1	Developing	of real	time reverse	transcri	otion
	DCVCIOPILIG	Oi i Cai		LI 4113011	PLIVI

polymerase chain reaction for rapid detection of

3 Tomato brown rugose fruit virus and its comparison

4 with other techniques

5

- 6 Stefano Panno^{1,2}, Susana Ruiz-Ruiz³, Andrea Giovanni Caruso¹, Ana Alfaro-Fernandez⁴, Maria
- 7 I. Font San Ambrosio⁴, Salvatore Davino^{1,5}
- 8 Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- 9 ²MolecuarDynamics srl, Via M. Rapisardi, 72 Ragusa, Italy
- 10 ³Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat
- 11 Valenciana (FISABIO)-Salud Pública, Valencia, Spain
- 12 ⁴Instituto Agroforestal Mediteráneo, Universitat Politècnica de València (IAM-UPV), Camino de
- 13 Vera s/n, 46022 Valencia (Spain).
- ⁵Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Turin, Italy

15

- 16 Corresponding Authors:
- 17 Salvatore Davino
- 18 Viale delle Scienze, building 5, Palermo, 90128, Italy
- 19 Email address: salvatore.davino@unipa.it
- 20 Stefano Panno
- 21 Viale delle Scienze, building 5, Palermo, 90128, Italy
- 22 Email address: stefano.panno@unipa.it

23

Kyewords: Fast detection, ToBRFV, RT-qPCR

24 25

26 Abstract

- Background. Tomato brown rugose fruit virus (ToBRFV) is a highly infectious tobamovirus
 that causes a severe disease in tomato (Solanum lycopersicum L.) crops. In Sicily, the first
- 29 outbreak occurred in 2018 in different Sicilian provinces represents a serious threat for tomato 30 crops.
- 30 crops.
- 31 Methods. For that, in this work a molecular and biological characterization of ToBRFV isolate
- and named ToB-SIC01/19 found in Sicily were carried out, and a sensitive and specific real time RT-
- 33 PCR TaqMan MGB probe method was developed to detect ToBRFV in infected plants and
- 34 seeds. Moreover, four different procedures (immunocapture, total RNA extraction, direct crude
- 35 extract and leaf-disk crude extract) for sample preparation were evaluated.
- 36 **Results**. The Sicilian isolate ToB-SIC01/19 (6,391 nt) showed a strong sequence identity with
- 37 isolates TBRFV-P12-3H and TBRFV-P12-3G from Germany, Tom1-Jo from Jordan and
- 38 TBRFV-IL from Israel and was successfully transmitted by mechanical inoculations, in *Solanum*

Formatted: Strikethrough

39 lycopersicum L. and Capsicum annuum L., while no transmission occurred in Solanum 40 melongena L. The developed real time RT-PCR using a primer set designed from conserved 41 sequences in ORF 3 enabled reliable quantitative detection and strong discrimination of 42 ToBRFV with other viruses belonging to the genus *Tobamovirus*, minimizing false negative 43 results. Comparing real-time RT-PCR to RT-PCR end point, both give the same results with immunocapture and total RNA extraction procedure, while, using direct crude extract and leaf-44 45 disk crude extract the RT-PCR end point was unfit to provide a reliable result. This real-time 46 quantitative RT-PCR assay developed with high sensibility and specificity will be particularly 47 valuable tool for early ToBRFV diagnosis, optimizing procedures in terms of costs and time.

Introduction

48 49

67

68

69

78

50 Tomato (Solanum lycopersicum L.) is one of the most important horticultural crops with a 51 worldwide production of over 182 million tons in 2017 (FAO, 2017). China is the world's largest tomato producer (59 million tons), followed by India, Turkey and United States, while Italy and 52 53 Spain are the major tomato producers in Europe (over 6 million and 5 million tons, respectively) 54 (FAO, 2017). In Italy the tomato production is more located in Sicily, where it is one of the most 55 economically horticultural crops, with the yield of approximately 40% of the total Italian 56 production in greenhouses (Agri ISTAT, 2017). In the last years, emerging viral diseases have 57 been an important limiting factor in many crop production systems, such as tomato crops, 58 causing considerable economical losses (Hanssen et al., 2010). In fact, greenhouse tomato 59 production in Italy is affected by important losses, caused by several different viruses: Pepino mosaic virus (PepMV) (Davino et al., 2008; Davino et al., 2017a; Tiberini et al., 2011), Tomato 60 61 mosaic virus (ToMV), Tomato spotted wilt virus (TSWV) (Panno et al., 2012), Tomato leaf curl New Delhi virus (ToLCNDV) (Panno et al., 2019a), Tomato vellow leaf curl virus (TYLCV) -62 63 Tomato yellow leaf curl Sardinia virus (TYLCSV) and recombinants of both (Davino et al., 64 2009, 2012, Panno et al., 2018) and at the end of 2018 Tomato brown rugose fruit virus 65 (ToBRFV) (Panno et al., 2019b). 66 The international trade globalization and the free commodities movement in the area of the free

70 island either through infected seeds or through infected fruits and their subsequently 71 manipulation. 72 ToBRFV is a member of the genus *Tobamovirus*, family *Virgaviridae*. Tobamoviruses are the 73 only members of the family to have an undivided genome. It is easily the largest genus in the 74 family for numbers of species (King et al., 2011). ToBRFV has a single stranded positive-sense 75 RNA (gRNA) of ~ 6,400 nucleotides (nt), with a typical organization of tobamoviruses that 76 consists in 4 open reading frames (ORFs) encoding two replication-related proteins of 126 and 77 183 kDa in which the second is expressed by the partial suppression of the stop codon (ORF1

and ORF2), the movement protein (MP) of 30 kDa (ORF3) and the coat protein (CP) of 17.5

trade for Countries countries facing the Mediterranean Basin makes more difficult to control

pathogens. In this context, the control of pathogens transmitted by seeds is extremely difficult.

