1 2	A new leptoceratopsid dinosaur from Maastrichtian-aged deposits of the Sustut Basin, northern British Columbia, Canada
3	
4	Victoria M. Arbour ¹ , David C. Evans ²
5	
6	¹ Department of Knowledge, Royal BC Museum, Victoria, BC, Canada
7	² Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
8	
9	Corresponding author:
10	Victoria M. Arbour ¹
11	Email address: varbour@royalbcmuseum.bc.ca
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

A partial dinosaur skeleton from the Sustut Basin of northern British Columbia, Canada, previously described as an indeterminate neornithischian, is here reinterpreted as a leptoceratopsid ceratopsian, Ferrisaurus sustutensis, gen. et. sp. nov. The skeleton includes parts of the pectoral girdles, left forelimb, left hindlimb, and right pes. It can be distinguished from other named leptoceratopsids based on the proportions of the ulna and pedal phalanges. This is the first unique dinosaur species reported from British Columbia, and can be placed within a reasonably resolved phylogenetic context, with Ferrisaurus recovered as more closely related to Leptoceratops than Montanoceratops. At 68.2 to 67.2 Ma in age, Ferrisaurus falls between, and slightly overlaps with, both Montanoceratops and Leptoceratops, and represents a western range extension for Laramidian leptoceratopsids.

ABSTRACT

INTRODUCTION

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

The dense boreal forest and thrusted, folded rocks of the Canadian Cordillera present a challenging environment in which to search for dinosaurs, compared to the better exposed and more easily accessible outcrops in the badlands of the prairie provinces. Nevertheless, a dinosaur specimen (RBCM P900) consisting of articulated and disarticulated limb and girdle elements was discovered in 1971 in the remote interior mountains of north-central British Columbia (Fig. 1; Arbour and Graves 2008). These bones were collected by geologist Kenny F. Larsen, who was surveying for uranium along the then inconstruction BC Rail line along the Sustut River, and were later donated to Dalhousie University (Halifax, NS) and subsequently accessioned at the Royal British Columbia Museum in Victoria, BC. Arbour and Graves (2008) described this material and identified it as an indeterminate small-bodied, bipedal neornithischian, possibly representing either a pachycephalosaur or a basal ornithopod similar to Thescelosaurus. Here we provide a new interpretation of this material and argue for its assignment to Leptoceratopsidae as a new genus and species. Leptoceratopsids were short-frilled, hornless ceratopsians with a maximum body length of about two-to-three meters, and form the sister group to all other coronosaurian neoceratopsians (He et al. 2015). They were present in many Campanian-Maastrictian aged dinosaur assemblages from Asia and North America, but are generally rare in the fossil record (Ryan et al. 2012, Longrich 2016). RBCM P900 is one of the only vertebrate fossils yet described from the Sustut Basin and as such is significant for understanding the distribution and evolution of dinosaurs in western North America. A 2017 survey of the field area near the confluence of Birdflat Creek and the Sustut River recovered a fragment of the Cretaceous turtle Basilemys at a location closely matching Larsen's original field notes, suggesting that RBCM P900 most likely derived from the same outcrop (Fig 1; Arbour et al. in review). This work generated new stratigraphic and palynological data that allows the provenance of this important skeleton to be documented in detail for the first time. RBCM P900 is likely from the Tango Creek Formation, rather that the Brothers Peak Formation as originally reported, and the new palynological data suggest that the specimen is late Maastrichtian in age, allowing its morphology and biogeography to be understood in a more detailed temporal context and compared to more closely related leptoceratopsids.

Commented [S1]: Where was the specimen between 1971 and 2008?

Commented [S2]: Is one turtle fragment enough?

Institutional abbreviations: LACM, Los Angeles County Museum; MOR – Museum of the Rockies,
Bozeman, Montana, USA; RBCM – Royal BC Museum, Victoria, British Columbia, Canada; RAM, Raymond
Alf Museum; ROM – Royal Ontario Museum, Toronto, Ontario, Canada; TMP - Royal Tyrrell Museum of
Palaeontology, Drumheller, Alberta, Canada; UALVP – University of Alberta, Edmonton, Alberta, Canada;
CMN, Canadian Museum of Nature, Ottawa, Ontario, Canada.

The electronic version of this article in Portable Document Format (PDF) will represent a published work

81 82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

replications.

76

77

78

79

80

METHODS

according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:pub:D1C60A34-3632-43AD-BCE0-C93D5E26D1B0. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS. No permits were required for this study and all fossils are permanently accessioned in repositories. RBCM P900 was compared to ceratopsian, pachycephalosaurid, ornithopodan, and parksosaurid dinosaurs in various collections (SI 1) and the literature, and comparative measurements are provided in SI 2. Photogrammetric digital models of the specimen (SI 3) were created using Agisoft Metashape. We assessed the phylogenetic position of RBCM P900 using the character-taxon matrix for ceratopsians presented by He et al. (2015), which in turn was built from the matrix presented by Farke et al. (2014). Our matrix includes 34 taxa and 165 characters (SI 1 and 4) and was compiled in Mesquite v3.04 build 725 (Maddison and Maddison 2011). We added three new characters (characters 163-165) based on observations made over the course of this study. We performed a cladistic parsimony analysis using the

Traditional Search option in TNT v1.5 (Goloboff et al. 2008); all characters were treated as unordered

and of equal weight, and we used the tree bisection reconnection (TBR) swapping algorithm with 1000

Commented [S3]: I don't have access to this supplemental data, and am not sure why this was done or what the significance of it is.

105	SYSTEMATIC PALAEONTOLOGY	
106	DINOSAURIA Owen, 1842	
107	ORNITHISCHIA Seeley, 1888	
108	NEORNITHSICHIA Cooper, 1985	
109	MARGINOCEPHALIA Sereno, 1986	
110	CERATOPSIA Marsh, 1890	
111	NEOCERATOPSIA Sereno, 1986	
112	CORONOSAURIA Sereno, 1986	
113	LEPTOCERATOPSIDAE Nopcsa, 1923	
114	FERRISAURUS SUSTUTENSIS gen. et sp. nov. urn:lsid:zoobank.org:act:A7F4267C-8CC6-49B6-8E52-	
115	2C2148929B14	
116	<u>Diagnosis</u> : Autapomorphic among leptoceratopsids, the penultimate pedal phalanges in digits III and IV	
117	are equal or subequal in proximodistal length compared to the length of the preceding phalanx, rather	
118	than shorter as in all other leptoceratopsids for which these elements are preserved. Astragalus and	
119	tibia coossified, unlike all other leptoceratopsids except for one specimen of <i>Montanoceratops</i> ; distal	
120	end of ulna broader relative to radius length than in Leptoceratops. Distal end of ulna medially bowed,	
121	unlike the straight ulna of the penecontemporaneous Maastrichtian taxa <i>Leptoceratops</i> and	
122	Montanoceratops, but similar to Cerasinops and Prenoceratops from the Campanian.	
123	Thursdown "Ivan linear" from latin formum (insp) and Cook source (linear) in reference to the	
123	Etymology: "Iron lizard", from Latin ferrum (=iron) and Greek sauros (=lizard), in reference to the	
	specimen's discovery along a railway line, and <i>sustutensis</i> in reference to its provenance near the Sustut	
125	River and within the Sustut Basin.	
126	Holotype: RBCM P900, a partial skeleton consisting of a partial right coracoid, fragmentary left scapula,	
127	complete left radius, distal portion of the left ulna, associated distal two thirds of the left tibia and fibula	
128	and coossified astraglus and ?calcaneum, partial articulated digits III and IV of the right pes, and an	
129	unprepared block removed from the posterior surface of the tibia that appears to contain four	

