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ABSTRACT
The C2H2 zinc finger protein (C2H2-ZFP) transcription factor family regulates the
expression of a wide variety of genes in response to various developmental processes or
abiotic stresses; however, these proteins have not yet been comprehensively analyzed in
tomato (Solanum lycopersicum). In this study, a total of 104C2H2-ZFswere identified in
an uneven distribution across the entire tomato genome, and include seven segmental
duplication events. Based on their phylogenetic relationships, these geneswere clustered
into nine distinct categories analogous to those inArabidopsis thaliana. High similarities
were found between the exon–intron structures and conserved motifs of the genes
within each group. Correspondingly, the expression patterns of the C2H2-ZF genes
indicated that they function in different tissues and at different developmental stages.
Additionally, quantitative real-time PCR (qRT-PCR) results demonstrated that the
expression levels of 34 selected C2H2-ZFs are changed dramatically among the roots,
stems, and leaves at different time points of a heat stress treatment, suggesting that the
C2H2-ZFPs are extensively involved in the heat stress response but have potentially
varying roles. These results form the basis for the further molecular and functional
analysis of the C2H2-ZFPs, especially for those members that significantly varied under
heat treatment, which may be targeted to improve the heat tolerance of tomato and
other Solanaceae species.

Subjects Agricultural Science, Bioinformatics, Genomics, Plant Science
Keywords Solanum lycopersicum, C2H2 zinc finger proteins, Phylogenetic analysis, Expression
pattern, Heat stress

INTRODUCTION
The zinc finger proteins (ZFPs) are one of the largest protein families in plants. These
proteins harbor a highly conserved domain, in which a zinc ion is surrounded by cysteine
(Cys) and/or histidine (His) residues to stabilize their three-dimensional structure,
comprising a two-stranded antiparallel beta sheets and a helix (Liu et al., 2015). Based
on the number and location of these Cys and His residues, the ZFPs can be divided into ten
classes: C2H2 (TFIIIA), C2HC (Retroviral nucleocapsid), C2HC5 (LIM domain), C2C2,
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C3H (Nup 475), C3HC4 (RING finger), C4 (GATA-1), C4HC3 (Requium), C6 (GAL4),
and C8 (Steroid-thyroid receptor) (Berg & Shi, 1996; Liu et al., 2015;Michael & Chrisopher,
2003). The members of these classes play crucial roles in plant growth and development,
as well as in signal transduction and environmental stress responses (Takatsuji, 1998; Stege
et al., 2002; Le Gall et al., 2015; Yin et al., 2017).

The C2H2-ZFPs account for a large proportion of the ZFPs and contain a characteristic
motif, X2-Cys-X(2-4)-Cys-X12-His-X(3-5)-His (where X represents any amino acid)
(Takatsuji, 1999), which has been observed in many eukaryotes (Fedotova et al., 2017;
Mittler, 2006; Razin et al., 2012). So far, a total of 176, 189, 124, 109, 118, and 321 C2H2-
ZFPs have been identified in Arabidopsis thaliana (Englbrecht, Schoof & Bohm, 2004), rice
(Oryza sativa) (Pinky et al., 2007), foxtail millet (Setaria italica) (Muthamilarasan et al.,
2014), poplar (Populus trichocarpa) (Liu et al., 2015), tobacco (Nicotiana tabacum) (Yang et
al., 2016), and soybean (Glycine max) (Yuan et al., 2018), respectively. Moreover, twomain
structural features were widely detected in the C2H2-ZFPs of most plants. In comparison
with those of yeast and animals, the plant C2H2-ZFP zinc-finger domains are commonly
separated by a longer and more variable spacer between the two zinc fingers. In addition,
the highly conserved ‘‘QALGGH’’ sequence is also unique to plant C2H2-ZFPs (Cao et al.,
2016; Ding et al., 2016; Wang et al., 2018; Zhang et al., 2016). Subsequently, different types
of C2H2-ZFPs have been defined in plants, including rice, Arabidopsis, petunia (Petunia
hybrida var. Mitchell diploid), poplar, and soybean (Agarwal et al., 2007; Englbrecht, Schoof
& Bohm, 2004;Kubo et al., 1998; Liu et al., 2015;Yuan et al., 2018); however, fewC2H2-ZFs
have been molecularly characterized in tomato (Solanum lycopersicum) (Chang et al., 2018;
Zhang et al., 2011).

The first plant-specific C2H2 protein (ZPT2-1, renamed from EPF1) was identified
in Petunia, and was found to interact with promoter region of the gene encoding
5-enolpyruvylshi-kimate-3-phosphate synthase (Takatsuji et al., 1992). Since then, the
structures and functions of the plant C2H2-ZFPs have been widely reported, and shown
to be involved in a variety of processes, including plant growth and development and
the response to stresses (Huang et al., 2009; Iida et al., 2000; Kim et al., 2016; Sun et al.,
2010; Wang et al., 2016). In Arabidopsis, the overexpression of zinc finger of Arabidopsis
thaliana 12 (ZAT12) improved osmotic stress tolerance, and also interacted with ZAT7 or
ZAT10 to enhance tolerance to salinity (Li et al., 2018; Mittler et al., 2006; Sholpan et al.,
2005; Sultan et al., 2007). The AZF1 (Arabidopsis zinc-finger protein 1), AZF3, and STZ
(salt tolerance zinc finger genes) are associated with the cold-stress response in Arabidopsis
(Sakamoto et al., 2000), while ZAT18 was found to positively modulate drought-stress
tolerance (Yin et al., 2017). In rice, the C2H2-ZFPs play a role in many aspects of stress
tolerance, regulating the responses to cold, drought, oxidative, and salt stresses (Huang et
al., 2009; Sun et al., 2010; Xu et al., 2008; Zhang et al., 2014). The functions of the C2H2-
ZFPs in many other plants have also been reported, and are often found to be involved in
plant development processes such as morphogenesis of cell and trichomes, ripening and
senescence (Chang et al., 2018; Moreau et al., 2018; Weng et al., 2015), and stress resistance
such as aluminum, drought and salt (Atreyee et al., 2018; Li et al., 2018; Rai, Singh & Shah,
2012). These findings showed that the C2H2-ZFPs are active in multiple physiological
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processes under stress conditions; however, the functions of themajority of the C2H2-ZFPs
in tomato have not been reported.

