. batatas and accumulative evidence supports this hypothesis (Srisuwan, Sihachakr &
Siljak-Yakovlev, 2006; Wu et al., 2018). Nevertheless, the evolutionary scenario underlying
the origin and domestication of I. batatas remains unclear. Unlike I. batatas, I. trifida
does not form tuberous roots, and thus comparative analysis of I. batatas and I. trifida
may provide insights into the evolution and domestication of I. batatas. Although the
reference genome of I. trifida becomes available recently (Wu et al., 2018) and short-read
transcriptomes of I. trifida have been analyzed in a few projects (Cao et al., 2016; Ponniah
et al., 2017), no study involving the large-scale collection and analysis of full-length cDNA
sequences in I. trifida has been reported.

Long-read or full-length cDNA sequences are fundamental to structural and functional
genomics studies. First, they provide complete information of transcribed sequences, which
are required to gene function analyses. Second, they facilitate accurate predictions of gene
models (i.e., to define proper orientation, order, and boundary of exons). Third, they
may be utilized in validating or correcting the scaffold assembly in genome sequencing
projects. Fourth, they are particularly useful to analyze alternative splicing of transcript

Ding et al. (2019), PeerJ, DOI 10.7717/peerj.7933 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.7933


isoforms, which is important to increase transcriptome diversity and adaptation potential
of an organism. In the past, collecting full-length cDNA sequences was expensive, labor
intensive, and time consuming (Seki et al., 2002; Shoshi et al., 2003). The advent of a
third-generation sequencing platform (i.e., single-molecule real-time (SMRT) sequencing)
has revolutionized DNA sequencing and thus genome/transcriptome studies (Eid et al.,
2010). Long reads of up to 20-kb in size, albeit with a relatively high error rate, can be
produced by SMRT sequencing (Roberts, Carneiro & Schatz, 2013; Au et al., 2013). Today,
high-throughput sequencing combining second-generation sequencing (to generate short
reads with high base quality) and SMRT sequencing (to produce long reads with a relatively
high error rate) has become an attractive option in genome and transcriptome studies (Au
et al., 2013; Sharon et al., 2013; Xu et al., 2015). In the present study, we performed SMRT
sequencing to generate large-scale full-length or long-read transcripts from I. batatas and
I. trifida, respectively. Comprehensive intraspecific and interspecific sequence analyses
were conducted, which has provided a valuable resource for the research community to
exploit the origin of I. batatas.

MATERIALS & METHODS
Plant material and RNA preparation
Xushu18, one of the most widely cultivated I. batatas varieties in China, was selected for
transcriptome sequencing in this study. Eight tissues of young leaves, mature leaves, apical
shoots, mature stems, fibrous roots, initiating tuberous roots, expanding tuberous roots,
and mature tuberous roots from one individual were collected and pooled together in
approximately equivalent weights (Figs. 1A–1H). Similarly, tissues of young leaves, mature
leaves, shoots, stems, and roots of a diploid I. trifida plant were collected and pooled.
Collected samples were frozen in liquid nitrogen immediately after collection and stored
at −80 ◦C until use.

Total RNAs were extracted using Tiangen RNA preparation kits (Tiangen Biotech,
Beijing, China) following the provided protocol. RNAquality and quantity were determined
using a Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington,
DE, USA) and a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Qualified
RNA samples were subsequently used in constructing PacBio cDNA or RNA-seq libraries.

PacBio cDNA library construction and SMRT sequencing
cDNAwas synthesized using a SMARTer PCR cDNA Synthesis Kit, optimized for preparing
full-length cDNA (Takara Clontech Biotech, Dalian, China). Size fractionation and
selection (1–2 kb, 2–3 kb, and >3 kb) were performed using the BluePippinTM Size Selection
System (Sage Science, Beverly, MA, USA). The SMRT bell libraries were constructed with
the Pacific Biosciences DNA Template Prep Kit 2.0. SMRT sequencing was then performed
on the Pacific Bioscience RS II platform using the provided protocol.