Commented [S4]: Should be "unlike **in** all other..." This error is found throughout the manuscript.

Commented [S5]: Should be "straight distal ulna"

Commented [S6]: Should be "similar to the condition found in..."

Commented [S7]: How can you tell which digits you have? Some context would help here.

metatarsals, presumably from the left pes. Previously catalogued as RBCM.EH2006.019.0001 to RBCM.EH2006.019.010 and published under RBCM.EH2006.019 by Arbour and Graves (2008). Locality: RBCM P900 was discovered near the confluence of Birdflat Creek and the Sustut River in the Sustut Basin (Fig. 1); the bones were found loose in the rubble during construction along the BC Rail line, which has since been abandoned. Fieldwork in the Sustut Basin in 2017 provided strong support for the relocation of the original collection site a few hundred meters from the confluence of the Sustut River and Birdflat Creek (Arbour et al. in review); exact GPS coordinates are on file at the Royal BC Museum. Formation and Age: Tatlatui Member, Tango Creek Formation, Sustut Group. Palynomorphs recovered from the presumed holotype locality included the Maastrichtian marker taxon Pseudoaquilapollenites bertillonites, indicating an age of approximately 68.2 to 67.2 Ma for the site (Arbour et al. in review). LSID: urn:lsid:zoobank.org:act:A7F4267C-8CC6-49B6-8E52-2C2148929B14

DESCRIPTION AND COMPARISON

phalanges, and potentially the metatarsals (Fig. 2). The presence of metatarsals in a block of sediment removed from the posterior face of the distal tibia suggests that the skeleton may have been fully articulated in situ. The bones do not appear to have suffered from brittle or plastic deformation, but they have been recrystallized, obscuring the original internal bone textures.

We reinterpret RBCM P900 as a leptoceratopsid based on several aspects of the preserved phalanges. The non-pedal phalanges are blockier and more robust in comparison to most orodromines (e.g. Orodromeus MOR 623B), parksosaurids (e.g. Parksosaurus ROM 804), and pachycephalosaurids (e.g. Stegoceras UALVP 2). The dorsal surface of the posterior articular surface in RBCM P900 is more strongly pointed, and overlaps the preceding phalanx more extensively, than in other small ornithischians with ginglymoid phalanges from similar stratigraphic and geographic ranges, such as parksosaurids (e.g. Parksosaurus ROM 804) and pachycephalosaurids (e.g. Stegoceras UALVP 2). Ginglymoid articular surfaces, and narrow, pointed unguals, also exclude identifications of this specimen as a juvenile ceratopsid (e.g. Chasmosaurus UALVP 52613) or hadrosaurid (e.g. Edmontosaurus annectens, LACM 23504 (Prieto-Marquez, 2014), RAM 7150 (Zheng et al. 2011), Lambeosaurinae indet., TMP 1998.058.0001). The relatively long and robust forelimb compared to the hindlimb, as indicated by the

RBCM P900 includes multiple elements in articulation, including the tibia and fibula, several pedal

Commented [S8]: How do you know that they are articulated? Were they in a block together?

Commented [S9]: Do you mean "ungual"?

Commented [S10]: Confusing; maybe say "dorsal aspect of "

Commented [S11]: Maybe define?

proportions of the radius and tibia, exclude RBCM P900 from being assigned to Thescelosauridae and Pachycephalosauria. The preserved elements of RBCM P900 are comparable in size to large leptoceratopsid specimens like *Cerasinops* MOR 300 and *Leptoceratops* CMN 8889.

Pectoral Girdle

Arbour and Graves (2008:Fig. 2:G, H) were unable to identify a thin, gently curved element of RBCM P900, which we reinterpret here as a fragmentary right coracoid (Fig. 3A). Most of the edges are broken, but the angle of the sternal process is complete and part of the anterior edge is complete. The morphology of this bone compares well with the complete coracoids of *Leptoceratops* CMN 8889 (Fig. 3B); the coracoids of most other Laramidian leptoceratopsids are incomplete and cannot be compared with RBCM P900. As in *Leptoceratops*, RBCM P900 had a pronounced, sharply pointed sternal process at the anterior and ventral end of the coracoid. The anterior edge of the coracoid in RBCM P900 appears straighter compared to the more curved edge in CMN 8889 (*Leptoceratops*), but without comparable material from other taxa it is difficult to assess whether or not this is within the range of intraspecific variation or a taxonomic difference.

A fragmentary flattened bone was interpreted as a possible rib by Arbour and Graves (2008: Fig. 2E,F) and is reinterpreted here as part of the left scapula (Fig. 3C, D), representing a section near the midpoint of the scapular blade. It has a teardrop-shaped cross section on one side and rapidly narrows to a thin oval cross-section on the other side. The ventral edge of the fragment is straight, and the dorsal edge is markedly concave. The scapulae of *Montanoceratops* (MOR 452) and *Prenoceratops* (TCM 2003.1.9 and TCM 2003.1.11; Fig. 3F) are relatively straight along their dorsal lengths, whereas the scapulae of *Cerasinops* (MOR 300, Fig. 3E) and *Leptoceratops* (CMN 8889) are more concave dorsally in lateral view.

Forelimb

We agree with the identification of the radius by Arbour and Graves (2008: Fig. 2C,D). The radius is a relatively simple rod-shaped bone with gently expanded proximal and distal ends and a shaft that is triangular in cross section (Fig. 4A-D. Overall, the radius of RBCM P900 is very similar to that of *Leptoceratops* (Brown 1914; Fig. 4E), and it differs only in subtle aspects. The proximal end in RBCM P900 is less cup-shaped compared to *Leptoceratops* (CMN 8889), and the shaft lacks the prominent

protuberance present near the midpoint in *Leptoceratops* (AMNH 5205; Brown 1914), although a light distal tuberosity is present as in AMNH 5205. The preserved radii of *Cerasinops* (MOR 300; Fig. 4F) lack distal and proximal ends, but preserve straight shafts lacking any bulges or tuberosities.

