Cosmopolitan living cockroach genus represented in Chiapas amber (Blattaria: Ectobiidae: Anaplecta vega sp.n.) (#25104)

First submission

Editor guidance

Please submit by **10 Dec 2018** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the materials page.

Custom checks

8 Figure file(s)

New species checks

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to Peerl standards, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see Peerl policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Cosmopolitan living cockroach genus represented in Chiapas amber (Blattaria: Ectobiidae: *Anaplecta vega* sp.n.)

Peter Barna ¹ , Lucia Smidova ^{Corresp., 2} , Marco Coutiño ³

Corresponding Author: Lucia Smidova Email address: smidovaluc@natur.cuni.cz

Cenozoic cockroaches were modern and with two indigenous exceptions they represent living genera. *Anaplecta vega* sp.n. – the second described cockroach from Miocene (23 Ma) Simojovel amber (Mexico: Chiapas: Los Pocitos) is characterized by slender, under 5 mm long body, prolonged mouthparts bearing long maxillary palps with distinct flattened triangular terminal palpomere, large eyes, long slender legs with distinctly long tibial spines. Some leg and palp segments differ in dimensions on left and right sides of the body, indicating (sum of left maxillar palpomeres length 65% longer than right, right cercus 13% longer than left cercus) dextro-sinistral asymmetry. Asymmetrically monstrous left palp has no equivalent. In concordance with most Cenozoic species, the present cockroach does not show any significantly primitive characters. The genus is cosmopolitan and 10 species live also in Mexico including Chiapas today. Except indigenous and those characteristic for America, this is the first Cenozoic American taxon representing living cosmopolitan genus, contrasting with living *Supella* Shelford, 1911 from the same amber, now extinct in Americas.

¹ Slovak Academy of Sciences, Earth Science Institute, Bratislava, Slovakia

² Institute of Geology and Palaeontology, Charles University, Prague, Czech Republic

³ Institute of Natural History and Ecology, Paleontological Museum, Tuxtla Gutiérrez, Chiapas, Mexico

- 1 Cosmopolitan living cockroach genus represented in Chiapas amber
- 2 (Blattaria: Ectobiidae: Anaplecta vega sp.n.)

4 PETER BARNA¹, LUCIA ŠMÍDOVÁ^{2*} and MARCO COUTIÑO³

5

- 6 1 Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. BOX 105, 840
- 7 05 Bratislava 45, Slovakia; peter.barna@savba.sk
- 8 2 Charles University, Faculty of Sciences, Institute of Geology and Palaeontology, Albertov 6,
- 9 128 43, Prague, Czech Republic; smidovaluc@natur.cuni.cz
- 10 3 Institute of Natural History and Ecology, Paleontological Museum, Tuxtla Gutierrez 29000,
- 11 Chiapas, Mexico; coutinojma@hotmail.com
- 12 * corresponding author

13 ABSTRACT

- 14 Cenozoic cockroaches were modern and with two indigenous exceptions they represent
- 15 living genera. Anaplecta vega sp.n. the second described cockroach from Miocene (23 Ma)
- 16 Simojovel amber (Mexico: Chiapas: Los Pocitos) is characterized by slender, under 5 mm
- 17 long body, prolonged mouthparts bearing long maxillary palps with distinct flattened
- 18 triangular terminal palpomere, large eyes, long slender legs with distinctly long tibial
- 19 spines. Some leg and palp segments differ in dimensions on left and right sides of the body,
- 20 indicating (sum of left maxillar palpomeres length 65% longer than right, right cercus 13%

21	longer than left cercus) dextro-sinistral asymmetry. Asymmetrically monstrous left palp
22	has no equivalent. In concordance with most Cenozoic species, the present cockroach does
23	not show any significantly primitive characters. The genus is cosmopolitan and 10 species
24	live also in Mexico including Chiapas today. Except indigenous and those characteristic for
25	America, this is the first Cenozoic American taxon representing living cosmopolitan genus,
26	contrasting with living Supella Shelford, 1911 from the same amber, now extinct in
27	Americas.
28	Keywords. Fossil insect, Blattodea, new species, Simojovel, Cenozoic, Miocene
29	
30	Introduction.
31	Order Blattodea (cockroaches) originated in Late Carboniferous (Brongniart 1885; Zhang et al.
32	2012) and during its evolution adapted to various environments gaining diverse morphological
33	adaptations including diversification of order Mantodea (mantises) during Late Jurassic/Early
34	Cretaceous (Vršanský 2002; Vršanský & Aristov 2014).
35	Works concerning cockroaches preserved in Mesozoic ambers were written by
86	Anisyutkin & Gorochov (2008), Bai et al. (2016, 2018), Grimaldi & Ross (2004), Poinar and
37	Brown (2017), Sendi & Azar (2017), Šmídová & Lei (2017), Vršanský (2004, 2008ab, 2009,
88	2010), Vršanský & Bechly (2015), Vršanský & Wang (2017), Vršanský <i>et al.</i> (2011, 2013b,
39	2014, 2018a, 2018b), Li & Huang, (2018) and Podstrelená & Sendi (2018). In total, we know 11
10	families recorded in Mesozoic ambers out of which 3 are still living.
11	Works dealing with Cenozoic cockroaches comprise Anisyutkin & Gröhn (2012), Berendt
12	(1836), Cockerell (1920), Foster (1891), Germar (1813), Germar & Berendt (1856), Giebel