Illumina RNA-Seq library construction and sequencing
The RNA-Seq libraries were constructed using a NEBNext R© UltraTM RNA Library Prep
Kit for Illumina R© (NEB, Beverly, MA, USA), following the manufacturer’s protocol.
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Figure 1 Plant materials used in this study and summary of PacBio RS II single-molecule real-time
(SMRT) sequencing. (A–H) Photos showing the developmental stages and overall morphology of eight
tissues in I. batatas used for SMRT sequencing in this study. (A) Young leaves; (B) mature leaves; (C)
apical shoots; (D) mature stems; (E) fibrous roots; (F) initiating tuberous roots; (G) expanding tuber-
ous roots; (H) mature tuberous roots. The photos were adopted from our previous report (Ding et al.,
2017). Number and length distributions of 220,035 reads in I. batatas (I) and 195,188 reads in I. trifida (J)
from different PacBio libraries (fractionated size: 1–2, 2–3, >3 kb); Proportion of different types of PacBio
reads in I. batatas (K) and I. trifida (L).

Full-size DOI: 10.7717/peerj.7933/fig-1
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Qualified libraries were applied to transcriptome sequencing using an Illumina Hiseq 2500
(Illumina, San Diego, CA, USA) to generate 150-bp paired-end sequence reads (2 × 150
bp). High-throughput sequencing reported in this study was performed in the Biomarker
Technology Co. (Beijing, China).

Quality filtering and error correction of SMRT long reads
The SMRT subreads were filtered using the standard protocols in the SMRT Analysis
software suite (http://www.pacificbiosciences.com), and reads of insert (ROIs) were
obtained using the standard protocols in the SMRT Analysis software suite (parameters:
minFullPass=0, minPredictedAccuracy=75). After examining for poly(A)signals and 5′

and 3′ adaptors, full-length and non-full-length cDNA reads were recognized. Consensus
isoforms were identified using the algorithm of iterative clustering for error correction
and further polished to obtain high-quality consensus isoforms. The raw Illumina reads
were filtered to remove adaptor sequences, ambiguous reads with ’N’ bases, and low-
quality reads. Afterward, error correction of low-quality isoforms was conducted using
the Illumina reads with the software proovread 2.13.841 (parameters: –coverage=50
–overwrite, –no-sampling) (Hackl et al., 2014). Redundant isoforms were then removed to
generate a high-quality transcript dataset for each species (i.e., Ib53861 for I. batatas and
It51184 for I. trifida, respectively) using the program CD-HIT 4.6.142 (parameters: -c 0.99
-T 6 -G 0 -aL 0.90 -AL 100 -aS 0.99 -AS 30 -o) (Li & Godzik, 2006).

Functional assignment of transcripts
Functional annotations were conducted by using BLASTX (cutoff E-value≤ 1e−5) against
different protein and nucleotide databases of COG (clusters of orthologous Groups;
https://www.ncbi.nlm.nih.gov/COG/), GO (gene ontology; http://geneontology.org/),
KEGG (kyoto encyclopedia of genes and genomes; https://www.kegg.jp/), Pfam (a database
of conserved protein families or domains; http://pfam.xfam.org/), Swiss-prot (a manually
annotated, non-redundant protein database; https://www.uniprot.org/), TrEMBL (an
automatically annotated protein database; https://www.uniprot.org/), and NR (NCBI
non-redundant proteins; https://www.ncbi.nlm.nih.gov/). For each transcript in each
database searching, the functional information of the best matched sequence was assigned
to the query transcript.

Predictions of open reading frames and simple sequence repeats
To predict putative open reading frames (ORFs) in transcripts, we used the package
TransDecoder v2.0.1 (https://transdecoder.github.io/) to define coding sequences (CDS).
The predicted CDS were searched and confirmed by BLASTX (E-value≤1e−5) against the
protein databases of NR, SWISS-PROT, and KEGG. Those transcripts containing complete
ORFs as well as 5′- and 3′-UTR (untranslated regions) were designated as full-length
transcripts. To identify putative simple sequence repeats (SSRs) in our sequences, the
tool MISA (MIcroSAtellite identification tool; http://pgrc.ipk-gatersleben.de/misa) was
employed. Only transcripts that were ≥500 bp in size were included in SSR detection.
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Identification of transcription factor gene families
This was done according to our previous publication (Ding et al., 2017). Briefly, for
each transcription factor gene family, the Hidden Markov Model (HMM) profile
of the Pfam domain (when available) was downloaded from the Pfam database
(http://pfam.xfam.org) and used as a query to survey all predicted proteins out of
our transcript datasets using HMMER (http://www.hmmer.org). When no HMM
profile was available for a gene family, all protein sequences belonging to the gene
family in A. thaliana were downloaded (http://www.arabidopsis.org) and used as
query sequences to search for our predicted protein datasets using BLASTP (E-value
≤1e−10). One redundant sequence was removed if two proteins shared the identity of
amino acids equal to or larger than 97%. All identified non-redundant proteins were
confirmed the existence of featured domains by searching the NCBI Conserved Domain
Database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The confirmed protein
sequences aswell as their corresponding transcriptswere compiled (Only those gene families
containing more than 10 members in at least one of our transcriptomes were presented).