We reinterpret the bone previously identified by Arbour and Graves (2008: Fig. 2) as the proximal half of a humerus as a partial right ulna including the distal end (Fig 5A,B). The ulna is incomplete proximally, but the shaft is expanded towards the broken proximal end. Based on the proportions of the radius length to ulna length in *Leptoceratops*, *Montanoceratops*, and to a lesser extent *Cerasinops* (SI 2) where the radius is 75-80% of the length of the ulna, the ulna of RBCM P900 may have been 170-180 mm in total length. Comparing the width of the distal ulna to the length of the radius, the ulna of RBCM P900 was proportionately wider compared to other leptoceratopsids (Fig 5, SI 2), giving it a stouter appearance.

The ulna shaft is a flattened oval in cross-section, and the distal end is flat and only moderately expanded. A diagnostic character for *Cerasinops* proposed by Chinnery and Horner (2007) is the strong medial bend of the distal part of the ulna. The distal ulna of RBCM P900 is also medially deflected (Fig. 5G), with the posterior edge more strongly curved than the anterior edge. The postcrania of the bonebed material of *Prenoceratops* was not previously described by Chinnery (2004), but examination of TCM 2003.1.8, a right ulna (Fig. 5H), indicates that *Prenoceratops* also had a medial bend to the distal ulna. The ulna is straight in this region in *Leptoceratops* (CMN 8889) and *Montanoceratops* (MOR 542; Fig. 5I).

Hindlimb

Approximately the distal two thirds of the right tibia and fibula are preserved, with the tibia and fibula in articulation (Fig. 6A-D). Using more complete specimens of similar size as a guide (SI 2), we estimate that the tibia in RBCM P900 was likely between 310 and 330 m in length originally. The astragalus and possibly the calcaneum are coossified to the tibia but the boundaries between these elements are difficult to discern. The tibia and astragalus are not coossified in *Leptoceratops* (CMN 8889; Fig. 6F,G), *Cerasinops* (MOR 300; Fig. 6H-J) or *Montanoceratops* (MOR 542) and in these specimens the boundary between these elements is clearly discernible. Makovicky (2010) notes that the astragalus is partly coossified with the tibia in *Montanoceratops* (AMNH 5465). It is unclear whether this an ontogenetic phenomenon, and if it is phylogenetically significant.

In medial and lateral views (Fig. 6A,D) the tibia of RBCM P900 has a pronounced distal curvature that was not observed in any other leptoceratopsid specimens and which does not seem to represent taphonomic deformation, based on the absence of crushing or fractures on the tibia. In distal view (Fig. 6B), the lateral and medial malleoli are offset at a distinct angle, giving the distal face of the tibia/astragalus a triangular cross section; RBCM P900 has a more pronounced edge marking the confluence between the malleoli compared to the condition in Leptoceratops (CMN 8889), Cerasinops (MOR 300), or Montanoceratops (MOR 542). The tibia of RBCM P900 is straight-sided in anterior and posterior view and tapers towards the midpoint in anterior or posterior view, similar to the condition in Leptoceratops (CMN 8889; Fig. 6F,G), and Montanoceratops (MOR 542), and unlike the strongly kinked morphology observed in Cerasinops (MOR 300; Fig. 6H-J). The tibia narrows significantly along the shaft and has an oval cross section at its broken proximal end. The fibula is narrow, with an oval cross section. A portion of matrix removed from the anterior side of the distal tibia contains what appear to be the remains of four metatarsals in cross section (Fig. 6E), but little can be said about their morphology without further preparation. RBCM P900 preserves a large number of pedal phalanges: III-2, III-3, and III-4, and IV-2, IV-3, IV-4, and IV-5 (Fig. 7A-C). Pedal digit III was preserved in articulation on a piece of matrix (Fig. 7A,B); digit IV includes IV-2 and IV-3 preserved in articulation and IV-4 and IV-5 can be 'snapped' back into articulation based on the presence of some remaining matrix on these elements (Fig. 7C). The non-ungual phalanges are somewhat longer than wide, but blocky rather than elongate, and ginglymoid. The distinctly ginglymoid nature of the interphalangeal joints is distinct from the non-ginglymoid pedal phalangeal joints in Hadrosauridae (e.g., Zheng et al. 2011). In Leptoceratops (CMN 8889, CMN 8887), Cerasinops (MOR 300), and Montanoceratops (MOR 542) the penultimate pedal phalanx of each major digit is markedly shorter in length compared to the preceding phalanx (~75%-90% the length of the preceding phalanx); in RBCM P900 the penultimate and preceding phalanx on digits III and IV are similar in size, with the penultimate phalanx actually being slightly longer than the preceding phalanx (SI 2). Leptoceratops (AMNH 5205; Brown 1914) and Cerasinops (USNM 13863; Gilmore 1939, Chinnery and Horner 2007) are both illustrated with penultimate phalanges

subequal in length to the preceding phalanx, but these are both illustrated as line drawings rather than

photographs, measurements were not provided by the authors, the digits in AMNH 5205 were not part

of an articulated pes, and neither of these specimens were measured for this study. As such, it is unclear

if the illustrations accurately reflect the actual morphology of the pedal digits in these two specimens.

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Commented [S12]: I can't tell this from the figure; the fibula is clearly not in line with the tibia, also the block makes it difficult to tell. This condition should be shown in the figure

Commented [S13]: Again, can't tell this from the figure

Commented [S14]: Can you highlight this on the figure?

Commented [S15]: Very interesting – a functional difference maybe?

Commented [S16]: I know this is correct, it's just a confusing group of words, but I suppose "distal non-ungual phalanx" is just as bad.

Commented [S17]: So can you really say anything about the differences or lack of them between the new specimen and other taxa? The digit of MOR 542 looks very similar to me to that of the new taxon.

The figured pes of *Udanoceratops* PIN 4046/11 (Tereschenko 2008) appears to show penultimate phalanges subequal in length to the preceding phalanx in digits II-IV, but measurements were not provided, and no rationale was provided for why this specimen is referred to *Udanoceratops* rather than *Protoceratops*. RBCM P900 can, however, be differentiated from *Udanoceratops* by the morphology of the pedal unguals, if PIN 4046/11 (Tereschenko 2008) is referable to *Udanoceratops* rather than *Protoceratops*.