Tomato is considered a model system for the study of both fleshy fruit development and
the biology of the Solanaceae species (The Tomato Genome, 2012), and is resistant to a wide
range of abiotic stress conditions (Yáñez et al., 2009). Previous studies have revealed that
the C2H2-ZFPs play important roles in the defense and acclimation responses of plants to
various environmental stress conditions (Wang et al., 2018); therefore, it is important to
complete the genome-wide identification and expression analysis of the tomato C2H2-ZF
family to better understand their roles in stress responses. Here, we identify 104 C2H2-ZFs
in tomato and provide a comprehensive analysis of their phylogenetic relationships,
genomic locations, and gene structures. Furthermore, the expression profiles of this gene
family were analyzed in different tissues and under high temperature stress using data
from heatmaps and quantitative real-time reverse transcription polymerase chain reaction
(qRT-PCR) analyses. This enabled us to reveal the transcriptional regulatory mechanisms
of the C2H2-ZFs in tomato, and will provide valuable information for future cloning and
functional studies of these genes in tomato and other Solanaceae species.

MATERIALS & METHODS
Genome-wide analysis of the C2H2-ZF family in tomato
The tomato C2H2-ZFP family members were identified using their homology to
the Arabidopsis thaliana C2H2-ZFP sequences from the TAIR10 database (File S1).
The tomato genome (The Tomato Genome, 2012) and protein sequences (https:
//solgenomics.net/organism/Solanum_lycopersicum/genome) were used to construct
a local protein database using Geneious v4.8.5 software (http://www.geneious.com/;
Biomatters, Auckland,NewZealand), whichwas thenBLASTP searched using the sequences
of the A. thaliana C2H2-ZFPs (obtained from the Arabidopsis Information Resource;
TAIR10, https://www.arabidopsis.org) as queries, with an E-value cut-off ≤ 1×10−20.
Subsequently, the Hidden Markov Model (HMM) profiles of the C2H2-ZFP sequences
(Pfam ID: PF00096) were downloaded from the Pfam database (http://pfam.xfam.org) and
used to validate the identity of all candidate C2H2-ZF gene members.

All the obtainedC2H2-ZFP sequenceswere further confirmedusing theNCBIConserved
Domain Database (CDD; https://www.ncbi.nlm.nih.gov/cdd/) with the default parameters.
Proteins without C2H2-ZF domains were removed. The locus ID and chromosomal
location information of each tomato C2H2-ZF gene family member were obtained from
the genome annotation file (File S1), and the lengths of the coding sequences (CDSs)
were determined by performing BLASTn searches against the Sol Genomics Network
database (https://solgenomics.net). The physicochemical properties of the deduced
proteins, including the molecular weight (MW), isoelectric point (pI), and grand average
of hydropathy (GRAVY) values, were determined using the ExPASy-ProtParam tool
(http://web.expasy.org/protparam/).

Hu et al. (2019), PeerJ, DOI 10.7717/peerj.7929 3/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.7929#supp-1
https://solgenomics.net/organism/Solanum_lycopersicum/genome
https://solgenomics.net/organism/Solanum_lycopersicum/genome
http://www.geneious.com/
https://www.arabidopsis.org
http://pfam.xfam.org
https://www.ncbi.nlm.nih.gov/cdd/
http://dx.doi.org/10.7717/peerj.7929#supp-1
https://solgenomics.net
http://web.expasy.org/protparam/
http://dx.doi.org/10.7717/peerj.7929


Phylogenetic analysis and gene duplication
To identify the evolutionary relationships of the C2H2-ZF gene family members, all
C2H2-ZFP sequences were aligned using ClustalW2 software under the default settings
(Larkin et al., 2007). The aligned sequences were then subjected to a phylogenetic analysis
using MEGA v6.0 (Tokyo Metropolitan University, Tokyo, Japan; Tamura et al., 2013).
Subsequently, we compared the phylogenetic trees constructed and tested by different
methods, including Maximum Likelihood (ML), Neighbor Joining (NJ), unweighted pair-
groupmethodwith arithmeticmeans (UPGMA) andMaximumParsimony (MP)methods,
respectively. The phylogenetic trees were constructed using different methods with 1,000
replicate bootstrap tests. The ML trees was calculated using the ProtML program under
the JTT model (Guo et al., 2008), NJ trees was obtained using the JTT+I+G substitution
model (Pan et al., 2018), UPGMA and MP trees were generated in MEGA v6.0 (Tamura et
al., 2013) with the default parameters. Finally, the phylogenetic trees were visualized using
FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Based on the GFF genome files from the Sol Genomics Network database (https:
//solgenomics.net; The Tomato Genome, 2012), a map of the distribution of the C2H2-ZF
genes was drawn for each chromosome using MapChart v2.0 (Voorrips, 2002).