Prediction of long non-coding RNAs
To sort non-coding RNAs from putative protein-coding ones, we employed each of four
computational approaches including CPC (Kong et al., 2007), CNCI (Liang et al., 2013),
Pfam (Finn et al., 2016), and CPAT (Wang et al., 2013). Putative protein-coding RNAs
were filtered out using a minimum length and exon number threshold according the
instructions of programs. For each species, the intersection of the four resulting lists were
obtained as final lncRNA candidates.

Identification and validation of alternative splicing
To identify alternative splicing (AS) events, all transcripts of Ib53861 and It51184 were
mapped to the the genomic contigs in I. batatas (Yang et al., 2017) and I. trifida (Wu et
al., 2018), respectively, by using the program GMAP (Wu &Watanabe, 2005). The tool
AStalavista v3.2 was employed to identify putative AS events (Foissac & Sammeth, 2007).
Subsequently, 16 of AS events were selected and 10 of them were successfully confirmed by
RT-PCR. Total RNA was isolated from the eight tissues in a I. batatas cultivar (Xushu22)
as described above. The cDNA was synthesized using a cDNA Synthesis Kit (ProbeGene,
China) and used as the template for PCR amplification. Afterward, PCR products were
visualized in agarose gel.

RESULTS
SMRT sequencing and generation of full-length transcriptomes
To obtain large-scale long-read transcripts for I. batatas and I. trifida, respectively, SMRT
sequencing was performed using a Pacific RSII sequencing platform. Eight different tissues
collected from a single plant of each species were pooled and used in mRNA extraction.
Three size-fractionated, full-length cDNA libraries were constructed and subsequently
sequenced in four SMRT cells (Figs. 1I and 1J; 1–2 kb for one cell, 2–3 kb for two cells,
and >3 kb for one cell). In I. batatas, we obtained 220,035 reads of the insert (total
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Table 1 Summary of PacBio sequencing in this study.

I. batatas I. trifida

Reads of insert of PacBio sequencing 220,035 195,188
Bases of insert of PacBio sequencing (bp) 701,923,565 527,497,043
Reads of Illumina sequencing for correction 71,360,785 39,372,131
Bases of Illumina sequencing for correction (bp) 17,972,706,252 11,772,267,169
Number of non-full-length PacBio reads 102,510 85,680
Number of full-length non-chimeric PacBio reads 109,814 101,630
Average length of full-length non-chimeric PacBio reads
(bp)

8,641 8,488

Number of non-redundant transcripts after correction 53,861 51,184
N50 of non-redundant transcripts after correction (bp) 2,933 2,642
Mean of non-redundant transcripts after correction (bp) 2,421 2,190
Number of non-redundant full-length transcripts after
correction

34,963 33,637

bases: 701,923,565), which included 49.9% of full-length non-chimeric and 46.6% of
non-full-length reads (Table 1, Fig. 1K), whereas in I. trifida, 195,188 reads of the insert
(total bases: 527,497,043) were generated, of which 52.1% and 43.9% were full-length
non-chimeric and non-full-length reads, respectively (Table 1, Fig. 1L).