The unguals of RBCM P900 are long and narrow, with a gently curved ventral surface (Fig. 7A-C, E), differing from the broad, hoof-shaped unguals of ceratopsids or the wide triangular unguals of protoceratopsids (Sternberg 1951). Their overall shape is similar to the unguals of most other leptoceratopsids, with the possible exception of *Udanoceratops* based on specimen PIN 4046/11 where the proximal articular surface of the ungual is much wider than the distal articular surface of the penultimate phalanx (Tereschenko 2008). Lateral grooves on the unguals of RBCM P900 are shallow. The unguals of *Leptoceratops* specimen CMN 8889 have a longitudinal furrow on the ventral surface, but these are absent in the smaller *Leptoceratops* specimen CMN 8887, and ventral furrows were not observed on any other leptoceratopsid unguals examined for this study. No ventral furrows are present on the unguals of RBCM P900. The unguals of RBCM P900 appear slightly deeper in lateral view compared to other leptoceratopsids, but it is unclear how much this is influenced by taphonomic factors (e.g. the pedal elements of *Cerasinops* MOR 300 are severely crushed), ontogeny, or body size (e.g. *Montanoceratops* MOR 542 is substantially smaller and presumably ontogenetically younger than RBCM P900).

Commented [S18]: Why? If these are different taxa they could be different sizes as adults.

RESULTS OF THE PHYLOGENETIC ANALYSIS

The phylogenetic analysis recovered 7 most parsimonious trees, each with a tree length of 328, a consistency index of 0.60, a retention index of 0.80, and a best tree-bisection reconnection score of 326 (Fig. 8). The strict consensus tree (Fig. 8) is nearly identical to that presented by He et al. (2015), with a basal grade of small-bodied ceratopsians and two derived clades, Coronosauria and Leptoceratopsidae. Within Leptoceratopsidae, the recovered relationships are similar to those found by He et al. (2015), with *Asiaceratops* and *Cerasinops* recovered as successive sister taxa to all other leptoceratopsids, *Montanoceratops* and *Ischioceratops* as sister taxa, and *Prenoceratops* as the sister taxon to an unresolved clade of the six remaining leptoceratopsids, including *Ferrisaurus*. Within this

clade, Ferrisaurus has an unresolved relationship with the North American taxa Leptoceratops, Gryphoceratops and Unescoceratops and the Asian taxa Udanoceratops and Zhuchengceratops. Poor resolution of this group is most likely because of the low number of characters that could be coded for Ferrisaurus. In two of the seven trees, Ferrisaurus and Udanoceratops were sister taxa; the position of Ferrisaurus differs in the other five trees.

DISCUSSION

The fact that RBCM P900, the first dinosaur specimen recovered from the Sustut Basin, is a leptoceratopsid rather than one of the more commonly encountered groups in many coeval formations in western North America, such as hadrosaurs, ceratopsians, or tyrannosaurs, is surprising, especially given well-documented preservational biases against small-bodied dinosaurs in more fossiliferous areas (Brown et al. 2013a, b; Evans et al., 2013). Most leptoceratopsid taxa are distinguished on the basis of cranial morphology, especially aspects of the lower jaw anatomy (e.g., Ryan et al. 2012). However, excellent postcranial material is known for many taxa, making it possible to identify diagnostic features in RBCM P900 despite the absence of cranial material for this specimen. *Leptoceratops*, *Montanoceratops*, and *Cerasinops* are all known from multiple partial or complete skeletons (Chinnery and Weishampel 1998, Chinnery and Horner 2007, Ostrom 1978, Brown and Schlaikjer 1942, Sternberg 1951, Brown 1914), and *Prenoceratops* specimens described by Chinnery (2004) come from a single mixed bonebed from which multiple composite skeletons have been assembled.

Digit proportions have been used to distinguish caenagnathids (e.g. Zanno and Sampson 2005), oviraptorids (Longrich et al. 2010), and ornithomimids (Kobayashi and Barsbold 2006) at low taxonomic levels, and we show that they can also be used to distinguish among leptoceratopsids. In all specimens preserving partial or complete articulated pedes, the penultimate phalanx (preceding the ungual) for each major digit is shorter in length than the immediately preceding phalanx. In other words, pedal phalanx length decreases distally in the digit, except for the unguals (Fig. 7). In *Ferrisaurus*, the penultimate phalanx is subequal in length to the preceding phalanx in digits 3 and 4, and phalanx length does not decrease distally within each pedal digit. This appears to be unique to *Ferrisaurus* within leptoceratopsids; it may be present in a referred specimen of *Udanoceratops* (PIN 4046/11, Tereschenko 2008, although it is not clear that this specimen is not referable to *Protoceratops*), and may also be

Commented [S19]: The new fossil ia a ceratopsian! Maybe you mean ceratopsids?

Commented [S20]: These need to be put in alphabetical order as in the references

Commented [S21]: Would distal be a better word here?

308 present in more basal ceratopsian taxa such as Archaeoceratops (You and Dodson 2003) or Yinlong (Xu 309 et al. 2006), although phalangeal measurements were not provided in the descriptions of these taxa. 310 The astragalus and tibia in RBCM P900 are coossified (Fig. 6), an unusual condition among 311 leptoceratopsids that is otherwise present in only one specimen of Montanoceratops (AMNH 5465). 312 Coossification of the astragalus and tibia could indicate advanced skeletal maturity in RBCM P900, but 313 this specimen is smaller than specimens in which the tibia and astragalus remain separate (e.g. Leptoceratops CMN 8889, Montanoceratops AMNH 5205), suggesting that size alone does not explain 314 315 the differences in coossification patterns in leptoceratopsids. It is unclear what the ontogenetic or 316 taxonomic significance of this coossification represents in Ferrisaurus. Fusion of the ankle (distal tibia 317 and fibula) has been proposed as a diagnostic character of the small bodied thescelosaurid 318 Albertadromeus syntarsus from the Campanian of Alberta (Brown et al. 2013b). 319 Ferrisaurus shares with Cerasinops a medially bent distal ulna (originally proposed as a diagnostic 320 character for Cerasinops by Chinnery and Horner 2007), a feature that is also present in Prenoceratops 321 (TCM 2003.1.8). This feature is not present in the Maastrichtian-aged leptoceratopsids 322 Montanoceratops and Leptoceratops, which are penecontemporaneous with Ferrisaurus. Chinnery and 323 Horner (2007) suggested that the medial deflection of the ulna in Cerasinops, as well as the proportions 324 and histology of the limb elements, may indicate that Cerasinops was primarily bipedal rather than 325 quadrupedal. Although limb proportions are more difficult to determine in Ferrisaurus, if the complete 326 tibia was between 310-330 mm (estimated based on more complete tibiae in Leptoceratops and 327 Montanoceratops, SI 2), then the radius of Ferrisaurus would have been no more than 40-43% of the 328 length of the tibia. This is less than other comparable leptoceratopsids: the radius is 50% the length of 329 the tibia in Leptoceratops CMN 8889, 48% in Leptoceratops AMNH 5205, and 47% in Leptoceratops CMN 330 8888, and much more than 45% in the incomplete radii of Cerasinops MOR 300. Ferrisaurus thus may 331 have had a more robust distal ulna (Fig. 5), but a shorter forelimb overall compared to Cerasinops, 332 suggesting that it too may have been at least facultatively bipedal. Alternately, the robusticity of the 333 ulna may be related to another aspect of its ecology, such as digging, which has been suggested in the 334 orodromine Oryctodromeus (Fearon and Varricchio 2015) and Protoceratops (Longrich 2010). 335 Although the precise relationships of Ferrisaurus are unresolved, we found it to be more closely related 336 to Leptoceratops than Montanoceratops (Fig. 8). Despite their stratigraphic and geographic proximity, 337 Leptoceratops and Montanoceratops are not recovered as close relatives in recent phylogenetic