Gene structure, conserved motif and functional annotation analyses
Genome DNA and the corresponding CDSs of the putative C2H2-ZF genes were
obtained from the Sol Genomics Network database (https://solgenomics.net; The Tomato
Genome, 2012), then analyzed using the Gene Structure Display Server (GSDS v2.0;
http://gsds.cbi.pku.edu.cn/index.php) to obtain information on the exon/intron structures.
MEME v5.0.3 (http://meme-suite.org/tools/meme) was used to predict the corresponding
conservedmotifs (Bailey et al., 2009) with the following parameters: optimummotif widths
of 6–300 residues, any repetition, and amaximumof 10motifs (Pan et al., 2018). Eachmotif
with an E-value <1×10−10 was retained for motif detection. In addition, gene ontology
analysis of tomato C2H2 family genes was performed using the Blast2GO program (Conesa
et al., 2005) with the default parameters.

Expression analysis of the C2H2-ZF family members
The expression profiles of the C2H2-ZF genes were measured using the publicly
available tomato RNA-Seq datasets retrieved from the TomExpress database v17.0.0
(Available online: http://tomexpress.toulouse.inra.fr/; Zouine et al., 2017). Subsequently,
the expression levels had been normalized in tomato as the published method (Maza et
al., 2013), and the pipeline was described below. The reads were mapped to the tomato
genomes SL2.40 by the TopHat 2.0.0 software with default parameters (The Tomato
Genome, 2012; Trapnell et al., 2012). Gene expression levels were assessed with Cufflinks
software with default parameters and using the tomato gene annotation file ITAG3.2 (The
Tomato Genome, 2012; Trapnell et al., 2012). Eventually, the visualized heatmaps were
generated using Heatmap Illustrator 1.0.
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Plant materials and heat treatment
The wild-type tomato (Solanum lycopersicum cv. Ailsa Craig) was grown in 15-cm pots
containing a soil mix of humus, vermiculite, and perlite in a ratio of 3:1:1. The plants were
grown under standard glasshouse conditions (16 h light and 8 h dark at 25 ± 2 ◦C). After
one month of cultivation, the plants were subjected to a heat stress condition (42 ◦C) for 12
h or 24 h, while those collected at 0 h were used as the controls. All samples (leaves, stems,
and roots) were collected and immediately frozen in liquid nitrogen for RNA extraction.
Three biological repetitions were performed for each treatment.

RNA isolation and qRT-PCR analysis
Total RNA was isolated from the roots, stems, and leaves using the RNAiso Plus Kit
(TaKaRa Bio, Dalian, China). 1-µg aliquot of RNA was treated with DNase I (Takara
Bio, Dalian, China) and transcribed into cDNA using the Oligo dT-Adaptor Primers and
an RNA PCR Kit (AMV) v3.0 (Takara Bio, Dalian, China). The qRT-PCR analysis was
performed on a CFX96 Real-Time PCR system (Bio-Rad Laboratories, Hercules, CA, USA)
using Eva Green SMA (Bio-Rad Laboratories). To evaluate relative gene expression levels,
the SlEF1-α gene (Solyc06g005060), SlACT (Solyc03g078400), and SlUBI3 (Solyc01g056940)
were used as the internal reference, and 35 pairs of gene-specific primers were used for the
qRT-PCR (Table S1). The relative expression levels of these genes were calculated using
the 2−11 method (Pan et al., 2012). To ensure the statistical credibility of the results, all
experiments were performed with three biological replicates and three technical replicates.
And data were compared using t -test.

RESULTS
Genome-wide identification and characterization of the C2H2-ZFs in
tomato
Using BLAST and the HMM profiles of the C2H2-ZF domain, a total of 116 tomato
cDNAs in the tomato genome (cDNA release 3.20; https://solgenomics.net/organism/
Solanum_lycopersicum/genome) were annotated as encoding C2H2-ZFPs. All the C2H2-
ZF candidates were analyzed using the NCBI Conserved Domain Database to verify the
presence of the C2H2-ZF domain. Finally, 104 C2H2-ZFPs were confirmed in tomato
(File S1). Correspondingly, their physical and molecular properties, including their
Soly IDs, chromosome information, genomic positions, lengths of both the CDSs and
proteins, theoretical isoelectric points, and molecular weights were predicted (Table S2).
All identified C2H2-ZF genes were found to encode proteins varying from 96 to 1,178
amino acids, including a few exceptionally longer (Solyc04g074250.2.1) or smaller proteins
(Solyc00g015730.2.1). Correspondingly, their molecular weights varied from 11.021 kDa
(Solyc00g015730.2.1) to 128.573 kDa (Solyc04g074250.2.1), and their predicted isoelectric
points (pI) ranged from 4.49 (Solyc10g085560.2.1) to 10.62 (Solyc00g014800.1.1). Detailed
information of tomato C2H2-ZF family is shown in Table S2.

Comparative phylogenetic analysis of the C2H2-ZFs
To explore the phylogenetic relationships of the C2H2-ZFPs between tomato and the
model plant Arabidopsis, a NJ phylogenetic tree was firstly constructed from an alignment
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of the 104 tomato C2H2-ZFPs and 97 Arabidopsis C2H2-ZFPs (Table S3). The sequences
were clustered into six major groups (Fig. 1A, Group 1-6, Table S3), each of which
could be further subdivided into different subgroups according to their bootstrap values.
Furthermore, the tomatoC2H2-ZFPswere tightly groupedwith theArabidopsisC2H2-ZFPs
(Groups 1 to 4, and Group 6; Fig. 1A), except for the Group 5 (Fig. 1A), indicating that
we could assume the putative function of these genes in tomato based on the Arabidopsis
C2H2-ZFPs in same group. Subsequently, we reconstructed the phylogenetic distribution
of the 104 C2H2-ZF genes using different methods to clearly elucidate the relationships
between the C2H2-ZF family genes in tomato. Results showed that the phylogenetic tree
constructed by different methods displayed the differences, such as NJ tree (Fig. 1B), ML
tree (Fig. S1A), UPGMA tree (Fig. S1B) and MP tree (Fig. S1C). For the NJ phylogenetic
tree, 104 C2H2-ZFPs were classified into nine groups (I to IX; Fig. 1B). Among them,
four genes in Group VII (Fig. 1B) were all grouped in Group 1 (Fig. 1A), some genes
in Group VII, VIII and IX (Fig. 1B) was closely related to Group 1 and 2 (Fig. 1A), and
Group II, III, IV (Fig. 1B) was closely related to Group 3 (Fig. 1A), while a small number
of C2H2-ZFPs were clustered into the different groups in tomato (Figs. 1A and 1B). These
results suggested that the same clades of phylogenetic tree were likely to represent the
closest homologous gene pairs between tomato and Arabidopsis, and C2H2-ZFs have also
undergone sequence diversification independently in different organisms. In addition, 104
C2H2-ZFs were irregularly distributed between these groups in tomato (Fig. 1B), such as
Groups II, VIII, and IX were the main clades, containing 18, 26, and 28 genes, respectively,
while Groups I, IV, and VII were the smallest clades, containing three, three, and four
tomato C2H2-ZFs, respectively (Fig. 1B).