- 43 (1856, 1862), Greenwalt & Vidlička (2015), Haupt (1956), Heer (1849, 1864, 1870), Heyden
- 44 (1862), Hong (2002), Hörnig et al. (2016), Maekawa et al. (2003), Meunier (1921), Piton (1936,
- 45 1940), Scudder (1876, 1890), Statz (1939), Vršanský *et al.* (2011, 2012ab, 2013a, 2014, 2016),
- 246 Zhang (1989) and Zhang et al. (1994) altogether 63 species were described according to
- 47 EDNA Fossil Insect Database (active 20/11/2018) and our data:
- 48 Blaberites rhenana Statz 1939, Blatta baltica Germar et Berendt 1856, B. berendti Giebel 1856,
- 49 B. colorata (Heer 1864), B. didyma Germar et Berendt 1856, B. elliptica Giebel 1862, B.
- 50 gedanensis Germar et Berendt 1856, B. hyperborea Heer 1870, B. pauperata Heyden 1862, B.
- 51 ruficeps Giebel 1862, B. succinea Germar 1813, B. sundgaviensis Foster 1891, Blattidium fragile
- 52 Heer 1868, Cariblattoides labandeirae Vršanský et al. 2011, Chopardia spinipes Piton 1940,
- 53 Diploptera vladimir Vršanský 2016, D. gemini Barna 2016, D. savba Šmídová 2016, Ectobia
- 54 arverniensis Piton 1940, E. menatensis Piton 1940, Ectobius glabellus Statz 1939, E. kohlsi
- 55 Vršanský, Oružinský, Barna, Vidlička et Labandeira 2014, *Elisama pyrula* Zhang 1989,
- 56 Erucoblatta semicaeca Gorokhov et Anisyutkin 2007, Gynacantha obesa Piton 1940,
- 57 Heterogamia antiqua Heer 1849, Holocompsa nigra Gorokhov et Anisyutkin 2007, H.
- 58 abbreviata Gorokhov et Anisyutkin 2007, Homeogamia ventriosa Scudder 1876, Isoplates
- 59 longipennis Haupt 1956, Latiblatta orientalis Hong 2002, L. spinosa Hong 2002, Morphna paleo
- 60 Vršanský, Vidlička, Barna, Bugdaeva et Markevich 2013, *Nyctibora elongata* Statz 1939,
- 61 Paralatindia saussurei Scudder 1890, Parallelophora acuta Haupt 1956, P. anomala Haupt
- 62 1956, Periplaneta eocaenica Meunier 1921, P. houlberti Piton 1940, P. hylecoeta Zhang 1989,
- 63 P. lacera Zhang 1989, P. relicta Meunier 1921, P. sphodra Zhang, Sun et Zhang 1994,
- 64 Phantocephalus meridionalis Zhang 1989, Polyzosteria parvula Germar et Berendt 1856, P.
- 65 tricuspidata (Berendt 1836), Protectobia primordialis Piton 1940, Protostylopyga gigantea Piton

- 66 1940, Pycnoscelus gardneri Cockerell 1920, Supella (Nemosupella) miocenica Vršanský,
- 67 Cifuentes-Ruiz, Vidlička, Čiampor et Vega 2011, Telmablatta impar Haupt 1956, Zetobora
- 68 brunneri Scudder 1890, Zeunera madeleinae Piton 1936, Z. superba Piton 1940.
- 69 The Miocene Mexican amber sourcing from resinous exudates of *Hymenaea* sp., a leguminose
- 70 tree whose communities developed near the ancient coast, in estuarine environments, very
- similar to mangroves (Poinar 1992) is well studied with precise dating at 23Ma (Vega et al.
- 72 2009) and with over than 110 currently catalogised insect species (EDNA fossil insect database
- active 20/11/2018 and Vršanský et al. 2011). Cockroaches are represented with genus
- 74 Ischnoptera Burmeister, 1838 reported by Solorzano-Kraemer (2007, although the identification
- 75 needs further support) and *Supella miocenica* (Vršanský et al 2011).
- 76 The very first partial 3D extraction made from any amber organisms is formally added,
- comprising mostly piece of amber but also partially the inclusion presenting some advantage for
- 78 the visual presentation of the organism (after presented by P. Vršanský in project SUMACO
- 79 2015).
- 80 The still living genus *Anaplecta* is today a widely distributed circumtropic taxon (see Beccaloni
- 81 2014) with very little known ecology. Fossils of genus *Anaplecta* aside from Mexican amber are
- 82 also known from Eocene Baltic amber and Chinese Ambers (unpublished observation) and
- 83 undescribed *Anaplecta* is also reported from Dominican amber (Gutiérrez and Pérez-Gelabert
- 84 2000, but it is unclear whether the mentioned specimens does not represent common *Plectoptera*
- 85 *electrina* Gorokhov et Anisyutkin in Gorokhov (2007)) locations are marked in Fig. 1.
- 86 (FIGURE 1 NEAR HERE)