analyses. Montanoceratops occupies a relatively basal position within Leptoceratopsidae (Makovicky

338

Commented [S22]: I totally agree; this is the same in Prenoceratops elements. But again, if so then maybe it shouldn't be used as a taxonomic character.

Commented [S23]: What exactly do you mean by this? All of these "pene-" words; I'm not a fan.

2010, Ryan et al. 2012, Farke et al. 2014, He et al. 2015), and was found to be the sister taxon to *Ischioceratops* from Asia by He et al. (2015). *Leptoceratops* typically occupies a more derived position and has been recovered as the sister taxon to the Asian *Udanoceratops* (He et al. 2015). *Ferrisaurus* was thus recovered in a more derived position within Leptoceratopsidae relative to *Montanoceratops*.

Stratigraphic and palaeobiogeographic implications

Leptoceratopsids are known from the Santonian through Maastrichtian of Laramidia (Ryan et al. 2012), and the Campanian-Maastrichtian of Mongolia and China (He et al. 2015); fragmentary putative leptoceratopsids have also been reported from the Cenomanian of Uzbekistan (Nessov et al. 1989), the ?Coniacian-Santonian of Belgium (Godefroit et al. 2007, Longrich 2016), the Campanian of North Carolina (Longrich 2016), and the Campanian of Sweden (Lindgren et al. 2007). *Gryphoceratops*, the oldest taxon, derives from the Deadhorse Coulee Member of the Milk River Formation, with a minimum age of about 83.7 Ma. Campanian Laramidian taxa include *Cerasinops* from the lower Two Medicine Formation, *Prenoceratops* from the upper Two Medicine Formation of Montana and Oldman Formation of Alberta, and *Unescoceratops* from the lower Dinosaur Park Formation. Only two genera are known from the Maastrichtian of Laramidia: *Montanoceratops* from the St Mary River and Horseshoe Canyon formations, and *Leptoceratops* from the Scollard and Hell Creek formations and the Pinyin Conglomerate. RBCM P900 was most likely collected from approximately 68.2 to 67.2 Ma sediments of the Tatlatui Member of the Tango Creek Formation (Arbour et al. in review). This places it between the stratigraphic ranges for *Montanoceratops* (71.939 – 68 Ma) and *Leptoceratops* (66.97 – 66 Ma), and slightly overlapping with the known range of *Montanoceratops* (Fowler 2017).

Stratigraphically, *Montanoceratops* and *Leptoceratops* are the most likely taxa to which RBCM P900 could be referred, but multiple anatomical features distinguish RBCM P900 from both *Leptoceratops* and *Montanoceratops*, including the proportions of the pedal digits, the proportions of the ulna, and the medially bowed morphology of the distal ulna. RBCM P900 is unlikely to represent an individual of *Cerasinops* or *Prenoceratops*. *Ferrisaurus* can be distinguished from *Cerasinops* based on the proportions of the pedal digits, and from both *Cerasinops* and *Prenoceratops* based on the proportions of the ulna. These morphological differences are reinforced by the stratigraphic position of *Ferrisaurus* relative to the latter taxa (latest Maastrichtian, vs. middle to Upper Campanian; Chinnery and Horner 2007, Chinnery 2004), given that no other dinosaur species with temporally well-resolved specimens spans the

Commented [S24]: More citations are needed for this part; see comments in review. Also, you didn't cite the chapter in the New Perspectives book that discusses biogeography.

middle Campanian to latest Maastrichtian elsewhere in Laramidia (e.g. Eberth et al. 2013, Fowler 2017). An enigmatic specimen, TMP 1982.11.1, from the Maastrichtian Willow Creek Formation (Miyashita et al. 2010) has been referred to Montanoceratops by several authors (Ryan and Currie 1998), but was considered neither a representative of Montanoceratops, Leptoceratops, or Cerasinops by Makovicky (2010). Several additional as-yet undescribed specimens in the collections of the TMP (Tanke 2007) may represent examples of either Montanoceratops, Leptoceratops, or Ferrisaurus and their description may help clarify the differences between these three taxa or provide new anatomical information for Ferrisaurus. Leptoceratopsids are uncommon components of the dinosaurian faunas of Laramidia: even in the wellsampled Dinosaur Park Formation of Alberta only a handful of leptoceratopsid specimens are known. Ryan and Evans (2005) hypothesized that leptoceratopsids may have avoided the wet coastal environments favoured by ceratopsids. Elsewhere in North America, Leptoceratops appears to be present primarily in piedmont and alluvial plain palaeoenvironments and is largely absent in coastal plain settings (Lehman 1987, although see Ott 2007). The Tatlatui Member of the Tango Creek Formation represents an alluvial plain palaeoenvironment (Bustin and McKenzie 1989), consistent with the palaeoenvironmental association documented for other Maastrichtian leptoceratopsids. Interestingly, the intermontane basin occurrence of Ferrisaurus also supports one hypothesis outlined by Lehman (1987, 2001), that leptoceratopsids, along with a few other large-bodied herbivorous taxa, were inhabitants of Cordilleran highlands and adjacent piedmonts, which, in part, explains their rarity in the fossil record. Although today the holotype locality for Ferrisaurus is found at approximately 56°N today, the unusual and complex translational history of the Intermontane Superterrane means its palaeolatitude may have lain as much as 1600 km to the south of its current position with respect to cratonic North America, and may have had approximately the same palaeolatitude (~48°N) as the southern border of Oregon and Idaho (Enkin et al. 2003, van Hinsbergen et al. 2015). Despite its current apparent northern latitude, the holotype of Ferrisaurus may actually represent one of the southernmost occurrences of Leptoceratopsidae in western North America, and at minimum would have been within the currently known latitudinal range of Laramidian leptoceratopsids. Regardless, RBCM P900 represents a western

range extension for Laramidian leptoceratopsids, and a unique occurrence within a restricted

intermontane basin palaeoenvironment. The identification of RBCM P900 as a unique leptoceratopsid

distinct from other known Laramidian taxa supports previous conclusions by Makovicky (2010) and Ryan

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Commented [S25]: Can you explain this further? It is very interesting.