Conserved domain analysis of the C2H2-ZFPs
The ZF domain structure is X2-Cys-X(2-4)-Cys-X12-His-X(3-5)-His, where X represents
any amino acid and the numbers indicate the consensus spacing between the conserved
amino acid residues. This is highly conserved and essential for the ZF configuration and
loop stability. To investigate the characteristics of the C2H2-ZF domains in tomato, the
104 C2H2-ZFPs were analyzed using the NCBI Conserved Domain Database (CDD;
https://www.ncbi.nlm.nih.gov/cdd/). Multiple protein sequence alignments revealed that
the ZF domains in all of these proteins were highly conserved. Among them, 83 C2H2-ZFPs
(about 79.81%) contained a X2-Cys-X2-Cys-X12-His-X3-His sequence, seven C2H2-ZFPs
(about 6.73%) had a X2-Cys-X2-Cys-X12-His-X4-His sequence, and the remains showed
different types of C2H2-ZF domains (Fig. 2). In addition, 50 C2H2-ZFPs with a plant-
specific conserved domain ‘QALGGH’ were identified in tomato and mainly classified into
Groups VIII and IX (Fig. 2), which were fewer than that in Arobidopsis (64) (Englbrecht,
Schoof & Bohm, 2004), rice (65) (Agarwal et al., 2007), poplar (62) (Liu et al., 2015) and
foxtail millet (97) (Muthamilarasan et al., 2014), respectively.

Analysis of the exon–intron structures and conserved motifs in the
tomato C2H2-ZFs
The Gene structural diversity within a gene family can be used as an evolutionary marker
(Zhu et al., 2018). To gain further insights into the structural diversity of tomatoC2H2-ZFs,
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Figure 1 The evolutionary relationship of the C2H2-ZFs. The neighbor-joining tree was created using
the MEGA6.0 program (bootstrap value set at 1,000). (A) The phylogenetic tree representing the relation-
ships among 201 C2H2-ZFPs of tomato and Arabidopsis. All C2H2-ZFP sequences were grouped into six
groups (A to F), which are represented by different colors. (B) The phylogenetic tree representing relation-
ships among 104 C2H2-ZFPs of tomato. All C2H2-ZFP sequences were grouped into nine groups (I to
IX), which are represented by different colors. The different color dots in Fig. 1B were identical with the
same clades in Fig. 1A. The C2H2-ZFs used in the expression analysis following the heat stress treatment
are marked with solid black circles. The evolutionary relationship of the C2H2-ZFPs.

Full-size DOI: 10.7717/peerj.7929/fig-1

we compared the exon–intron structure of each of the C2H2-ZFs. The number of introns in
the C2H2-ZFs varied from 0 to 10. Based on the number of introns, 65 C2H2-ZFs (62.5%)
was intronless, 29 C2H2-ZFs had 1 to 3 introns (27.9%), and the remaining C2H2-ZFs
containedmore than four introns (9.6%). In general, genes in the same group shared similar
intron/exon arrangements in terms of intron numbers and exon length. For example, most
C2H2-ZFs in Groups III, IV, VI, VII, VIII and IX genes had zero to one intron, and in
Group II had two to three introns, which had the normal intron length (Fig. 3, Table S2).
In contrast, the gene structure appeared to be more variable in groups I and V, which had
striking distinctions in the exon/intron structure variants (Fig. 3, Table S2). In addition,
we compared the exon–intron structure of each of the C2H2-ZFs in the same cluster of the
different phylogenetic tree constructed by NJ (Fig. 3), ML (Fig. S1A), UPGMA (Fig. S1B)
and MP (Fig. S1C), respectively. We found that genes in the same group had the highly
similar intron/exon arrangements in the NJ phylogenetic tree (Fig. 3), indicating that the
gene structure patterns were consistent with the NJ phylogenetic analysis.

Using the MEME tool, a total of 10 conserved motifs were identified in the C2H2-
ZFPs, and the lengths of these conserved motifs varied from 7 to 31 amino acids (Fig. 4,
Fig. S2). Among them, Motif 1 was widely detected in all C2H2-ZFPs, corresponding to
the C-X2-C-X12-H-X3-H single ZF structure, which located at the N-terminal region of
C2H2-ZFPs in groups II, and VI-IX (Fig. 4). Some groups also contained specific motifs;
for example, Motifs 2 and 3 were present in the N-terminal region of Group II and the
C-terminal region of many members in Groups III and IV; while Motif 4 was only detected
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Figure 2 Multiple protein sequence alignments of the C2H2-ZF domains in the tomato C2H2-ZFPs.
The proteins were categorized into nine groups (I to IX) based on NJ phylogenetic tree, as shown on the
left of the C2H2-ZFPs. The identical and conserved amino acid residues were represented by colored
backgrounds, respectively. The position of conserved C2H2 domain was represented by the asterisk.