This is the case of the recent ToBRFV outbreak in Sicily, which is very likely introduced into the

- 79 kDa (ORF4) that are expressed via 3'-coterminal sub-genomic RNAs (sgRNAs) (*Salem et al.*, 80 2016).
- 81 ToBRFV was first described in 2016 in Jordan by Salem and co-workers (2016) in tomato plants
- 82 grown in greenhouses and in 2017 in Israel in tomato plants harboring the *Tm-2*² gene (*Luria et*
- 83 al., 2017), later in Mexico in tomato and pepper crops (Cambrón-Crisantos et al., 2018) and
- 84 subsequently it spread in Germany, United States (California), Palestine, Italy and Turkey
- 85 (Menzel et al., 2019; Ling et al., 2019; Alkowni et al., 2019; Panno et al., 2019b; Fidan et al.,
- 86 2019).

96 97

98

99 100

114

115

- 87 Symptoms of ToBRFV are typical of the tobamoviruses infection and consist in interveinal
 - yellowing and deformation on tomato leaves, mosaic staining, deformation and necrosis on
- 89 young leaves, necrosis and deformation of sepals and discoloration, deformations and necrosis
- 90 on young fruits. For that, represents a very dangerous problem for tomato crops in all regions
- 91 where tomato is grown, due to the ability of the virus to be transmitted by contact, such as
- 92 contaminated tools, hands, clothing, direct plant-to-plant contact, propagation material (grafts,
- 93 cuttings), bumblebees and seeds (Levitzky et al., 2019).
- The aim of the present study was to characterize the virus found in Italy and to develop a sensitive, specific and economic method to detect ToBRFV in infected plants and seeds.

Materials & Methods

Source of viral material

- In October 2018, virus-like symptoms typical of tobamovirus infections were observed in tomato
- 101 greenhouses in Ragusa province (Sicily Italy). These were very similar to those described by
- 102 Salem and co-workers (2016) where they identify a new tobamovirus, named Tomato brown
- 103 rugose fruit virus, that overcame the $Tm-2^2$ resistance gene. Symptoms consisted in severe
- 104 mosaic, deformation and necrosis on young leaves, discoloration and marbling on fruits and
- necrosis on sepals (Figure 1).
- 106 Samples included in this study were collected in four different areas of Sicily, within the
- 107 provinces of Agrigento, Caltanissetta, Ragusa and Siracusa. For each area, 15 samples were
- 108 collected from two different greenhouses, according to the following scheme: out of 60 rows of
- plants, 3 were selected (one every 20 rows) and then, on each selected row, a sample was taken
- 110 every 10 plants, for a total of five samples per row (Panno et al., 2019b). Sampling was repeated
- three times: first sampling in October 2018, second in December 2018 and third at the end of
- February 2019. A total of 360 samples were collected and marked by GPS using
- 113 PLANTHOLOGY mobile application (*Davino et al.*, 2017b).

Screening of ToBRFV using RT-PCR end point

- 116 RT-PCR end point in one-step format was performed in 25 µl (final volume) containing 2 µl of
- total RNA extract, 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 3 mM, MgCl₂, 0.4 mM dNTPs, 1
- 118 mM of primer forward ToBRFV-F-5722 and 1 μM of primer reverse ToBRFV-R-6179 (*Panno*

et al., 2019b), 4U of RNaseOut, 20 U of superscript II reverse transcriptase-RNaseH and 2U of
Taq DNA polymerase (Thermo Fisher Scientific, Waltham, Massachusetts, USA). RT-PCR was
carried out in a MultiGene OptiMax thermal cycler (Labnet International Inc, Edison, NJ, USA)
according to the following cycling conditions: 42 °C for 45 min, 95 °C for 5 min; 40 cycles of 30
sec at 95 °C, 30 sec at 55 °C and 30 sec at 72 °C; and a final elongation of 10 min at 72 °C. DNA
products of the expected size obtained were confirmed by electrophoretic separation in a 1.5%
agarose gel and staining with Sybrsafe (Thermo Fisher Scientific, MA, USA).

126 127

128

129 130

131

132

Mechanical transmission

The ToBRFV isolate ToB-SIC01/19 from Sicily was mechanically inoculated into three plants per host (*Solanum lycopersicum* L., *Solanum melongena* L. and *Capsicum annuum* L.) for subsequently biological characterization. Plants were grown in sterilized soil in an insect-proof glasshouse, with a photoperiod of 14 h light and a target air temperature set at 28/20 °C day/night. Symptoms were reported weekly and the presence of ToBRFV was evaluated at 30 dpi by RT-PCR as previously described.