400 401	Cretaceous ceratopsians.
402	
403	Supplementary Information
404	SI 1 – Specimens examined and character statements, .docx
405	SI 2 – Comparative measurements, .csv
406 407	SI 3 - Photogrammetric digital models of RBCM P900 are available at Morphosource, [url/doi forthcoming]
408	SI 4 – Character-taxon matrix, .nex
409	
410	ACKNOWLEDGEMENTS
411	Field sites are located on the unceded traditional territory of the Gitxsan peoples. Many thanks to D.
412	Evans (Children's Museum of Indianapolis), Jordan Mallon and Kieran Shepherd (Canadian Museum of
413	Nature), Amy Atwater, Scott Williams, and John Scannella (Museum of the Rockies), Brandon Strilisky
413 414	Nature), Amy Atwater, Scott Williams, and John Scannella (Museum of the Rockies), Brandon Strilisky and Caleb Brown (Royal Tyrrell Museum of Palaeontology), and Carl Mehling (American Museum of
414	and Caleb Brown (Royal Tyrrell Museum of Palaeontology), and Carl Mehling (American Museum of
414 415	and Caleb Brown (Royal Tyrrell Museum of Palaeontology), and Carl Mehling (American Museum of Nature History) for access to specimens in their collections. Peter Makovicky shared photographs of
414 415 416	and Caleb Brown (Royal Tyrrell Museum of Palaeontology), and Carl Mehling (American Museum of Nature History) for access to specimens in their collections. Peter Makovicky shared photographs of <i>Udanoceratops</i> , Kentaro Chiba, Cary Woodruff and Bobby Boessenecker provided assistance with digital
414 415 416 417	and Caleb Brown (Royal Tyrrell Museum of Palaeontology), and Carl Mehling (American Museum of Nature History) for access to specimens in their collections. Peter Makovicky shared photographs of <i>Udanoceratops</i> , Kentaro Chiba, Cary Woodruff and Bobby Boessenecker provided assistance with digital modelling and photogrammetry, and Derek Larson provided assistance with Latinization of the genus
414 415 416 417 418	and Caleb Brown (Royal Tyrrell Museum of Palaeontology), and Carl Mehling (American Museum of Nature History) for access to specimens in their collections. Peter Makovicky shared photographs of <i>Udanoceratops</i> , Kentaro Chiba, Cary Woodruff and Bobby Boessenecker provided assistance with digital modelling and photogrammetry, and Derek Larson provided assistance with Latinization of the genus name. Funding for this project was provided by an NSERC postdoctoral fellowship, an NSERC L'Oreal-
414 415 416 417 418 419	and Caleb Brown (Royal Tyrrell Museum of Palaeontology), and Carl Mehling (American Museum of Nature History) for access to specimens in their collections. Peter Makovicky shared photographs of <i>Udanoceratops</i> , Kentaro Chiba, Cary Woodruff and Bobby Boessenecker provided assistance with digital modelling and photogrammetry, and Derek Larson provided assistance with Latinization of the genus name. Funding for this project was provided by an NSERC postdoctoral fellowship, an NSERC L'Oreal-UNESCO for Women in Science fellowship supplement, a National Geographic Society Waitt Grant, and a
414 415 416 417 418 419 420	and Caleb Brown (Royal Tyrrell Museum of Palaeontology), and Carl Mehling (American Museum of Nature History) for access to specimens in their collections. Peter Makovicky shared photographs of <i>Udanoceratops</i> , Kentaro Chiba, Cary Woodruff and Bobby Boessenecker provided assistance with digital modelling and photogrammetry, and Derek Larson provided assistance with Latinization of the genus name. Funding for this project was provided by an NSERC postdoctoral fellowship, an NSERC L'Oreal-UNESCO for Women in Science fellowship supplement, a National Geographic Society Waitt Grant, and a

425	LITERATURE CITED
426	Arbour VM, Evans DC, Simon DJ, Cullen TM, Braman D. Revisions submitted. Cretaceous flora and fauna
427	of the Sustut Group near the Sustut River, northern British Columbia, Canada. Canadian Journal of Earth
428	Sciences.
429	Arbour VM, Graves MC. 2008. An ornithischian dinosaur from the Sustut Basin, north-central British
430	Columbia, Canada. Canadian Journal of Earth Sciences 45:457-463.
431	Brown B. 1914. <i>Leptoceratops</i> , a new genus of Ceratopsia from the Edmonton Cretaceous of Alberta.
432	Bulletin of the American Museum of Natural History 33:567-580.
433	Brown B, Schlaikjer EM. 1942. The skeleton of <i>Leptoceratops</i> with the description of a new species.
434	American Museum Novitates 1169:1-15.
435	Brown CM, Evans DC, Campione NE, O'Brien LJ, Eberth DA. 2013a. Evidence for taphonomic size bias in
436	the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system.
437	Palaeogeography, Palaeoclimatology, Palaeoecology 372:108-122.
438	Brown CM, Evans DC, Ryan MJ, Russell AP. 2013b. New data on the diversity and abundance of small-
439	bodied ornithopods (Dinosauria, Ornithischia) from the Belly River Group (Campanian) of Alberta.
440	Journal of Vertebrate Paleontology 33 (3): 495
441	Bustin RM, McKenzie KJ. 1989. Stratigraphy and depositional environments of the Sustut Group,
442	southern Sustut Basin, north central British Columbia. Bulletin of Canadian Petroleum Geology 37: 210-
443	223
444	Chinnery B. 2004. Description of <i>Prenoceratops pieganensis</i> gen. et sp. nov. (Dinosauria: Neoceratopsia)
445	from the Two Medicine Formation of Montana. Journal of Vertebrate Paleontology 24:572-590.
446	Chinnery BJ, Weishampel DB. 1998. Montanoceratops cerorhynchus (Dinosauria: Ceratopsia) and
447	relationships among basal neoceratopsians. Journal of Vertebrate Paleontology 18:569-585.
448	Chinnery BJ, Horner JR. 2007. A new neoceratopsian dinosaur linking North American and Asian taxa.
449	Journal of Vertebrate Paleontology 27:625-641.