Full-size DOI: 10.7717/peerj.7929/fig-2
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Figure 3 Gene structure of the tomato C2H2-ZF family members. The coding sequences (CDSs), un-
translated regions (UTRs), and introns are depicted by filled red boxes, blue boxes, and single black lines,
respectively. Groups (I to IX) are indicated on the left of the C2H2-ZFs. The scale bar indicates the length
of the corresponding genes (kb).

Full-size DOI: 10.7717/peerj.7929/fig-3
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Figure 4 The conserved and potential motifs in the tomato C2H2-ZFPs. (A) The distribution of 10
conserved motifs in the C2H2-ZFPs, are identified using MEME v5.0.3 and displayed in different colored
boxes. (B) The sequence of Motif 1 corresponds to the C-X2-C-X12-H-X3-H single ZF structure. The de-
tailed motif sequences are shown in Fig. S2.

Full-size DOI: 10.7717/peerj.7929/fig-4

in the N-terminal region of Group II, indicating that they may be relevant to the specific
functions of these genes. The members of Groups I and V–IX have relatively simple motif
patterns in comparison with Groups II to IV, implying the possible functional divergence
of the C2H2-ZF genes in tomato.

Taken together, the structure andmotif conservationwithin theC2H2-ZF genes supports
the results of the NJ phylogenetic analysis. Variations in the motif compositions between
subfamilies might be explained by their functional diversification.

Chromosomal locations and gene duplication events in the C2H2-ZFs
Togain insight into the organization of these genes in the tomato genome, the 104C2H2-ZFs
were mapped onto their respective chromosomes, which acquired from tomato genome
database (The Tomato Genome, 2012). The C2H2-ZF genes were unevenly distributed
throughout the tomato genome and generally more abundant at the both ends of the
chromosomes (Fig. 5, Table S2). Chromosome 6 contained the largest number of C2H2-
ZFs (16), followed by chromosomes 1, 2, 3, 4, 5, 9, 10, and 11, each of which contained 7
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Figure 5 Genomic distribution of the C2H2-ZFs across the tomato chromosomes. The chromosome
numbers and sizes (Mb) are indicated at the top and right of each bar, respectively. Genes from the same
subgroups are indicated by the same color, which is consistent with the coloration used on the phyloge-
netic tree (Fig. 1B). The C2H2-ZF gene pairs resulting from segmental duplication genes are connected by
red lines, and the tandem duplication gene clusters are marked in black rectangles.

Full-size DOI: 10.7717/peerj.7929/fig-5

to 12 C2H2-ZF s. Chromosomes 0 (random chromosome) and 12 contained two and one
genes, respectively. In addition, the duplication events of C2H2-ZFs were also analyzed in
tomato genome since gene replication play an important role in genomic expansions and
realignments. We identified 15 pairs of tandem-duplicated gene pairs (with two or more
homologous genes within 100 kb region) located on chromosomes 1, 2, 4, 5, 9, 10, and 11
(Fig. 5), respectively. The closely related clustered sequences of Groups VI, VIII, and IX
are mainly located on chromosomes 1, 2, 5, 9, 10, and 11, suggesting that the expansion
of this gene family may have occurred via localized or intra-chromosomal duplication.
In addition to tandem duplications, seven segmental duplication events were detected to
scatter in eight chromosomes (Fig. 5). Furthermore, many homologous genes were located
in different chromosomes in tomato, supporting the high conservation of the C2H2-ZF
gene family.

Functional annotation of C2H2-ZFs
All 104 C2H2-ZFs were subjected to GO enrichment for investigating their functional
annotation. As a result, a total of 43 C2H2-ZFs were mapped on the GO database, resulting
in 285 annotations (Table S5), which were distributed across three ontology categories
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(biological processes, cellular components, and molecular functions) with 30 function
terms (Fig. S5). Furthermore, most tomato C2H2-ZFs were annotated as being associated
with meal ion binding, DNA-binding transcription factor activity, nucleus and regulation
of transcription, DNA-templated, respectively (Fig. S5).

Expression patterns of the C2H2-ZFs in various tissues and organs
Using the TomExpress database (available online: http://tomexpress.toulouse.inra.fr/),
we investigated the expression levels of the 104 C2H2-ZFs in various tissues of the
tomato cultivar Micro Tom, including its roots, leaves, flower buds, petals, flowers,
fruits, flesh, and peel, which were visualized using a heatmap (Fig. 6). The C2H2-ZFs
had different expression patterns across the various tissues. Firstly, the clear differences
in expression between the genes of Group II, III and V in comparison with those of the
other groups were consistent with their different gene structures and the phylogenetic
tree analysis (Figs. 3 and 6). In addition, we found that a small few genes typically
had relatively high expression levels across various tissues and organs at different
development stages, such as Solyc01g099340.3.1 in Group II, Solyc09g009030.3.1 in Group
V, Solyc04g077980.1.1 in GroupVIII, and Solyc06g075780.1.1 in Group IX, whilemost genes
of Groups IV, VI, VII, and VIII had relatively low expression levels (Fig. 6). Some genes,
including Solyc05g054030.3.1, Solyc05g055500.1.1, Solyc07g063970.3.1, Solyc09g011110.1.1,
Solyc10g080600.2.1, and Solyc11g066400.1.1, were specially expressed in the different
tissues, and genes (Solyc01g005130.2.1, Solyc04g014540.2.1, Solyc06g075780.1.1, and
Solyc07g006880.1.1) in Group IX showed similar expression patterns during the fruit
development (Fig. 6). However, the expression patterns of a few gene pairs, including
Solyc03g025440.3.1, Solyc04g056320.2.1, Solyc06g065440.1.1, and Solyc11g017140.2.1, were
significantly different in Groups I and III, although they were paralogous genes (Figs. 1B
and 6).