Full genome sequencing using the primer walking strategy (Knippers and Alpert, 1999) were

133134135

136

Full genome sequencing

137 carried out with specific and overlapping primers reported by Luria and coworkers (2017). Four 138 pairs of primers targeting conserved sequences in ToBRFV were included to obtain the full 139 genome sequence: FTobGEN, RTobGEN, F1-R1572, F1534-R3733, F4587-R6392. 140 RT-PCR was carried out in a MultiGene OptiMax thermal cycler (Labnet International Inc. 141 Edison, NJ, USA) according to the condition reported in Luria et al. (2017). Products obtained 142 were confirmed by electrophoretic separation in 1.5% agarose gel and visualized using Sybrsafe 143 staining. Subsequently the products were purified with the Ultraclean 96 PCR Cleanup Kit 144 (Qiagen, Hilden, Germany) according with the manufacture's instruction and cloned using the 145 TA-cloning system (Promega, WIS, USA). Five plasmids obtained were sequenced in both 146 directions using an ABI PRISM 3100 DNA sequence analyzer (Applied Biosystems, CA, USA). 147 To obtain the 3' and 5' terminal region sequences a rapid amplification of cDNAs RACE were 148 carried out with the following primers: R-Ex-480, R-In-408, F-Ex-5931, F-In-6041 (Luria et al., 149 2017), using a SMARTer® RACE 5'/3' Kit (Takara Bio, USA) according with the 150 manufacture's instruction. The DNA products obtained were cloned using the TA-cloning 151 system (Promega, WIS, USA) and five plasmids obtained were sequenced. To obtain de novo the 152 full-length sequence of ToBRFV genome, all the obtained sequences of each region were 153 assembled using the program Contig implemented in Vector NTI Advance 11.5 software 154 (Invitrogen, CA, USA).

155 156

157

158

Primer and Taqman® MGB probe design

Four full-length genomic sequences of *Tomato brown rugose fruit virus* retrieved from GenBank (accession nos. MK133095, MK133093, KT383474, KX619418) and one more assembled in our

- lab during this work were aligned using ClustalX2 program (*Larkin et al.*, 2007) and carried out
- in order to design 5 primer pairs targeting only in conserved sequences.
- 161 The primers obtained were in vitro tested with the Primer-BLAST algorithm
- 162 (https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) to evaluate the possibility of a
- 163 specific hybridization with other organisms. The same primers were also tested using Vector NTI
- 164 Advance 11.5 software (Invitrogen, CA, USA) with the following complete sequences of
- 165 tobamoviruses in order to understand the percentage of affinity with them. The tobamoviruses
- included were: Bell pepper mottle virus (1 sequence), Brugmansia mild mottle virus (1
- 167 sequence), Obuda pepper virus (2 sequences), Paprika mild mottle virus (2 sequences), Pepper
- 168 mild mottle virus (13 sequences), Rehmannia mosaic virus (6 sequences), Tobacco mild green
- 169 mosaic virus (7 sequences), Tobacco mosaic virus (10 sequences), Tomato mottle mosaic virus
- 170 (5 sequences) and *Tomato mosaic virus* (10 sequences).
- 171 A specific ToBRFV TaqMan® MGB probe (Eurofins Genomics, Luxembourg) was designed in
- 172 a conserved domain within the region encompassed by the primers. The probe, with a length of
- 173 22 nucleotides, was 5'-labeled with the reporter dye FAM (6-carboxyfluorescein) and 3' with a
- 174 non-fluorescent quencher (MGB NFQ). TaqMan MGB probes include a minor groove binder
- 175 (MGB) moiety at the 3' end that increases the melting temperature (Tm) of the probe and
- 176 stabilizes probe–target hybrids and for that can be significantly shorter than traditional probes,
- 177 providing better sequence discrimination and flexibility to accommodate more targets. The
- 178 predicted Tm values for ToBRFV primers and probe were 59-60 °C and 67 °C, respectively,
- 179 calculated with the prediction tool provided by Primer Express Software v3.0.1. (Thermo Fisher
- 180 Scientific, MA, USA). Sequences included in this study are reported in Table S1.

ToBRFV genotype-specific RT-qPCR assay with TaqMan MGB probe

- The real-time RT-PCR with TaqMan MGB probe assay was performed in a Rotor-Gene Q2plex
- 184 HRM Platform Thermal Cycler (Qiagen, Hilden, Germany) in a reaction mix of 12 μl final
 - volume, containing 1 μl of total RNA extract at the concentration of ~10 ng RNA/μl, 0.5 μM of
- primer forward ToB5520F and primer reverse ToB5598R (the primer set that yielded the most
- sensitive detection for all ToBRFV isolates in any tissue providing the lowest Ct values, data not
- 188 showed), 0.25 μM of TaqMan MGB probe, 0.5 μl of RNase Inhibitor (Applied Biosystems), 6 μl
- of 2x QuantiNova Probe RT-PCR Master Mix, 0.2 μl of QN Probe RT-Mix and H₂O DEPC
- 190 water to reach final volume.