88	Material	and	mothode	,
88	Materiai	and	metnoas	١.

90	The studied holotype of <i>Anaplecta vega</i> ,	an n	(actalogue number IHNEC 5222) sames from
09	The studied holotype of Anapiecia vega,	sp.11.	(Catalogue Hullioti Hilliot Hilliot 3323) comes mom

- 90 Miocene (23Ma) Simojovel amber (Mexico: Chiapas), Los Pocitos (92°43'46"W, 17°08'53"N).
- 91 Specimens Anaplecta xanthopeltis Hebard, 1921 (MNHN-EP-EP1398) and Anaplecta
- 92 maronensis Hebard, 1921 (MNHN-EP-EP1385), used for comparison with living Anaplecta, are
- 93 available at the National Museum of Natural History in Paris, France.
- Photographs were taken with KEYENCE digital microscope, which took many pictures
- 95 from different places and focal depth and then automatically combined them into a single
- 96 picture. This kind of picture was also used as a background for making a highly detailed line
- 97 drawing in CorelDrawX3, where we used for additional help photographs of separate parts of the
- 98 cockroach body, these were taken with LEICA MZ6 binocular loupe and LEICA EC3 camera.
- 99 Dorsal drawing was manually made using the drawing ink pen applied over the transparent
- 100 paper.
- 101 Abbreviations used: l= length; w= width (all in mm).
- 102 The electronic version of this article in Portable Document Format (PDF) will represent a
- published work according to the International Commission on Zoological Nomenclature (ICZN),
- and hence the new names contained in the electronic version are effectively published under that
- 105 Code from the electronic edition alone. This published work and the nomenclatural acts it
- 106 contains have been registered in ZooBank, the online registration system for the ICZN. The
- 107 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
- through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
- LSID for this publication is: [article: urn:lsid:zoobank.org:pub:FD6F76DB-BF88-4FBA-8737-

110	F00B408C54E1]. The online version of this work is archived and available from the following
111	digital repositories: PeerJ, PubMed Central and CLOCKSS.
112	
113	SYSTEMATIC PALAEONTOLOGY
114	Order Blattodea Brunner von Wattenwyl, 1882 (= Blattaria Latreille, 1810)
115	Family Ectobiidae Brunner von Wattenwyl, 1865
116	Subfamily Anaplectinae Walker, 1868
117	Genus Anaplecta Burmeister, 1838
118	Type species: Anaplecta lateralis Burmeister, 1838
119	Composition. An up-to date list can be found on the online database Cockroach Species File
120	Online, which was founded by George Beccaloni (2014) based on world catalogue of
121	cockroaches compiled by Karlis Princis (1962, 1963, 1964, 1965, 1966, 1967, 1969).
122	Occurrence. Circumtropical; during Eocene also in Baltic, Dominican and China areas (in
123	preparation by authors), which had subtropical climate that time. Stratigraphic range: Eocene-
124	living.
125	
126	Anaplecta vega sp.n.
127	(Figs. 2A-D, 3A-C)

128 **Types.** One complete adult specimen (Holotype kept in Paleontological Museum in Tuxtla, 129 Mexico) with folded wings, probably male, enclosed in small piece of amber. Catalogue number 130 IHNFG-5323. 131 Type horizon and locality. Lower Miocene, Mazantic Shale. Los Pocitos locality NW from 132 Simojovel de Allende in Chiapas, Mexico. 92°43'46"W, 17°08'53"N. 133 Material. Types only. 134 Etymology. After our VEGA (VEdecká Grantová Agentúra – Research grant agency of the 135 Slovak Republic) and also after Dr. Francisco Vega (UNAM, Mexico city) who did so much for 136 the research progress on Chiapas amber. 137 **Differential diagnosis.** Small slender roach with body l= 4.89 excluding antennae and cerci and 138 w= 2.00; subtriangular rounded pronotum; prolonged head with unique large eyes and huge 139 asymmetrical maxillar palps; antennae similar length as the body; tegmina reaching apex of 140 abdomen; long slender legs carrying long tibial spines. 141 Differs from all species except for A. xanthopeltis in having derived simplified form of pronotum 142 and except for A. maronensis who has derived reticulated forewing venation. 143 Differs from recent species from Mexico (since this genus contains a large number of 144 species worldwide and no other fossil species of this genus were described from this area): A. 145 azteca Saussure, 1868 is bigger, its pronotum is double the length and width as pronotum of A. 146 vega, pronotum length is 1/3 of tegmina length, while in A. vega it is 1/4. 147 A. fallax Saussure, 1862 has quite similar tegmina length and total body length, but pronotum is 148 distinctly bigger, can reach almost two times the dimensions of A. vega pronotum; pronotum