450 451 452	Currie PJ, Holmes RB, Ryan MJ, Coy C. 2016. A juvenile chasmosaurine ceratopsid (Dinosauria, Ornithischia) from the Dinosaur Park Formation, Alberta, Canada. Journal of Vertebrate Paleontology 26: e1048348.
453 454 455	Eberth DA, Evans DC, Brinkman DB, Therrien F, Tanke DH, Russell LS. 2013. Dinosaur biostratigraphy of the Edmonton Group (Upper Cretaceous), Alberta, Canada: evidence for climate influence. Canadian Journal of Earth Sciences 50:701-726.
456 457 458	Enkin RJ, Mahoney JB, Baker J, Riesterer J, and Haskin ML. 2003. Deciphering shallow paleomagnetic inclinations: 2. Implications from Late Cretaceous strata overlapping the Insular/Intermontane Superterrane boundary in the southern Canadian Cordillera. Journal of Geophysical Research 108:1-19.
459 460 461 462	Evenchick CA, Ferri F, Mustard PS, McMechan M, Osadetz KG, Stasiuk L, Wilson NSF, Enkin RJ, Hadlari T, and McNicoll VJ. 2003. Recent results and activities of the Integrated Petroleum Resource Potential and Geoscience Studies of the Bowser and Sustut Basins project, British Columbia. Current Research, Geological Survey of Canada 2003-A13:1-11.
463 464 465	Evans DC, Schott RK, Larson DW, Brown CM, Ryan MJ. 2013. The oldest North American pachycephalosaurid and the hidden diversity of small-bodied ornithischian dinosaurs. Nature Communications 4: 1-10.
466 467	Farke AA, Maxwell WD, Cifelli RL, Wedel MJ. 2014. A ceratopsian dinosaur from the Lower Cretaceous of western North America, and the biogeography of Neoceratopsia. PLOS ONE 9:e112055.
468 469 470	Fearon JL, Varricchio DJ. 2015. Morphometric analysis of the forelimb and pectoral girdle of the Cretaceous ornithopod dinosaur <i>Oryctodromeus cubicularis</i> and implications for digging. Journal of Vertebrate Paleontology 35.
471 472 473	Fowler DW. 2017. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America. PLoS ONE 12:e0188426.
474 475 476	Godefroit P, Lambert O. 2007. A re-appraisal of <i>Craspedodon lonzeensis</i> Dollo, 1883 from the Upper Cretaceous of Belgium: the first record of a neoceratopsian dinosaur in Europe? Bulletin de l'Institut Royal des sciences naturelles de Belgique, sciences de la terre 77:83-93.

478	786.
479 480	Gilmore CW. 1939. Ceratopsian dinosaurs from the Two Medicine Formation, Upper Cretaceous of Montana. Proceedings of the United States National Museum 87:1-18.
481 482 483	He Y, Makovicky PJ, Wang K, Chen S, Sullivan C, Han F, Xu X. 2015. A new leptoceratopsid (Ornithischia, Ceratopsia) with a unique ischium from the Upper Cretaceous of Shandong Province, China. PLOS ONE 10:e0144148.
484 485	Kobayashi Y, Barsbold R. 2006. Ornithomimids from the Nemegt Formation of Mongolia. J Paleont Soc Korea 22:195-207.
486 487	Lehman TM. 1987. Late Maastrichtian paleoenvironments and dinosaur biogeography in the western interior of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 60:189-217.
488 489 490	Lehman TM. 2001. Late Cretaceous dinosaur provinciality. In Tanke DH, Carpenter K (eds) Mesozoic vertebrate life: new research inspired by the paleontology of Philip J. Currie. Indiana University Press, pp 310-328.
491 492	Lindgren J, Currie PJ, Siverson M, Rees J, Cederström P, Lindgren F. 2007. The first neoceratopsian dinosaur remains from Europe. Palaeontology 50:929-937.
493 494 495	Longrich N. 2010. The function of large eyes in <i>Protoceratops</i> : a nocturnal ceratopsian? In: Ryan MJ, Chinnery-Allgeier BJ, Eberth DA (eds) New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium. Indiana University Press, pp. 308-327.
496 497	Longrich NR. 2016. A ceratopsian dinosaur from the Late Cretaceous of eastern North America, and implications for dinosaur biogeography. Cretaceous Research 57:199-207.
498 499	Longrich NR, Currie PJ, Zhi-Ming D. 2010. A new oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of Bayan Mandahu, Inner Mongolia. Palaeontology 53:945-960.
500 501	Maddison WP, Maddison DR. 2011. Mesquite: a modular system for evolutionary analysis. Version 3.04 http://mesquiteproject.org
502 503	Makovicky PJ. 2001. A <i>Montanoceratops cerorhynchus</i> (Dinosauria: Ceratopsia) braincase from the Horseshoe Canyon Formation of Alberta. In: Tanke DH, Carpenter K, Skrepnick MW (eds) Mesozoic

Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24:774-

504	Vertebrate Life. Indiana University Press, pp. 243-262.
505	Makovicky PJ. 2010. A redescription of the <i>Montanoceratops cerorhynchus</i> holotype, with a review of
506	referred material. In: Ryan MJ, Chinnery-Allgeier BJ, Eberth DA (eds). New perspectives on horned
507	dinosaurs. Indiana University Press, pp. 68-82.
508	Miyashita TE, Currie PJ, Chinnery-Allgeier BJ. 2010. First basal neoceratopsian from the Oldman
509	Formation (Belly River Group), southern Alberta. In: Ryan MJ, Chinnery-Allgeier BJ, Eberth DA (eds) New
510	perspectives on horned dinosaurs: the Royal Tyrrell Museum Ceratopsian Symposium. Indiana University
511	Press, Bloomington, IN, pp. 83-90.
512	Nessov LA, Kaznyshkina LF, Cherepanov GO. 1989. Ceratopsian dinosaurs and crocodiles of the Mesozoic
513	of Middle Asia In: Bogdanova TN, Khozatsky LI (eds) Theoretical and applied aspects of modern
514	Palaeontology. Leningrad: Nauka, pp. 144–154.
515	Ostrom JH. 1978. Leptoceratops gracilis from the "Lance" Formation of Wyoming. Journal of
516	Paleontology 52: 697-704.
517	Ott CJ. 2006. Cranial anatomy and biogeography of the first Leptoceratops gracilis (Dinosauria:
518	Ornithischia) specimens from the Hell Creek Formation, southeast Montana. In: Carpenter K (ed). Horns
519	and beaks. Indiana University Press, pp. 213-233.
520	Ryan MJ, Evans DC. 2005. Ornithischian dinosaurs. In: Currie PJ, Koppelhus EB (eds) Dinosaur Provincial
521	Park: a spectacular ancient ecosystem revealed. Indiana University Press, pp. 312-348.
522	Ryan MJ, Currie PJ. 1998. First report of protoceratopsians (Neoceratopsia) from the Late Cretaceous
523	Judith River Group, Alberta, Canada. Canadian Journal of Earth Sciences 35:820-826.
524	Ryan MJ, Evans DC, Currie PJ, Brown CM, Brinkman D. 2012. New leptoceratopsids from the Upper
525	Cretaceous of Alberta, Canada. Cretaceous Research 35:69-80.
526	Sternberg CM. 1951. Complete skeleton of <i>Leptoceratops gracilis</i> Brown from the Upper Edmonton
527	Member on Red Deer River, Alberta. National Museum of Canada Bulletin, Annual Report 123:225-255.
528	Tanke DH. 2007. Ceratopsian discoveries and work in Alberta, Canada: Historical review and census. In
529	Braman DR, comp., Ceratopsian Symposium: Short Papers, Abstracts, and Programs. CD ROM appendix.
530	Drumheller: Royal Tyrrell Museum of Palaeontology.