181

182

185

- 191 To carried out this assay, total RNA extracts from five ToBRFV-infected plants and eight from
- 192 tomato plants infected with Cucumber green mottle virus (CGMV), Paprika mild mottle virus
- 193 (PaMMV), Pepper mild mottle virus (PMMV), Tobacco mild green mosaic virus (TMGMV),
- 194 Tobacco mosaic virus (TMV), Tomato mottle mosaic virus (ToMMV), Tomato mosaic virus
- 195 (ToMV) and Zucchini green mottle mosaic virus (ZGMMV) were included.
- 196 Each sample was analyzed in duplicate in two independent real-time RT-PCR assays. Control
- 197 samples in each run included total RNA from healthy tomato plant, water instead of sample and
- 198 at least two RNA transcript dilutions of the standard curve (see below). The probe annealed

specifically in an internal region of the PCR product amplified with primers ToB5520F-200 ToB5598R and then they were cleaved by the 5' exonuclease activity of the DNA polymerase, 201 which released the reporter molecule away from the quencher, thus allowing the reporter dye to emit its characteristic fluorescence. TaqMan MGB probes incorporate an NFQ to absorb 202 203 (quench) signal from the fluorescent dye label at the 3' end of the probe. 204 The properties of the NFO combined with the length of the MGB probe result in lower 205 background signal than with non-MGB NFQ probes. Lower background means increased 206 sensitivity and precision. The cycling conditions consisted of reverse transcription at 45 °C for 207 10 min, enzyme denaturation at 95 °C for 10 min, and 45 cycles of 95 °C for 5 sec and 60 °C for 208 60 sec with fluorescence measured at the end of each cycle. The mean (X) Ct value and the 209 standard deviation (SD) for each tomato sample were calculated from the four Ct values 210 obtained.

Standard curve

199

211 212

213

214

215

216

217

218

219

220

228

232

233 234

235 236

237

To determine sensitivity of the real-time RT-PCR protocol with the TaqMan MGB probe, serial dilutions of in vitro-synthesized, positive sense RNA transcript of the selected gRNA region, was amplified using the real-time RT-PCR TaqMan MGB assay to generate an external standard curve. The template for the in vitro transcription was obtained by conventional RT-PCR amplification using total RNA extract from tomato petiole infected with the just characterized ToBRFV isolate ToB-SIC01/19, cloned in the commercial pGEM-T vector, linearized with SalI enzyme and transcribed in vitro with the T7 RNA polymerase (New England Biolab, MA, USA) following the manufacturer's instructions.

221 Transcripts were purified with RNaid Spin kit (Bio101, CA, USA), treated twice with RNase free DNase (Turbo DNA-free from Ambion) and their concentration determined in duplicate 222

223 with NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, MA, USA).

224 Ten-fold serial dilutions of each transcript in healthy tomato tRNA extract (10 ng/µl) containing 225 1010 to 101 copies were used in real-time RT-PCR TagMan MGB probe assay with and without

226 reverse transcriptase, to ensure the absence of DNA template in transcript preparations.

227 The transcript RNA concentration (pmol) in each dilution was calculated with the formula:

micrograms of transcript RNA × (106 pg/1 µg) × (1 pmol/340 pg) × (1/number of bases of the

transcript), and the number of RNA copies using this concentration value and Avogadro's

229

230 constant. Standard curve was obtained plotting the threshold cycle (Ct) values from two

231 independent assays with four replicates per standard dilution versus the logarithm of the RNA

concentration dilution. The amplification efficiency was calculated from the slope of the

corresponding curve using the formula $10^{(-1/\text{slope of the standard curve)}}$, or the same formula \times 100

(when given as a percentage value).

Different method for sample preparation and comparison of different techniques for ToBRFV detection

- 238 To select the best method for sample preparation, 40 samples from the 360 previously analyzed
- 239 by RT-PCR end point (10 per province), the just characterized isolate ToB-SIC01/19, and a
- 240 negative-tomato control plant were used in order to evaluate four different procedures of sample
- 241 preparation. The results obtained were also compared with DAS-ELISA and RT-PCR end point.
- 242 1) Immunocapture in Real Time PCR tubes: Multiwell plates for real-time PCR were
- incubated at 37 °C for 1 h with 100 ul of polyclonal antibody for *Tobacco mosaic virus* (TMV) 243
- 244 (AGDIA, IN, USA) diluted 1:200 in a coating buffer (Sodium carbonate anhydrous 1.59 g,
- 245 Sodium bicarbonate 2.93 g, Sodium azide 0.2 g in 1 L of distilled water, pH 9.6). As reported in
- 246 manufacture's protocol, this antibody reacts with a variety of viruses from the *Tobamovirus*
- 247 genus, such as Cucumber green mild mottle virus (CGMMV), Kyuri green mottle mosaic virus
- (KGMMV), Pepper mild mottle virus (PMMoV), Tobacco mosaic virus (TMV), Tomato brown 248
- 249 rugose fruit virus (ToBRFV) and Tomato mosaic virus (ToMV). After incubation three washing
- 250 steps were performed. Then 100 µl of sap extract, obtained by grinding the petioles in extraction
- 251 buffer (Sodium sulfite anhydrous 1.3 g, Polyvinylpyrrolidone (PVP) MW 24-40,000 20 g,
- 252 Powdered egg (chicken) albumin, Grade II 2 g, Tween-20 20 g in 1 L of distilled water, pH 7.4)
- 253 were added. After 1 h of incubation at room temperature the multiwell was washed with
- 254 standard washing buffer, dried and prepared for subsequently analysis.
- 255 2) Total RNA extraction: Total RNA (RNAt) was extracted from 0.1 g of petiole, with the
- 256 RNeasy Plant Mini Kit (Oiagen, Hilden, Germany) following the manufacturer's instruction.
- 257 RNA extracts were re-suspended in 30 µl of RNase-free water and adjusted to approximately 10
- 258 ng/µl using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, MA, USA).
- 259 3) Direct crude extract: A slice of 0.4 mm of petiole of each sample were directly placed in a
- 260 1.5 ml tubes containing 0.5 ml of Glycine buffer (EDTA 1 mM, NaCl 0.05 M, Glycine 0.1 M),
- 261 vortexed for 30 sec and heated at 95 °C for 10 min. Three microliters were used for subsequently 262 analysis.
- 263 4) Leaf-disk crude extract: Five fresh cut petioles were impressed in a 1 cm² of Hybond®-N+
 - hybridization membrane (GE Healthcare, IL, USA), dried at room temperature for 5 min and
- 265 placed in a 1.5 ml tubes containing 0.5 ml of glycine buffer. Tubes were vortexed for 30 sec and
- 266 heated at 95 °C for 10 min. Three microliters were used for the subsequently steps.
- 267 Finally, the 42 sample preparations were tested by DAS-ELISA using a commercial kit of
- 268 polyclonal antibodies for Tobacco mosaic virus (TMV), that have the ability to detect also
- 269 ToBRFV (AGDIA), by RT-PCR end point using primers ToBRFV-F-5722 and ToBRFV-R-
- 270 6179, and by RT-qPCR-MGB- probe based-method according to the protocols previously
- 271 described.