Expression of the C2H2-ZFs under heat stress
To improve the reproducibility and reliability of the qRT-PCR analysis obtained in this
study, three previously reported tomato internal reference genes, including SlEF1-α
(Solyc06g005060), SlACT (Solyc03g078400), and SlUBI3 (Solyc01g056940), were primarily
detected for the their quantification stability in the leaves, stems, and roots under the
control and heat stress by qRT-PCR method. The results showed that SlEF1-α (Fig. S3A)
displayed relatively greater stability than SlACT and SlUBI3 among the different tomato
tissues (Figs. S3B and S3C, Table S4), which were used for further analysis in this study.
Many of the C2H2-ZFs previously described in other crops were involved in responding
to abiotic stresses, such as drought, heat, and salt stress (Muthamilarasan et al., 2014;
Sakamoto et al., 2004; Sun et al., 2010; Wang et al., 2018). To confirm the potential roles of
candidate tomato C2H2-ZFs in heat stress, the expression profiles of 34 C2H2-ZFs were
finally detected in leaves, stems and roots of tomato under heat stress (42 ◦C), which might
not be markedly induced by the day/night cycle, except the Solyc10g085560.2.1 (Fig. S4).
Combined with the expression phylogenetic analysis, we found that genes showed the
diversity expression patterns under heat stress (Figs. 7 and 8). Of them, the expression
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Figure 6 Relative expression of the C2H2-ZFs in various tissues and growth stages of tomato. The ex-
pression profiles were generated from transcriptomic data v17.0.0 (Available online: http://tomexpress.
toulouse.inra.fr/; Zouine et al., 2017). Genes from the same subgroups are indicated by the same color,
which is consistent with the I-IX used on the phylogenetic tree (Fig. 1B). The textbox indicates the C2H2-
ZF genes showed the similar expression patterns during the fruit development from Group IX. The color
scale (0 to 10, dark blue to red) represents the standardized gene expression levels.

Full-size DOI: 10.7717/peerj.7929/fig-6
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Figure 7 Expression analysis of 18 selected C2H2-ZFs fromGroup I to VII in the roots, stems, and
leaves of tomato plants under heat stress, revealed using qRT-PCR. Values represent the average ± SD
of three biological replicates with three technical replicates of each reaction. Error bars represent the stan-
dard deviations from three biological replicates. The relative expression levels were normalized according
to the reference gene (SlEF1-α; Solyc06g005060) to the values in control (0 h). Data were compared using
Student’s t -test: *, P < 0.05 and **, P < 0.01, respectively. R, S, and L indicate the roots, stems, and leaves,
respectively. A–F, G–I, J–K, L–N, O–R, and S represents genes were classified into Group II, III, IV, V, VI,
and VII, respectively.

Full-size DOI: 10.7717/peerj.7929/fig-7
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Figure 8 Expression analysis of 16 selected C2H2-ZFs fromGroup VIII and IX in the roots, stems, and leaves of tomato plants under heat
stress, revealed using qRT-PCR. Values represent the average ± SD of three biological replicates with three technical replicates of each reaction.
Error bars represent the standard deviations from three biological replicates. The relative expression levels were normalized according to the
reference gene (SlEF1-α; Solyc06g005060) to the values in control (0 h). Data were compared using Student’s t -test: *, P < 0.05 and **, P < 0.01,
respectively. R, S, and L indicate the roots, stems, and leaves, respectively. A–G, and H–P represents genes were classified into Group VIII, and IX,
respectively.

Full-size DOI: 10.7717/peerj.7929/fig-8

levels of 18 genes analyzed from Group II to VII were found to differ in roots, stems and
leaves, under heat stress (Figs. 7A–7S). Of these, Solyc02g062940.3.1 and Solyc02g068990.3.1
were sustained up-regulated in the roots, stems, and leaves during heat stress treatment
(Figs. 7F and 7R), and Solyc02g068980.1.1 was significantly up-regulated in the roots and
stems with the similar expression patterns (Fig. 7P), but Solyc08g006470.3.1 was only
significantly up-regulated by the heat treatment in the roots (Fig. 7L). For the largest
classification groups VIII and IX, the expression levels of seven and nine genes from
Group VIII and IX, were also investigated (Fig. 8). In Group VIII, Solyc05g012490.1.1 and
Solyc04g005440.1.1might be hard to induce by heat treatment with lower expression levels
in leaves (Figs. 8A and 8B), while Solyc10g084910.2.1 and Solyc09g011110.1.1 showed the
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similar expression patterns and only significantly up-regulated in the roots (Figs. 8C
and 8D). In contrast, Solyc06g053720.2.1 and Solyc12g088390.1.1 were significantly
suppressed in the roots, and leaves under heat treatment (Figs. 8E and 8F). Notably,
the heat treatment induced significantly high levels of Solyc01g107170.2.1 expression in all
tissues (Fig. 8G). In Group IX, only Solyc01g005190.1.1 was significantly up-regulated in
all tissues after heat treatment (Fig. 8M), while Solyc06g075780.1.1 and Solyc05g006310.2.1
were strongly up-regulated in the roots and stems (Figs. 8I and 8K). Although these genes
showed various expression patterns under heat treatment, most of them in the identical
group had also similar expression patterns in the same tissues, such as Group II genes
(Solyc06g075250.3.1, Solyc03g121660.3.1, and Solyc02g062940.3.1) in stems (Figs. 7D, 7E
and 7F) and (Solyc10g084180.2.1, Solyc06g075250.3.1, and Solyc02g062940.3.1) in leaves
(Figs. 7C, 7D and 7F), Group VII genes (Solyc02g068980.1.1, Solyc02g068990.1.1, and
Solyc08g059770.1.1) in roots and leaves (Figs. 7P, 7R and 7S), and Group VIII genes
(Solyc05g012490.1.1 and Solyc04g005440.1.1) in the stems (Figs. 8A and 7B), which were
significantly up-regulated under heat treatment, and Group VIII genes (Solyc05g012490.1.1
and Solyc04g005440.1.1, Solyc10g084910.2.1 and Solyc09g011110.1.1) in stems or leaves
(Figs. 8A–8D) with lowly expression levels, while Group VIII genes (Solyc06g053720.2.1
and Solyc12g088390.1.1) were significantly suppressed in roots and leaves (Figs. 8E and
8F), and so on.