149	length can be more than 1/3 or even 1/2 or tegmina length. Anterior margin ascending under
150	sharper angle from the distal third of tegmen length forming a rounded angle, while in A. vega it
151	is at the beginning of the distalmost fifth of tegmen length.
152	A. mexicana Saussure, 1868 while having similar tegmina length: pronotum length ratio, the
153	whole body is significantly bigger and tegmina length is double the tegmina length of A. vega.
154	Shape of tegmina different with anterior margin slightly sinusoid without any pronounced
155	angulation, tegmina apex wider rounded, positioned around the middle of tegmen width.
156	A. nahua Saussure, 1868 is bigger, tegmina length: pronotum length ratio is quite similar as in A.
157	vega.
158	A. otomia Saussure 1869 is bigger, dark colored, pronotum with nearly opaque lateral margins,
159	tegmina in apical third strongly narrowing, unlike A. vega their anterior margin does not look
160	angular in the apical fifth and is curved smoothly, radius area in tegmina much narrower.
161	A. saussurei Hebard, 1921 has similar sized and similar shaped tegmina as A. vega, but they
162	reach slightly beyond cercal apices, are slightly wider, their anterior margin in the basal part is
163	almost straight, clavus is distinctly longer and wider, pronotum is larger, pronotum length is 1/3
164	of tegmina length.
165	A. tolteca Saussure, 1868 is bigger, tegmina length: pronotum length ratio the same as in A. vega
166	Comparison of dimensions of <i>A. vega</i> n. sp. and mentioned Mexican species is plotted in Fig. 4,
167	comparison of A. vega n. sp. dimensions and an average of mentioned Mexican species
168	dimensions in Fig. 5.
169	(FIGURE 2 NEAR HERE)

- 170 (FIGURE 3 NEAR HERE)
- 171
- 172 **Description.** *Body* small and slender (l= 4.89, w= 2.00), tegmina reaching apex of abdomen,
- legs long and slender carrying large tibial spines, antennae similar length as the body.
- 174 *Pronotum* subtriangular, rounded, cranially arched over head (l= 1.00, w= 1.27), long erect setae
- sparsely distributed along pronotum margin and on its dorsal surface. Pronotum length is 1/4 of
- tegmina length.
- 177 **Scutellum** triangular, cranio-caudally prolonged (length of scutellum part not covered by
- 178 pronotum= 0.29, w= 0.14).
- 179 **Tegmina** total l= 4.04, l of part not covered by pronotum= 3.89, left tegmen w= 1.28; visible left
- clavus l= 1.16, w= 0.67. Basal half of tegmina inflated with exception of anterior peripheral
- areas (costal area, part of radial area). Anterior margin in the apical fifth of tegmen length starts
- to tilt posteriad more strongly, what gives it an angular look. Apex posteroapically sharpened.
- 183 Costal area wide. Radial field in apical half wide, branches of radius almost all simple (one
- secondary dichotomy observed in right tegmen, left tegmen veins weakly visible). Surface
- sclerotized, but not fully elytrized, without prominent structures. Sparsely distributed medium
- sized setae occur at anterior and apical margins of tegmina and medium sized to long setae on
- tegmina veins. Only a very small portion of right tegmen is covered by left tegmen. Clavus l=
- 188 1.16 (only the visible uncovered part), w = 1.23.
- 189 *Hind wings* covered by tegmina, folded in half as typical for genus.

<i>Head</i> with prolonged mouthparts and large eyes, which in lateral view cover almost whole head
excluding mouthparts; head w= 0.76, length from top of vertex to distal part of mandibles= 0.91,
distance from occipital foramen to top of frons= 0.47; eyes subovoid in lateral view, eye length
(parallel to head length)= 0.42, eye width (perpendicular to eye 1)= 0.34, interocular w= 0.4
mmBetween left eye ommatidia near gena observed three medium-sized setae. Vertex sparsely
covered by setae sized from short to very long, frons and clypeus with few distinctly long setae,
gena posteriorly with three distinct medium sized setae and smaller thin setae along eye margin.
Maxillar palps long with broad triangular terminal segment; dimensions of palpomeres of right
and left maxillar palp differ (right 1st palpomere l= 0.13, w= 0,06; left 1st palpomere l= 0.13, w=
0,09; right 2nd palpomere l= 0.1, w= 0.05; left 2nd palpomere l= 0.14, w= 0.07; right 3rd
palpomere l= 0.31, w= 0.06; left 3rd palpomere l= 0.4, w= 0.09; right 4th palpomere l= 0.17, w=
0.07; left 4th palpomere l= 0.29, w= 0.14; right 5th palpomere l= 0.27, w unmeasurable due to
position; left 5th palpomere l= 0.34, w= 0.21, apical contacting surface 0.34; plot of left and right
palpomeres length comparison is in Fig. 6. Labial palps considerably smaller than maxillar palps,
terminal palpomere triangular, distally widened. Only 2nd and 3rd left labial palpomere
sufficiently visible to be measured: 2nd left palpomere l= 0.11, 3rd left labial palpomere l= 1.13.
Antennae length similar to body length. First three antennomeres only with few setae, more
distal antennomeres are richly covered by distinct setae that exceed and in some parts double the
width of antennomeres.