272

273 Results

- Screening of ToBRFV using RT-PCR end point 274
- 275 The RT-PCR end point analysis showed that 129 out of the 360 tomato samples analyzed
- 276 (35.83%) were positive for ToBRFV. Table 1 reports the number of infected plants per province
- 277 and data collection. As reported in Table 1 the incidence of ToBRFV was higher in the

greenhouses object of the study in provinces of Ragusa and Siracusa, with a percentage of infection of 93.3% and 70%, respectively, than the greenhouses located in the provinces of Agrigento and Caltanissetta, with a percentage of infected plants of 16.6% and 6.66%, respectively. Analyzing the three surveys performed in the 4 provinces, the virus showed a downward trend. Exactly, Ragusa decreased from 93.3% of the first sampling to 63.3% of the third sampling; Siracusa from 70% to 40% and Agrigento and Caltanissetta pass from 16.6% and 6.66%, respectively, to zero.

Mechanical transmission

 Mechanical inoculations successfully transmitted ToB-SIC01/19 in all plants of *Solanum lycopersicum* and *Capsicum annuum*, while no transmission occurred in *Solanum melongena*. The tomato-inoculated plants do not show symptoms until 22 dpi. From the day 22 on going, tomato plants showed symptoms that consist in interveinal yellowing, deformation and mosaic in young leaves. In pepper-inoculated plants, symptoms starting from 23 dpi and they consisted in slight interveinal yellowing in young leaves and necrosis in the stem. RT-PCR carried out at 30 dpi confirmed the presence of ToBRFV in tomato and pepper plants and its absence in eggplants.

Full genome sequencing

The gRNA of the ToBRFV isolate named ToB-SIC01/19 from Sicily was completely sequenced in this study. To avoid sequencing of different templates, the RT-PCR synthesis using the genome walking strategy of overlapping fragments for each adjacent amplified product was designed (*Luria et al.*, 2017). Nucleotide sequences comparison of five different clones of each amplicon assured accuracy in sequencing a pure isolate. The assembled sequences constructed with the program Contig implemented in the Vector NTI Advance 11.5 software (Invitrogen, CA, USA) of the ToB-SIC01/19 was deposited in GenBank under the Acc. No. MN167466. The genome length of ToB-SIC01/19 consist in 6,391 nucleotides and it was organized as just reported for ToBRFV (*Luria et al.*, 2017). ToB-SIC01/19 showed a percentage identity of 99.8%, 99.7%, 99.7% and 99.7% with sequences TBRFV-P12-3H (Germany; Acc. No. MK133095), TBRFV-P12-3G (Germany; Acc. No. MK133093), Tom1-Jo (Jordan, Acc. No KT383474) and TBRFV-IL (Israel, Acc. No KX619418), respectively.

Primer, Tagman® MGB probe design and protocol optimization

The *in vitro* analysis using Primer-BLAST algorithm of the five primers pairs designed targeting the Movement Protein (MP) gene showed no relevant match with other organisms. All primer pairs obtained were tested in RT-qPCR with SYBR in order to know the primer pair with highest sensibility. In Table 2,was reported the primer pair with the highest sensibility was reported and used in this work, named ToB5520F and ToB5598R.

315 In vitro hybridization analysis of the primer pair ToB5520F and ToB5598R against other

tobamoviruses was carried out with the program Vector NTI 11.5 program (Invitrogen, CA,

USA) and results showed that no relevant matches were identify (see Table S1).