Given that SMRT sequencing generates a high error rate, it is necessary to perform error
correction, which includes self-correction by iterative clustering of circular-consensus
reads and correction with high-quality Illumina short reads. To this end, cDNA libraries
were prepared from the same samples that were used for SMRT sequencing, and deep RNA
sequencing was conducted using an Illumina Hiseq2500 platform. A total of 71,360,785
and 39,372,131 clean reads (total bases: 17,972,706,252 and 11,772,267,169, respectively)
were obtained and used to correct the SMRT reads in I. batatas and I. trifida, respectively
(Table 1). After error correction, redundant transcripts were removed. Finally, we obtained
53,861 transcripts for I. batatas (named as Ib53861; N50: 2,933 bp; mean: 2,421 bp) and
51,184 for I. trifida (named as It51184; N50: 2,642 bp; mean: 2,190 bp). Those transcripts
containing complete coding sequences (CDSs) as well as 5′- and 3′-UTR (untranslated
regions) were defined as full-length transcripts. Approximately 34,963 and 33,637 full-
length transcripts were identified for I. batatas (named as Ib34963) and I. trifida (named
as It33637), respectively (File S1).

Basic sequence analysis of the full-length transcriptomes
The transcripts of Ib53861 and It51184 were functionally assigned and classified according
to sequence similarities using BLASTx or tBLASTx (E-value ≤1e−5) against different
protein and nucleotide databases. Overall, we successfully identified homologous sequences
for 97.25% of Ib53861 and 97.34% of It51184 in the public databases, and the rates of
successful validation in a single database ranged from 41.67% to 96.46% (File S2). These
results indicate that most of the genes in our datasets are truly transcribed sequences
in I. batatas and/or I. trifida. Furthermore, from the datasets of Ib53861 and It51184,
104,540/94,174 open reading frames (File S1), 25,315/27,090 simple sequence repeats
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(Files S3–S5), 1,401/1,457 transcription factors (Files S6–S8), 1,656/1,389 long non-coding
RNAs (Files S9 and S10), and 5,251/8,901 alternative splicing events (Files S11–S14) were
identified. These data provide fundamental information for functional genomics study and
molecular breeding in I. batatas and comparative biology study between I. batatas and I.
trifida.

Analysis of long non-coding RNA
Recent studies have shown that lncRNAs act as key regulators in a wide range of biological
processes. In the present study, we in silico identified 1,656 and 1,389 candidate lncRNAs
out of Ib53861 and It51184, respectively (Figs. 2A and 2B; Files S9 and S10). Amongst, 421
I. batatas and 355 I. trifida transcripts could be recognized as sense, intergenic, intronic, or
antisense lncRNAs (Fig. 2C). Notably, there were only 344 common candidate lncRNAs
(i.e., homologs in sequences; cutoff: identity >200 bp & >90%) between the identified
1,656 I. batatas and 1,389 I. trifida transcripts, suggesting remarkable divergence in lncRNA
biogenesis and thus their regulatory mechanisms between two species (Fig. 2D). These
data suggest that different lncRNA members may be involved in different tissue/organ
developmental processes in I. batatas.

Analysis of Alternative splicing
Alternative splicing (AS) is a posttranscriptional regulatory mechanism to increase
transcriptome diversity, yet little is known about its roles in the development of tuberous
root and the evolution of I. batatas. In the present study, we identified 5,251 and 8,901 AS
events out of 10,562 and 17,826 transcript isoforms in I. batatas and I. trifida, respectively
(Table 2; Files S11–S14). The AS events were divided into five major types: intron retention
(IR), alternative 3′ splice site (A3SS), alternative 5′ splice site (A5SS), exon skipping
(ES), and mutually exclusive exon (MEX; Fig. 3A). The proportion of each AS type was
comparable between I. batatas and I. trifida and the majority of AS events were IR in either
species (Fig. 3B). Overall, the alternatively spliced isoforms accounted for 32.34%or 38.54%
of all isoforms successfully mapped to I. batatas scaffolds or I. trifida genome (Table 2),
which should have largely increased the complexity of transcriptomes in either species.
Notably, 37% of the alternatively spliced isoforms in I. batataswere not alternatively spliced
or not detected in I. trifida and so were 63% of the alternatively spliced isoforms in I. trifida,
suggesting substantial divergence in AS biogenesis and thus their regulatory mechanisms
between two species (Fig. 3C). The isoform number per AS event ranged from 2 to 35
(mean, 4.98) in I. batatas and from 2 to 46 (mean, 4.55) in I. trifida (Table 2; Fig. 3D). In
total, 2,074 loci in I. batatas and 3,640 in I. trifida were involved in the detected AS events
(Table 2). The maximal number of AS events per locus was 45 (mean, 2.57) in I. batatas
and 38 (mean, 2.45) in I. trifida (Table 2; Fig. 3E).