Scape large (left l= 0.33; right l= 0.29) with wide proximal half (left w= 0.13) and sharp

transition into narrower distal half (w= 0.09), distal ending oblique with five setae.

Pedicel cylindrical (left l= 0.21, left w= 0.08; right l= 0.2), distal end oblique with distinct sharp 213 angle at one side and wider than proximal end. Proximal third swollen on one side. Setae very 214 few. 215 Segments of flagellum 32 in left antenna, 28 in right antenna. Each segment is more or less wider 216 in its distal part than in proximal part. Setae longer than the width of flagellar segments. 217 First flagellar segment (third antenomere) slightly elongate, length is almost two times its largest 218 width (left l= 0.14, w= 0.07). Following few basal flagellomeres are short almost square-like 219 look, being only slightly longer than their width, subsequent row of flagellomeres has a 220 lengthening trend distad. 221 Fig. 7 shows a plot that compares left and right antenna individual antennomeres length. 222 **Cerci** 7-segmented. 1st cercomere and 7th cercomere thinner than the rest while the 7th distinctly 223 tapers distad forming pointy end, cercomeres 2-6 sublenticullar, being simmilar in shape and 224 size. Left cercus total l= 1.00, right cercus total l= 1.13; dimensions of individual cercomeres go 225 as follows (left cercomeres width was not measured due to unsuitable position): left 1st 226 cercomere l= 0.19; right 1st cercomere l= 0.17, w= 0.10; left 2nd cercomere l= 0.14; right 2nd 227 cercomere l= 0.14, w= 0.17; left 3rd cercomere l= 0.16; right 3rd cercomere l= 0.21, w= 0.17; 228 left 4th cercomere l= 0.17; right 4th cercomere l= 0.21, w= 0.19; left 5th cercomere l= 0.21; right 229 5th cercomere l= 0.21, w= 0.21; left 6th cercomere l= 0.17; right 6th cercomere l= 0.19, w= 0.19; 230 left 7th cercomere l= 0.07; right 7th cercomere l= 0.23, w= 0.14). Setae on cercomeres have 231 different dimensions, from small ones long as 1/3 or 1/4 of cercomere length, thicker prominent 232 setae approximately the size of cercomere length (maximal l=0.21, but majority around 0.14)

233 and long thin setae the size of two or three cercomeres which occur in amount of 1 or 2 per 234 cercomere. Whole surface of cerci also covered by very small short microsetae. 235 236 Legs slender and very long (hind legs longer than body) with large spines (longer than 237 tarsomeres, except the 1st tarsomere) on tibia and distal end of femur. 238 Fore coxae subtrigonal with convex anterior margin, widest before middle of its length, more 239 slender in distal half of its lenght. Few setae present along the posterior margin. 240 Fore trochanteri very thin, barely observable. 241 Fore femora slender (left fore femur l= 1.29, w= 0.2, right fore femur l= 0.67, maybe more, 242 visibility obscured by damage of amber) with subparallel ventral an dorsal margin, which are 243 being only slightly convex, narrower in proximal part and in distal third of their length. 244 Anteroventral margin in distal half with 20± shorter spines, posteroventral margin with 13 245 (observed) longer setae sparsely distributed along fore femur length, two thicker spines present 246 on anterior surface of proximal half of fore femur. Terminally present three long serrated spines: 247 anteroventral, posteroventral, anterodorsal. Rest of forefemoral surface covered only by a low 248 number of shorter setae, mostly concentrated in dorsal part. 249 Fore tibiae distinctly more slender than fore femora, generally retaining similar width (w= 0.07) 250 throughout its length (left fore tibia l= 0.89, right fore tibia l= 0.73), except the thinner arched 251 proximalmost spineless part (w= 0.06), and neglectable changes of width due to elevations 252 around large, articulated, serrate spines; these spines are up to 0.29 long and 0.01 wide, while 253 three spines are in the middle third of tibial length, the two peripheral facing dorsad, the middle 254 one facing posteriad, four large spines are at the distal end of tibia (1 anteroventral, 1 anterior, 1