ToBRFV specific RT-qPCR assay with TaqMan MGB probe

To determine the specificity of RT-qPCR assay with TaqMan MGB probe, 17 different samples were analyzed. As reported in Table 3, the two RNA transcript gave the most sensitive signal with a Ct value that range from 5.0 to 5.1 in the four different assays. Total RNA derived from artificial ToBRFV-infected plants give also positive signal with a Ct value that range from 12.2±0.2 to 18.1±0.1, while the other tobamoviruses utilized as outgroup do not give any signal.

Standard curve

In order to calculate the number of RNA copies and sensibility threshold of the technique developed, a standard curve was generated using as template a ten-fold serial dilutions of RNA in vitro transcripts (from 10^{10} to 10^{1} copies) from ToBRFV isolate ToB-SIC01/19 in healthy tomato RNAt. The standard curve covered a wide dynamic range (10 units of concentration) and showed a strong linear relationship with a correlation coefficient of 0.9997 and its amplification efficiency was 100% (Figure 2 A and B). This real-time RT-PCR assay and standard curve enabled detection of as few as 10^{1} ToBRFV RNA copies in tomato extracts and was used to determine the number of RNA copies in total RNA extracts from tomato samples collected in four different areas of Sicily, within the provinces of Agrigento, Caltanissetta, Ragusa and Siracusa. The average Ct values were within the dynamic range of the standard curve and ranged from 14 to 23.

Different method for sample preparation and comparison of different techniques for ToBRFV detection

To select the best method for sample preparation, four different procedures were evaluated. Forty-two samples (10 per province, ToB-SIC01/19 and a healthy tomato plant) were included. The results obtained with the four different methods of samples preparation were compared with each other and with DAS-ELISA and RT-PCR end point (Table 4). All the four different methods for sample preparation (immunocapture, total RNA extraction, direct crude extract and leaf-disk crude extract) were effective for ToBRFV detection by real-time RT-PCR. Analyzing the four different procedures, the Ct value obtained for immunocapture range from 16 to 28, for total RNA extraction range from 14 to 23, for leaf-disk crude extract range from 17 to 35 and for direct crude extract range from 17 to 37.

Regarding the comparison between real time RT-PCR and other techniques, real-time RT-PCR showed more sensitivity than DAS-ELISA; in fact, 11 samples that give negative results in DAS-ELISA were positive in RT-qPCR (Table 4). Comparing real-time RT-PCR to RT-PCR end point, the two techniques give the same results with immunocapture and total RNA extraction

procedure, while, using direct crude extract and leaf-disk crude extract the RT-PCR end point was unfit to provide a reliable result.

Discussion

358

359 Sicily is one of the Mediterranean Basin regions with the most important tomato productions 360 and, due to its geographical position, it represents the main access point for plant material to European countries. This situation greatly increases the risk of introducing new pathogens into 361 362 our environments and this entails a serious risk related to biosecurity for agriculture and food 363 production, jeopardizing the future of Italian horticulture. The outbreak of *Tomato brown rugose* 364 fruit virus (ToBRFV) represent a threat due to its multiple transmission methods and the absence 365 of tomato and peppers resistant varieties. Furthermore, many hybrid tomato varieties presenting 366 Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV) Tm-1, Tm-2 and Tm-2² 367 resistance genes (Pelham, 1966), can be severely affected by ToBRFV. This can lead to a rapid 368 spread of the virus in all areas of tomato cultivation. So, with regard to this pathogen, to date the 369 only two tools available are: early diagnosis and the implementation of preventive measures in 370 crop management, which can be a valuable aid in reducing introduction and subsequent spread of 371 ToBRFV in cultivation environments. Consequently, today there is the need to develop 372 alternative diagnostic methods, which are at the same time sensitive and very reliable, for the 373 diagnosis of plant viruses, which are compromising the tomato cultivations in various Italian and 374 international areas (Hanssen et al., 2010; Puchades et al., 2017; Ferriol et al., 2015, Panno et 375 al., 2014). In the present work a Tomato brown rugose fruit virus isolate, recently found in Sicily 376 (Panno et al., 2019b) was characterized, and was developed a sensitive, specific, rapid and 377 economic method for its detection in infected plants and seeds. 378 The biological characterization of the Sicilian isolate ToB-SIC01/19 demonstrated the possibility 379 of mechanical transmission on tomato and pepper plants, as previously reported by Luria and co-380 workers (2017), while on eggplant it cannot be transmitted. Mechanical transmission is very 381 important because could simplify genetic improvement activities, in order to constitute new tolerant/resistant germplasm towards ToBRFV. Molecular characterization showed that the 382 383 ToBRFV Sicilian isolate ToB-SIC01/19 presents a percentage identity of 99% with sequences 384 retrieved in Germany, Jordan and Israel (Menzel et al., 2019; Salem et al., 2016; Luria et al., 385 2017). Since ToBRFV spread in a few years within the Mediterranean Basin countries and Central America, the very low level of variability found among isolates support the hypothesis of 386 the recent introduction in Italy, probably occurred by infected seeds. 387 388 The ability of the virus to transmit plant-by-plant by contact, by manipulation and, above all, by 389 seeds, in addition to overlapping cycles of crops, such as tomato intensive cultivation in 390 greenhouse, facilitate the rapid spread of the virus. 391 For that, we have developed a quick detection procedure for ToBRFV diagnosis based on real-392 time RT-PCR TaqMan MGB probe. This method detects ToBRFV in different sample 393 preparation procedures. Additionally, the direct crude extract and leaf-disk crude extract were 394 successfully used to avoid total RNA extraction, which shorted the processing time, allowed 395 simultaneous analysis of multiple samples and finally, and drastically reduce the total cost for 396 single analysis. Its high sensitivity is relevant as a criterion to minimize false negatives and to obtain a correct discrimination of ToBRFV with other viruses belonging to the genus 397

Tobamovirus. Furthermore, the developed technique, associated with direct crude extract sample preparation, can be used to make in-field diagnosis, using a portable device, allowing a considerable saving of time and could also be used by non-technical personnel.