Taken together, qRT-PCR was performed for 34 selected genes from different cluster
groups under heat stress, and showed the various expression patterns in the roots, stems,
or leaves. Among them, seven genes were strongly up-regulated in the roots, stems, and
leaves, while one gene were down-regulated; and five genes up-regulated both in roots and
stems, and five genes specially expressed in the roots, and so on (Figs. 7 and 8). Hence,
these results suggest that these C2H2-ZF genes might be associated with the heat stress
during the seedlings development in tomato.

DISCUSSION
The C2H2-ZFPs are known to play important roles in many biological processes (An et al.,
2012; Joseph et al., 2014; Lyu & Cao, 2018; Wang et al., 2018; Weng et al., 2015). To date,
C2H2-ZFs have been identified and characterized in a variety of plant species, including
soybean (Yuan et al., 2018), tobacco (Yang et al., 2016), Arabidopsis (Englbrecht, Schoof &
Bohm, 2004), rice (Agarwal et al., 2007), poplar (Liu et al., 2015), and petunia (Kubo et al.,
1998). Despite these advances, little was previously known about these genes in tomato, a
model system for both fleshy fruit development and the Solanaceae species in general (The
Tomato Genome, 2012). In this study, using 97ArabidopsisC2H2-ZFP sequences as a query,
we identified 104 C2H2-ZF family members in the tomato genome, which contains at least
one C2H2-ZF motif (X2-Cys-X(2-4)-Cys-X12-His-X(3-5)-His), and the lengths of these
sequences varied from 96 to 1,178 amino acid residues, with striking distinctions (Table S2),
suggesting that a high degree of complexity among the tomato C2H2-ZFs (Liu et al., 2015).
The ‘QALGGH’ motif was almost invariant in the tomato C2H2-ZFPs (Fig. 2), however,
the C2H2-ZFP subfamilies in other plant species have previously been defined based on
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changes to the conserved ‘‘QALGGH’’ motif (Fedotova et al., 2017; Liu et al., 2015; Razin
et al., 2012; Takatsuji, 1999; Wei, Si & Yang, 2016; Yuan et al., 2018; Zhang et al., 2016).
In this study, to reveal phylogenetic relationship of tomato C2H2 family members, 104
C2H2-ZFPs were divided into ninemajor groups according to theNJ phylogenetic tree (Fig.
1B), which were well consistent with arrangements, numbers, and types of their C2H2-ZF
domains (Fig. 2). This suggests that the C2H2-ZFs were highly conserved during evolution
and may have similar functions in tomato. However, classification of the C2H2-ZFs in NJ
phylogenetic tree displayed the difference (Figs. 1A and 1B, Table S3), suggesting that they
may show differences in gene function between the Arabidopsis and tomato.

The integration and rearrangement of gene fragments during evolution can lead to
increases or decreases in the number of introns and exons present; therefore, the structural
variation of genes is important for the evolution of gene families (Xu et al., 2012). Here,
the gene structures and motifs present were highly similar among members of the same
C2H2-ZF groups (Figs. 3 and 4); for example, the members of Groups I, II, and V had 3–5
exons (Fig. 3), while the most complex arrangements of motifs were observed in Group II
(Fig. 4). These results were similar to those of previous analyses of theC2H2-ZF family genes
in maize (Zea mays) (Wei, Si & Yang, 2016), soybean (Yuan et al., 2018), and poplar (Liu et
al., 2015). Therefore, our results suggest that the sequences and biological functions of the
C2H2-ZFPs were relatively conserved among members of the nine subgroups, indicating
that our classification of the tomato C2H2-ZFPs was reasonable. About 62.5% had no
introns and 27.9% had one to three introns with short length, which is consistent with the
results that the genes with no intron or a short intron were tended to retain in plants (Li
& Liu, 2019; Mattick & Gagen, 2001). Correspondingly, genes with fewer introns could be
rapidly activated for respond to environmental challenges (Jeffares, Penkett & Bähler, 2008;
Li & Liu, 2019), so C2H2-ZFs play an important roles in responding to abiotic stresses
(Muthamilarasan et al., 2014; Sakamoto et al., 2004; Sun et al., 2010; Wang et al., 2018). In
addition, previous results showed that C2H2-ZFPs with a plant-specific conserved domain
‘QALGGH’ play important roles in diverse environmental stress responses (Agarwal et al.,
2007; Kam et al., 2008; Liu et al., 2015). In present study, about 48% (50 of 104) of C2H2-
ZFPs from tomato had plant-specific conserved domain ‘QALGGH’, which was a larger
number compared with other experimental models Arabidopsis (36%) and rice (34%),
suggested that these C2H2-ZFPs are more important for tomato plants. Furthermore, most
members in the same phylogenetic group had the similar intron/exon arrangements and
motif compositions (Figs. 3 and 4). In addition, gene duplication events has been reported
for C2H2-ZF gene families in different plants (Agarwal et al., 2007; Guo et al., 2008; Yuan
et al., 2018), and which were also revealed the widely gene duplication events in the tomato
genome, including 15 tandem duplication and 7 segmental duplication (Fig. 5). Thus, gene
duplication events are one of the primary forces for the C2H2-ZFs gene evolution during
the speciation and evolution of tomato. These results reflected the diverse functions of
tomato C2H2-ZFs and will be helpful for their future functional analysis.