255 dorsal, 1 posterior). Distribution of large spines is the same on both right and left fore tibiae. 256 Along dorsal and ventral side and distal half of anterior surface sparsely distributed medium-257 sized setae. 258 Fore tarsi being 5-segmented, very slender, covered by setae exceeding their width (w= 0.04), 259 terminated by trilobal arolium and two thin arcuate more or less symmetrical claws with widened 260 bases; left 1st tarsomere l= 0.34, right 1st tarsomere l= 0.33; left 2nd tarsomere l= 0.07, right 2nd 261 tarsomere l= 0.08; left 3rd tarsomere l= 0.06, right 3rd tarsomere l= 0.06; left 4th tarsomere l= 262 0.07, right 4th tarsomere l= 0.06; left 5th tarsomere l= 0.11, right 5th tarsomere l= 0.2. 263 *Middle coxae* (distal part obscured by damage in amber and another leg) larger and wider than 264 fore coxae, on posterior margin few setae present; distal end has distinct smaller lobe with 6 265 longer setae. 266 *Middle trochanteri* wide (width is only a little less than length), slightly curved. 267 Middle femora elongate with slightly convex dorsal and ventral side (ventral side being almost 268 straight) with bigger width around the middle of length (left middle femur l= 1.44, w= 0.22 mm; 269 right middle femur l= 0.91, w= 0.17). Setae sparsely distributed around dorsal margin, ventral 270 margin with 6 larger thick setae and 1-2 medium-sized setae between each two consequent 271 larger setae; on proximal half of middle femur present anteroventrally two longer, anterad facing 272 spines; on distal end of middle femur present 3 large serrated spines, one anteroventrally, one 273 posteroventrally and one dorsally. 274 *Middle tibiae* similar length (left tibia l= 1.16, right tibia= 1.11), but left tibia being 1/6 shorter 275 than left middle femur, right tibia being 1/5 longer than right middle femur; width varying along 276 tibial length as result of elevations at the bases of spines (minimum w = 0.07, maximum w = 0.1);

277 10 large serrated spines (maximal l= 0.36, w= 0.01) differently facing (on left middle tibia 1 278 anteroventral, 1 posteroventral, 4 anterodorsal 4 posterodorsal) along tibial length, 4 terminal 279 large serrated spines (anteroventral, posteroventral, posterodorsal, anterodorsal) and one shorter 280 spine (posteroventral). 281 *Middle tarsi* 5-segmented, slender, covered by medium sized setae exceeding tarsal width (w= 282 0.04 mm), terminated by two arched slender claws with widened bases and trilobal arolium; left 1st tarsomere l= 0.53, right 1st tarsomere l= 0.57; left 2nd tarsomere l= 0.11, right 2nd tarsomere 283 284 l= 0.12; left 3rd tarsomere l= 0.09, right 3rd tarsomere l= 0.08; left 4th tarsomere l= 0.07, right 285 4th tarsomere l = 0.04; left 5th tarsomere l = 0.13, right 5th tarsomere l = 0.18. 286 *Hind coxae* badly visible. 287 *Hind trochanteri* slender, slightly curved with few setae, left hind trochanter l= 0.43, w= 0.11; right hind trochanter l= 0.46, w= 0.09. 288 289 *Hind femora* are the largest of femora (l= 1.4, w of right hind femur= 0.31, left one in wrong 290 position to be measured) with biggest width in middle of their length, distal end slightly 291 widened, ventral side only slightly convex, dorsal side more convex. Numerous short setae 292 scattered through whole surface of femur. Setae sized from short to long present along dorsal 293 femoral margin, getting longer distad; at anterior surface setae with dark bases present at an 294 arched line subparallel to dorsal side of femur, which proximally starts around the middle of hind 295 femur width, approaching dorsal side of hind femur distad. Dorsal and anterior setae are longer 296 on left fore femur. Anteroventral edge with medium-sized setae and two large spines in the 297 middle third of hind femur length. Posteroventral edge with five long setae (left hind femur) and