Conclusions

The method based on real-time RT-PCR TagMan MGB probe, developed in this work, could represent a good and reliable tool to be included in certification programs. Currently, in some cases, for plant virus diagnosis, immuno-enzymatic methods are used, such as DAS-ELISA, but due to the low viral titer present in nursery plants or at early infection, or due to the absence of specific antibodies, these tests may lead to not be very reliable resultsones, obtaining "false negatives" (Jacobi et al., 1998). In conclusion, to avoid ToBRFV spreading to other Italian and European regions, more restrictive management is required, such as a correct crop management, more restrictive measures at international borders based on rapid, sensitive and economic tools for diagnosis and, more important, the developing of tomato-resistant-cultivar that have the

412 413 414

415

417 418

398

399

400

401 402

403

404

405

406

407

408

409

410

411

References

ability to tolerate the disease.

416 Agri ISTAT, 2017. Available at http://www.agri.istat.it (accessed 07 May 2019).

Alkowni R, Alabdallah O, Fadda Z. 2019. Molecular identification of tomato brown rugose fruit virus in tomato in Palestine. Journal of Plant Pathology, 1-5 DOI: 10.1007/s42161-019-00240-7.

419 420

421 Cambrón-Crisantos JM, Rodríguez-Mendoza J, Valencia-Luna JB, Rangel SA, de Jesús García-422 Ávila C, López-Buenfil JA. 2018. First report of Tomato brown rugose fruit virus (ToBRFV) in 423 Michoacan, Mexico. Mexican Journal of Phytopathology, 37(1):185-192 DOI: 424 10.18781/R.MEX.FIT.1810-5.

425 426

Davino S, Davino M, Bellardi MG, Agosteo GE. 2008. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily. Phytopathologia Mediterranea, 47:35-41 DOI: 10.14601/Phytopathol Mediterr-2542.

427 428 429

431

432

430 Davino S, Napoli C, Dellacroce C, Miozzi L, Noris E, Davino M, Accotto GP. 2009. Two new natural begomovirus recombinants associated with the tomato yellow leaf curl disease co-exist with parental viruses in tomato epidemics in Italy. Virus Research, 143:15-23 DOI: 433 10.1016/j.virusres.2009.03.001.

434

435 Davino S, Miozzi L, Panno S, Rubio L, Davino M, Accotto GP. 2012. Recombination profiles 436 between Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus in laboratory Comment [P1]: To be revised

- 437 and field conditions: evolutionary and taxonomic implications. Journal of General Virology,
- 438 93:2712-2717 DOI: 10.1099/vir.0.045773-0.

- 440 Davino S, Panno S, Iacono, G, Sabatino L, D'Anna F, Iapichino G, Olmos A, Scuderi G, Rubio
- 441 L, Tomassoli L, Capodici G, Martinelli F, Davino M. 2017a. Genetic variation and evolutionary
- analysis of pepino mosaic virus in Sicily: Insights into the dispersion and epidemiology. Plant 442
- 443 Pathology, 66(3):368-375 DOI: 10.1111/ppa.12582.

444

- 445 Davino S, Panno S, Arrigo M, La Rocca M, Caruso AG, Bosco GL. 2017b. Planthology: an
- 446 Application System for Plant Diseases Management. Chemical Engineering Transactions,
- 58:619-624 DOI: 10.3303/CET1758104. 447

448

- 449 FAO, Food and Agriculture Organization of the United Nations, 2017. Available at
- 450 http://www.fao.org/faostat/en/#home (accessed 07 May 2019).

451

- 452 Ferriol I, Rangel EA, Panno S, Davino S, Han CG, Olmos A, Rubio L. 2015. Rapid detection
- 453 and discrimination of fabaviruses by flow- through hybridisation with genus- and
 - species- specific riboprobes. Annals of applied biology, 167:26-35 DOI: 10.1111/aab.12204.

454 455

- Fidan H, Sarikaya P, Calis O. 2019. First report of Tomato brown rugose fruit virus on tomato in 456
- Turkey. New Disease Reports, 39:18 DOI:10.5197/j.2044-0588.2019.039.018 457

458

459 Hanssen IM, Lapidot M, Thomma BP. 2010. Emerging viral diseases of tomato crops. Molecular 460 plant-microbe interactions, 23(5):539-548 DOI: 10.1094/MPMI-23-5-0539.