To assess our large-scale predictions of AS events, we manually examined 40 genes that
were predicted as containing AS events and found 8 of them were likely false candidates.
We then designed primers to examine 16 AS events, each of which located in one gene, by
RT-PCR across eight tissues of an I. batatas variety (Xushu22), and successfully confirmed
10 of them (Figs. 3F and 3G). According these results, we concluded that at least 50% of
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Figure 2 Analysis of putative long noncoding RNA (lncRNA).Venn Diagrams of lncRNAs predicted
from Ib53861 (A) and It51184 (B) by four programs (CPAT, CPC, CNCI, and Pfam). (C) Types and num-
bers of lncRNAs that could be clarified in our analysis. (D) Homolog relationship of predicted lncRNAs
between I. batatas and I. trifida.

Full-size DOI: 10.7717/peerj.7933/fig-2

our AS predictions were valid. Given that we only examined one of multiple AS events in
each gene and only in one I. batatas variety, our data should be underestimated. Therefore,
our large-scale AS analysis has provided a useful resource for studying biological functions
of transcript isoforms and the regulatory mechanism of alternative splicing during the
evolution of I. batatas.

For example, starch-branching enzymes (EC 2.4.1.18) are one of key enzymes involved
in plant starch biosynthesis and sugar metabolism (Zeeman, Kossmann & Smith, 2010). In
our analysis, we detected multiple AS events (i.e., one ES and one IR events) in a putative
I. batatas starch-branching enzyme I and verified two AS isoforms, whose expression
changed over different tissues (Fig. 3G, Gene01). In aboveground tissues (i.e., T01 to T04)
and fibrous roots (i.e., T05), the two isoforms were expressed at a similar level; whereas in
tuberous roots (i.e., T06 to T08), the smaller isoform were specifically expressed (Fig. 3G,
Gene01). Plant alpha-glucan phosphorylases, also named as starch phosphorylase (EC
2.4.1.1), are another important family of enzymes involved in carbohydrate metabolism
(Rathore et al., 2009). Our results revealed distinct splicing mechanisms existed between
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Table 2 Summary of alternative splicing analysis.

I. batatas I. trfida

Number of isoforms of the datasets 53,861 51,184
Number of isoforms mapped to genome sequences 32,660 46,249
Number of isoforms (with multiple involvements) in AS
events

26,146 40,473

Number of isoforms (with one involvement) in AS events 10,562 17,826
Number of detected AS events 5,251 8,901
Maximal number of isoforms in a single AS event 35 46
Mean number of isoforms per AS event 4.98 4.55
Number of loci occuring AS events 2,047 3,640
Maximal number of AS events in a single locus 45 38
Mean number of AS events per locus 2.57 2.45
Mean number of isoforms (with one involvement) per locus 5.16 4.90

Proportion of isofroms undergone AS 32.34% 38.54%
Number of estimated loci in the datasets 10,439 10,452

aboveground and belowground tissues in the examined I. batatas alpha-glucan
phosphorylase (Fig. 3G, Gene02). In addition, divergent gene-expression and splicing
patterns were also observed in other investigated genes including a neutral invertase, an
E3 ubiquitin-protein ligase, a pentatricopeptide repeat-containing protein, and a few ABC
transporters (Fig. 3G, Gene03–10). These data revealed that alternative splicing and thus
transcriptome regulation might play important roles during the development of tuberous
roots in I. batatas.