298	shorter setae between them. Terminally present three long serrated spines: anteroventral,
299	posteroventral, anterodorsal.
300	<i>Hind tibiae</i> are the largest of tibiae with their length (left hind tibia l= 1.89, right hind tibia l=
301	2.13) being near double length of middle tibiae, width of hind tibiae is weakly varying due to
302	elevations at bases of larger spines, but not showing a significant narrowing or widening trend
303	(maximal $w=0.13$), exception is the proximal $1/6$ which is more slender ($w=0.1$ mm). Each hind
304	tibia has along its length 17 long serrated spines (3 anteroventral, 2 posteroventral, 7
305	anterodorsal, 5 posterodorsal) and 5 long serrated terminal spines (1 anteroventral, 2
306	posteroventral, 1 posterodorsal, 1 anterodorsal), what makes together 22 spines on one hind tibia
307	(maximal spine $l=0.5$ mmmaximal $w=0.02$). Medium sized seatae are sparsely distributed
308	along ventral and dorsal margin (up to 4 between two spines).
309	<i>Hind tarsi</i> are the largest of tarsi, 5-segmented, slender, covered by medium sized setae most of
310	which equal or exceed tarsal width (w= 0.06), terminated by two arched slender claws with
311	widened bases and trilobal arolium (pulvilli absent or indistinct). 1st tarsomere very long (left l=
312	0.91, right l= 0.84) with almost same width throughout its length, in proximal part slightly
313	thinner; covered by distinct medium sized setae, most prominent is ventral row of setae, other
314	areas have less densely distributed thinner setae; subsequent tarsomeres have the same length on
315	left and right hind leg, 2nd tarsomere l= 0.19, 3rd tarsomere l= 0.11, 4th tarsomere l= 0.1, 5th
316	tarsomere l= 0.18.
317	Comparison of length of each leg femora, tibiae and tarsomeres can be seen in Fig. 8.
318	Occurrence Lower Miocene 23Ma Chianas amber Mexico

PeerJ

320	(FIGURE 4 NEAR HERE)
321	(FIGURE 5 NEAR HERE)
322	(FIGURE 6 NEAR HERE)
323	(FIGURE 7 NEAR HERE)
324	(FIGURE 8 NEAR HERE)
325	
326	
327	DISCUSSION
328	Studied specimen was assigned to genus <i>Anaplecta</i> on the basis of overall body shape, shape of
329	pronotum, smooth dorsal half of body, large axe-like terminal mandibular palpomere (however,
330	it does not have the same length as the forelast palpomere, as mentioned in the original
331	description of the genus), coriaceous tegmina, hind wings folded in half, arrangement of femoral
332	setae and spines, large cerci, tarsomeres without pulvilli. The specimen was most similar and
333	compared to holotypes of South American A. xanthopeltis Hebard, 1921 and A. maronensis
334	Hebard, 1921, where was seen the same type of pronotum, overall tegmina shape, tegmina type
335	of venation and hind wings folding.
336	Interesting character of the studied specimen is the distinctly lager left maxillar
337	palpomere (Fig. 6), additionally all the legs have different dimensions at right and left side of the
338	body (Fig. 8).
339	The coriaceous tegmina are not sclerotised enough to be considered as elytrised, being a
340	rather primitive character (seen also in living A. maronensis).

missing. Diversity of the genus is very high in rainforest areas. Evangelista et al. (2015) mention 4 species in Amazonas (Venezuela), 4 species in Guyana, 10 species in Suriname, 9 species in French Guiana, 10 species in Ampa (Brazil); Vidlička (2013) mentions 10 species in Ecuador; 8 species (including the new species) are known from Mexico based on the works of Saussure (1862, 1868, 1869) and Hebard (1921). Genus Anaplecta has present circumtropical distribution, and the (sub)tropical climate concerns the new described species as well. Fossil Anaplecta species are known also from Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether Anaplecta inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, Anaplecta is the sole such taxon. The detailed phylogenetic study of Djernaes et al. (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and Isoptera, according to what it seems to be a very primitive taxon. However, according to our	In respective descriptions of living Mexican species of <i>Anaplecta</i> ecology data are
French Guiana, 10 species in Ampa (Brazil); Vidlička (2013) mentions 10 species in Ecuador; 8 species (including the new species) are known from Mexico based on the works of Saussure (1862, 1868, 1869) and Hebard (1921). Genus Anaplecta has present circumtropical distribution, and the (sub)tropical climate concerns the new described species as well. Fossil Anaplecta species are known also from Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether Anaplecta inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, Anaplecta is the sole such taxon. The detailed phylogenetic study of Djermaes et al. (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	missing. Diversity of the genus is very high in rainforest areas. Evangelista et al. (2015) mention
species (including the new species) are known from Mexico based on the works of Saussure (1862, 1868, 1869) and Hebard (1921). Genus Anaplecta has present circumtropical distribution, and the (sub)tropical climate concerns the new described species as well. Fossil Anaplecta species are known also from Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether Anaplecta inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, Anaplecta is the sole such taxon. The detailed phylogenetic study of Djernaes et al. (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	4 species in Amazonas (Venezuela), 4 species in Guyana, 10 species in Suriname, 9 species in
(1862, 1868, 1869) and Hebard (1921). Genus Anaplecta has present circumtropical distribution, and the (sub)tropical climate concerns the new described species as well. Fossil Anaplecta species are known also from Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether Anaplecta inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, Anaplecta is the sole such taxon. The detailed phylogenetic study of Djernaes et al. (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	French Guiana, 10 species in Ampa (Brazil); Vidlička (2013) mentions 10 species in Ecuador; 8
Genus Anaplecta has present circumtropical distribution, and the (sub)tropical climate concerns the new described species as well. Fossil Anaplecta species are known also from Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether Anaplecta inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, Anaplecta is the sole such taxon. The detailed phylogenetic study of Djernaes et al. (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	species (including the new species) are known from Mexico based on the works of Saussure
concerns the new described species as well. Fossil <i>Anaplecta</i> species are known also from Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	(1862, 1868, 1869) and Hebard (1921).
Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	Genus Anaplecta has present circumtropical distribution, and the (sub)tropical climate
subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	concerns the new described species as well. Fossil Anaplecta species are known also from
Dominican species are undescribed and placement needs confirmation - see above). The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	Eocene Baltic Kaliningrad and Chinese ambers - the climate during Eocene in these areas was
The palaeogeographical inferences are principal, as there has been shown that the Eocene North American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	subtropical (Grimaldi 1996), and from the related Dominican amber (nevertheless, the
American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	Dominican species are undescribed and placement needs confirmation - see above).
in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	The palaeogeographical inferences are principal, as there has been shown that the Eocene North
of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern, American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	American fauna (major locality Green River, Colorado, U.S.A., but also more northern localities
American cockroach taxa – strongly suggesting a major extinction between these two time periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	in Canada – Greewood at al. 2005, Archibald and Mathewes 2000) and also the Miocene fauna
periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	of Chiapas amber were cosmopolitan, while younger Dominican amber contain modern,
information whether <i>Anaplecta</i> inhabiting Americas today is a native reminder of the original Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	American cockroach taxa – strongly suggesting a major extinction between these two time
Eocene diversity or a descendant of a more recent re-invasion. This research awaits future investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	periods (of deposition of these two sites - Vršanský et al. 2011). The present study cannot reveal
investigators, nevertheless, <i>Anaplecta</i> is the sole such taxon. The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	information whether Anaplecta inhabiting Americas today is a native reminder of the original
The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017) positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	Eocene diversity or a descendant of a more recent re-invasion. This research awaits future
positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and	investigators, nevertheless, Anaplecta is the sole such taxon.
	The detailed phylogenetic study of Djernaes <i>et al.</i> (2014) (and also Vidlička et al. 2017)
Isoptera, according to what it seems to be a very primitive taxon. However, according to our	positioned the Anaplectidae into one clade together with Tryonicidae, Cryptocercidae and
	Isoptera, according to what it seems to be a very primitive taxon. However, according to our