The tissue-specific expression of genes usually is preliminarily used to predict their
corresponding functions (Xiao et al., 2019). Therefore, we assessed the expression profiles
of the 104 C2H2-ZFs in various tomato tissues using published transcriptomic data
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(Zouine et al., 2017), revealing that the C2H2-ZF genes display a diversity of relative
expression patterns in different organs (Fig. 6) and may therefore play differing roles in
various tissues or biological processes. But the homologous genes had similar expression
patterns, such as Solyc10g078970.1.1 (SlHair), AT1G68360 (GIS3), AT1G10480 (ZFP5),
and AT1G67030 (ZFP6) were all found to be grouped into Group 1 (Fig. 1A), which were
previously reported to play important roles in controlling trichome development (An et al.,
2012; Chang et al., 2018; Sun et al., 2015; Zhou et al., 2013). Reported genes, AT5G04340
(ZAT6) andAT1G27730 (ZAT10/STZ ), Solyc06g075780.1.1 (SlZF3) and Solyc07g006880.1.1
(SlZFP2) were classified into the Group 2 (Fig. 1A) and Group IX (Fig. 1B), which showed
the similar functions; for example, AT5G04340 (ZAT6) and AT1G27730 (ZAT10/STZ )
was involved into the organs development and the adversity stress responses (Devaiah,
Nagarajan & Raghothama, 2007; Mittler et al., 2006), and Solyc06g075780.1.1 (SlZF3)
enhanced the salt-stress tolerance in tomato (Li et al., 2018), and Solyc07g006880.1.1
(SlZFP2) was characterized as a repressor to fine-tune ABA biosynthesis during fruit
development (Weng et al., 2015), and they showed the higher expression levels during the
fruit ripening in tomato (Fig. 6), which will be helpful for dissecting their roles in fruit
ripening. In addition, the C2H2-Type Zinc Finger Protein, SUPPRESSOR OF FRIGIDA4
(SUF4, AT1G30970.3) could bind to the Flowering Locus C (FLC)promoter region, and play
a role in transcriptional activation of FLC (Kim et al., 2006). In this study, the homologous
genes, Solyc02g032120.3.1 and Solyc02g081620.3.1 belong to group V (Fig. 1B), and showed
the relative high expression in the flowers (Fig. 6). These results suggested that the members
within each group might have similar functions between tomato and Arabidopsis.

In nature, heat stress is one of the critical environmental factors that adversely affects
plant growth and delays development (Guan et al., 2013; Yang & Guo, 2014). Several
C2H2-ZPs were also characterized and participated in the interaction of plants and stress,
such as Zat6 (Devaiah, Nagarajan & Raghothama, 2007), ZAT10/STZ (Mittler et al., 2006),
and C2H2 zinc-finger protein OsZFP213 (Zhang et al., 2018). To further characterize
whether tomato C2H2-ZF genes play a role in heat-stress tolerance, the expression profiles
of 34 C2H2-ZF genes randomly selected from all groups were analyzed in the roots,
stems, and leaves of wild-type tomato under heat stress. As expected, the majority of the
C2H2-ZFs were significantly up-regulated when the plants were exposed to heat treatment
(42 ◦C), with different expression modes in the different tissues (Figs. 7 and 8). In plants,
roots are known to play important roles in resisting abiotic stress, sensing soil changes
and sending a series of signals to reduce root damage and maintain plant growth under
abiotic stress (Liu et al., 2015; Lynch, 1995). The heat treatment used in the present study
specifically induced the expression of 15 C2H2-ZF genes in the roots (Figs. 7 and 8); for
example, Solyc08g006470.3.1, Solyc10g084910.2.1, and Solyc09g011110.1.1 were strongly
up-regulated in the roots at all time points, but not in the stem or leaves (Figs. 7L,
8C and 8D), indicating that they may play specific roles in the root responses to heat
stress. Furthermore, Solyc02g062940.3.1, Solyc02g068990.3.1, and Solyc01g005190.1.1 were
significantly induced in all three tissues during all time points (Figs. 7F, 7R, and 8M), while
Solyc12g0883900.1.1 was significantly suppressed in the roots, stems, and leaves (Fig. 8F),
suggesting these C2H2-ZFsmight play important roles in mediating the response of tomato
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plants to heat stress. In addition, previous study showed that the Solyc06g075780.1.1 (SlZF3)
could enhance salt-stress tolerance in tomato (Li et al., 2018), but we found that it was
also induced by the heat treatment (Fig. 8I). These differences suggest that the tomato
C2H2-ZFs may play a variety of roles in the response to heat stress, with the strongly
suppressed genes potentially interacting synergistically with other genes involved in this
process. Although the role of C2H2-ZF genes in these processes is not yet known, but the
above-mentioned tomato C2H2-ZF genes with significant changes after heat treatment
are useful in selecting candidate genes for functional validation in relation to heat stress in
tomato.

CONCLUSIONS
In this study, we characterized 104 C2H2-ZFs in the tomato genome using a genome-wide
analysis. Examination of their phylogenetic relationships, chromosomal locations, gene
structures, conserved motifs, and expression profiles revealed high levels of similarity
between the identified subgroups of this family. This study lays the foundation for
elucidating the functions of these important genes in future studies. In addition, the
expression profiles of the C2H2-ZFs were evaluated during a heat stress treatment. These
findings provide insight into themechanisms of theC2H2-ZF function during the response
to heat stress in tomato and potentially other Solanaceae species. Further molecular and
functional analyses of these genes could suggest a strategy to improve heat tolerance to
tomato plants.
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