531	Tereschenko VS. 2008. Adaptive features of protoceratopoids (Ornithischia: Neoceratopsia).
532	Paleontological Journal 42:273-286.
533 534	van Hinsbergen DJJ, de Groot LV, van Schaik SJ, Spakman W, Bijl PK, Sluijs A, Langereis CG, Brinkuis H. 2015. A paleolatitude calculator for paleoclimate studies. PLOS ONE 10:e0126946.
535 536	Xu X, Forster CA, Clark JM, Mo J. 2006. A basal ceratopsian with transitional features from the Late Jurassic of northwestern China. Proceedings of the Royal Society B 273:2135-2140.
537 538	You H-L, Tanoue K, Dodson P. A new species of <i>Archaeoceratops</i> (Dinosauria: Neoceratopsia) from the Early Cretaceous of the Mazongshan area, northwestern China. New Perspectives on Horned Dinosaurs.
539 540	You H.–L., Dodson P. 2003. Redescription of neoceratopsian dinosaur <i>Archaeoceratops</i> and early evolution of Neoceratopsia. Acta Palaeontologica Polonica 48 (2): 261–272.
541	Zanno LE, Sampson SD. 2005. A new oviraptorosaur (Theropoda, Maniraptora) from the Late Cretaceous
542	(Campanian) of Utah. Journal of Vertebrate Paleontology 25:897-904.
543 544	Zheng R, Farke A, Kim G. 2011. A photographic atlas of the pes from a hadrosaurine hadrosaurid dinosaur. PalArch's Journal of Vertebrate Palaeontology 8: 1-12
545	
546	
547	
548	
549	
550	
551	
552	
553	
554	

555	FIGURES
556	Figure 1: RBCM P900, the holotype of Ferrisaurus sustutensis, was collected along the BC Rail line near
557	the intersection of Birdflat Creek and the Sustut River in 1971, in the Sustut Basin of northern British
558	Columbia, Canada. Map modified from Evenchick et al. (2003).
559	Figure 2: Preserved elements of RBCM P900, holotype of Ferrisaurus sustutensis, in white (grey
560	represents missing parts of incomplete bones). RBCM P900 includes a partial right coracoid, partial left
561	scapular blade, complete left radius, partial left ulna, partial left tibia, fibula, and coossified astragalus
562	and ?calcaneum, partial left metatarsals I-IV, and digits III (phalanges 2-4) and IV (phalanges 2-5) of the
563	right pes.
564	Figure 3: Pectoral elements of RBCM P900, holotype of Ferrisaurus sustutensis, compared to other
565	Laramidian leptoceratopsids. A) Fragmentary right coracoid of RBCM P900 in lateral view, compared to
566	B) complete right scapulocoracoid of CMN 8889, Leptoceratops gracilis, lateral view centered on
567	coracoid with scapula in oblique view. Fragmentary left scapular blade of RBCM P900 in C) lateral and D)
568	medial view, compared to E) left scapula of MOR 300, Cerasinops hodgskissi in medial view, and F) left
569	scapula of TCM 2003.1.9, <i>Prenoceratops pieganensis</i> in lateral view. Abbreviations: sp - sternal process.
570	Figure 4. Radius of RBCM P900, holotype of Ferrisaurus sustutensis, compared to other Laramidian
571	leptoceratopsids. RBCM P900, Ferrisaurus sustutensis, left radius in A) lateral, B) medial, C) proximal,
572	and D) distal view. E) CMN 8889, Leptoceratops gracilis, left radius in lateral view. F) MOR 300,
573	Cerasinops hodgskissi, ?left radius in ?lateral view. Abbreviations: tb - tubercle.
574	Figure 5: Ulna of RBCM P900, holotype of Ferrisaurus sustutensis, compared to other Laramidian
575	leptoceratopsids. RBCM P900, Ferrisaurus sustutensis, left ulna in A) medial and B) distal view. C) CMN
576	8889, Leptoceratops gracilis, left ulna in medial view. D) MOR 300, Cerasinops hodgskissi, right ulna in
577	medial view. E) TCM 2003.1.8, Prenoceratops pieganensis, right ulna in medial view. F) MOR 452,
578	Montanoceratops cerorhynchus, right ulna in medial view. G) RBCM P900, Ferrisaurus left ulna in
579	posterior view; arrow indicates medial bend to distal ulna. H) TCM 2003.1.8, Prenoceratops right ulna in
580	anterior view. I) MOR 452, Montanoceratops right ulna in anterior view.
581	Figure 6: Tibia of RBCM P900, holotype of Ferrisaurus sustutensis, compared to other Laramidian
582	leptoceratopsids. RBCM P900, Ferrisaurus left tibia in A) medial, B) posterior, C) anterior, and D) lateral
583	views, and E) block removed from anterior face of tibia containing four partial metatarsals. CMN 8889,

584	Leptoceratops gracilis left tibia in F) posterior and G) anterior view. MOR 300, Cerasinops hodgskissi
585	right tibia in H) anterior and I) posterior views, and J) left tibia in posterior view. Abbreviations: as -
586	astraglus, ca - calcaneum, fib - fibula, ma - matrix, mt - metatarsal.
587	Figure 7: Pedal elements of RBCM P900, holotype of Ferrisaurus sustutensis, compared to other
588	Laramidian leptoceratopsids. RBCM P900, Ferrisaurus, left digit III in A) medial and B) lateral views, and
589	C) left digit IV in lateral view. D) MOR 542, Montanoceratops cerorhynchus, right digit IV in lateral view.
590	Illustrations of E) RBCM P900, Ferrisaurus, F) CMN 8889, Leptoceratops gracilis, G) MOR 300, Cerasinops
591	hodgskissi, and H) MOR 542, Montanoceratops cerorhynchus, in dorsal view.
592	Figure 8: Results of the phylogenetic analysis, strict consensus tree showing the relationships of
593	Ferrisaurus sustutensis within Ceratopsia.