DISCUSSION
Understanding the genetic basis and evolutionary scenario underlying agronomically
important traits is one of central research themes in the hexaploid crop I. batatas. However,
achieving this goal is doomed to be challenging because of the complexity of its genome
structure (Isobe, Shirasawa & Hirakawa, 2017). In the present study, we applied a hybrid
sequencing approach to generate and analyze large-scale full-length or long-read transcripts
and their expression profiles in I. batatas. Our study would be beneficial to the I. batatas
research community at least in the following aspects: gene cloning, gene family analysis,
development of cDNA-derived marker for breeding, gene model prediction, genome
assembly, and study of genetic variation within or among species. For example, we have
demonstrated an example of fast gene cloning and gene family analysis basing on our
transcriptome datasets (Ding et al., 2017). Overall, our study has provided a fundamental
resource for functional genomics study in I. batatas, which would certainly facilitate genetic
dissections of the origin of tuberous root as well as other traits.

AS commonly occurs in eukaryotes. In humans, more than 90% of genes were
found to be alternatively spliced and the predominant AS type was exon-skipping
(Wang et al., 2008). In higher plants, the AS frequency in intron-containing genes
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Figure 3 Analysis and validation of alternative splicing (AS). (A) Diagrams showing five major AS
types. (B) Proportions of major AS types predicted out of the dataset Ib53861 and It51184. (C) Homolog
relationship of isoforms carrying putative AS events between I. batatas and I. trifida. (D) Proportion distri-
bution of isoform number per AS event in I. batatas and I. trifida. (E) Proportion distribution of AS events
per locus in I. batatas and I. trifida. (F) Diagram and (G) RT-PCR validation of AS events in ten I. batatas
genes.

Full-size DOI: 10.7717/peerj.7933/fig-3

approximately ranged from 33% to 60% with intron retention as the major type (Filichkin
et al., 2010; Zhang et al., 2010; Shen et al., 2014; Thatcher & Li, 2014). In our study, we
observed an overall AS frequency of 32.34% in I. batatas isoforms (Table 2). Considering
about 30.03% of isoforms contained a single exon in our dataset, the AS frequency in
intron-containing isoforms in I. batatas was approximately 46.22%. The estimated AS
frequency in intron-containing isoforms in I. trifida was 51.18%, a little bit higher than
that of I. batatas. The major AS type was intron retention in either I. batatas or I. trifida,
similar as observed in other plants. These data highlighted the prevalence of AS in both I.
batatas and I. trifida, which would certainly increase the complexity of their transcriptomes.
In addition, we also examined the AS pattern across eight tissues in 10 I. batatas genes
and found that many isoforms exhibited a tissue-specific expression pattern (Fig. 3G).
These results imply that the generation of AS isoforms in a tissue-dependent manner have
contributed substantially to organ/tissue development and species evolution in I. batatas.

AS and gene/genome duplication are two fundamental biological processes contributing
to transcriptome and proteome diversity. The relationship between these two evolutionary
mechanisms remains debatable. Some studies have reported that theAS frequency decreased
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after gene duplication and genome polyploidization (Kopelman, Lancet & Yanai, 2005; Su
et al., 2006). In contrast, some other reports argued that the evolutionary relationship
between AS and gene/genome duplication was more complex and must be cautiously
anticipated (Lin et al., 2008; Roux & Robinsonrechavi, 2011; Iñiguez & Hernández, 2017). In
this study, our transcriptome-wide AS analysis revealed comparable AS patterns between
I. batatas and I. trifida, in terms of mean number of isoforms per AS event or per locus,
mean number of AS events per locus, and proportion of isoforms undergone AS (Table 2;
Fig. 3). These data showed that the overall AS frequency (not between specific duplicated
gene pairs) was not evidently decreased after the genome hexaploidization in I. batatas.

CONCLUSIONS
Although I. batatas is a global crop of great agronomic importance, advances in its
functional genomics study and molecular breeding remain limited because of the
complexity of its genome. Here we report the first collections and analyses of large-
scale full-length or long-read transcripts in I. batatas and its putative diploid ancestor
I. trifida using single-molecule real-time sequencing. By performing comprehensive
intraspecific and interspecific sequence analyses, we provide a valuable resource for
genetic marker development, gene discovery, and gene function study in I. batatas, as well
as comparative biology study between I. batatas and I. trifida. Furthermore, we analyzed
transcriptome-wide long non-coding RNA and alternative splicing, which revealed tissue-
specific-expressed transcript isoforms and the importance of transcriptome regulation
during the speciation and domestication of I. batatas.
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