461

462 King AM, Lefkowitz E, Adams MJ, Carstens EB. 2011. Virus taxonomy: ninth report of the

International Committee on Taxonomy of Viruses (Vol. 9). Elsevier. 463

464

- 465 Jacobi V, Bachand GD, Hamelin RC, Castello JD. 1998. Development of a multi-plex
- 466 immunocapture RT-PCR assay for detection and differentiation of tomato and tobacco mosaic
- 467 tobamoviruses. Journal of Virological Methods, 74:167-178 DOI: 10.1016/S0166-
- 468 0934(98)00086-X.

469

- 470 Knippers R, Alpert CA. 1999. Recombinant DNA technology. In: Lengeler JW, Drews G,
- 471 Schlegel HG, ed. Biology of the Prokaryotes, Blackwell Science, Oxford UK, 416-436.

472

- 473 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F,
- 474 Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and
- 475 Clustal X version 2.0. Bioinformatics, 23:2947-2948 DOI: 10.1093/bioinformatics/btm404.

476

- 477 Levitzky N, Smith E, Lachman O, Luria N, Mizrahi Y, Bakelman H, Sela N, Laskar O, Milrot E,
- 478 Dombrovsky A. 2019. The bumblebee Bombus terrestris carries a primary inoculum of Tomato
- brown rugose fruit virus contributing to disease spread in tomatoes. *PLoS ONE* 14(1): e0210871.
- 480 DOI:10.1371/journal.pone.0210871

- Ling KS, Tian T, Gurung S, Salati R, Gilliard A. 2019. First report of tomato brown rugose fruit
- virus infecting greenhouse tomato in the US. Plant Disease, 103(6):1439 DOI: 10.1094/PDIS-
- 484 11-18-1959-PDN SUPPLEMENTAL.

485

- 486 Luria N, Smith E, Reingold V, Bekelman I, Lapidot M, Levin I, Elad N, Tam Y, Sela N, Abu-
- 487 Ras A, Ezra N, Haberman A, Yitzhak L, Lachman O, Dombrovsky A. 2017. A new Israeli
- Tobamovirus isolate infects tomato plants harboring Tm-2² resistance genes. *PloS one*, 12(1):1-
- 489 19 DOI: 10.1371/journal.pone.0170429.

490

- 491 Menzel W, Knierim D, Winter S, Hamacher J, Heupel M, 2019. First report of tomato brown
- 492 rugose fruit virus infecting tomato in Germany. New Disease Reports, 39:1 DOI: 10.5197/j.2044-
- 493 0588.2019.039.001.

494

- 495 Panno S, Davino S, Rubio L, Rangel E, Davino M, García-Hernández J, Olmos A. 2012.
- 496 Simultaneous detection of the seven main tomato-infecting RNA viruses by two multiplex
- 497 reverse transcription polymerase chain reactions. Journal of Virological Methods, 186:152–156
- 498 DOI: 10.1016/j.jviromet.2012.08.003.

499

- 500 Panno S, Ferriol I, Rangel EA, Olmos A, Cheng-Gui H, Martinelli F, Rubio L, Davino S. 2014.
- 501 Detection and Identification of Fabavirus species by one step RT-PCR and Multiplex RT-PCR.
- 502 Journal of Virological Methods, 197:77-82 DOI: 10.1016/j.jviromet.2013.12.002.

503

- Panno S, Caruso AG, Davino S. 2018. The nucleotide sequence of a recombinant tomato yellow leaf curl virus strain frequently detected in Sicily isolated from tomato plants carrying the Ty-1
- 506 resistance gene. Archives of virology, 163(3):795-797 DOI: 10.1007/s00705-017-3674-9.

507

- Panno S, Caruso AG, Troiano E, Luigi M, Manglli A, Vatrano T, Iacono G, Marchione S, Bertin
- 509 S, Tomassoli L, Parrella G, Davino S. 2019a. Emergence of tomato leaf curl New Delhi virus in
- 510 Italy: estimation of incidence and genetic diversity. *Plant Pathology*, 68(3):601-608 DOI:
- 511 10.1111/ppa.12978.
- 512 Panno S, Caruso AG, Davino S. 2019b. First Report of Tomato Brown Rugose Fruit Virus on
- 513 Tomato Crops in Italy. *Plant Disease*, 103(6): 1443-1443 DOI: 10.1094/PDIS-12-18-2254-PDN
- 514 SUPPLEMENTAL.

515

516 Pelham J. 1966. Resistance in tomato to tobacco mosaic virus. *Euphytica*; 15(2):258-67 DOI: 517 10.1007/BF00022331. 518 Puchades AV, Carpino C, Alfaro-Fernandez A, Font-San-Ambrosio MI, Davino S, Guerri J, 519 Rubio L, Galipienso L. 2017. Detection of Southern tomato virus by molecular hybridisation. 520 521 Annals of applied biology, 171: 172-178 DOI: 10.1111/aab.12367. 522 523 Salem N, Mansour A, Ciuffo M, Falk BW, Turina M. 2016. A new tobamovirus infecting tomato 524 crops in Jordan. Archives of virology, 161(2):503-506 DOI: 10.1007/s00705-015-2677-7. 525 Tiberini A, Davino S, Davino M, Tomassoli L. 2011. Complete sequence, genotyping and 526 comparative analysis of Pepino mosaic virus isolates from Italy. Journal of Plant Pathology 93: 527 528 437-442 DOI: 10.4454/jpp.v93i2.1199. 529