364	morphological and taphonomical (i.e., absence in the rich Mesozoic record counting 30,000
365	sedimentary and over 3,000 amber specimens) observations is Anaplecta a modern
366	(plesiomorphy such as non-fully elytrised tegmina of the present species are also shared with
367	some living representatives – see above) and developed genus typical for Cenozoic.
368	The asymmetry of genitalia is common and appeared repeatedly during insect evolution
369	(Huber et al. 2007), it is even part of the original groundplan in the whole order Dictyoptera.
370	Asymmetries in left-right axis of other body parts can be also found among insects (Smith et al.
371	1997). The fluctuating asymmetry can predict developmental instability of the individual
372	(Dongen, 2006). In that case the studied individual was vital and the unevenness of certain body
373	parts did not affect the fitness/it did not affect it fatally. The difference between left and right
374	hind legs is neglectable (Femur (F)=1.014[r]/ Tibia (T)=1.12[r]/ Tarsomere (Ta) 1=1.08[l]/
375	Ta2=1/ Ta3=1/ Ta4=1/ Ta5=1). It explains the importance of the hind leg in the movement
376	(Hughes, 1951). In the contrast, the front femur leg (also important in the movement) is highly
377	asymmetrical. The biggest difference can be found between left and right femur (the left femur is
378	almost twice as big). Also the overall asymmetry is more evident (F= 1.93[1]/ T=1.2[1]/ Ta1=
379	1.03[r]/Ta2=1.14[r]/Ta3=1/Ta4=1.16[l]/Ta5=1.81[r]). The most asymmetrical tarsomeres can
380	be observed in the middle leg (F=1.41[1]/ T=1.25[1]/ Ta1=1.65[r]/
381	Ta2=1.71[r]/Ta3=1.33[r]/Ta4=1.75[l]/Ta5=1.63[r]).
382	The expansion of extremities longitudinally could have been caused <i>post mortem</i> , by
383	tension of polymerizing resin. The structure of resin can be modified due to conditions such as
384	temperature, humidity change and etc. These changes can affect the state of preservation of
385	inclusion (Poinar & Mastalerz, 2000).

The length irregularity of extremities, could have also happened while escaping after being embedded into resin, which often even leads to disarticulation (Martínez-Delclòs et al. 2004).

CONCLUSIONS

The Miocene cockroach *Anaplecta vega* sp.n. representing an extinct species of an extant genus, is consistent with cosmopolitan pattern of Cenozoic occurrences. Its closest relatives live in South America, with which shares same pronotum shape, tegmina shape and venation and hind wings folding. As well as the living representatives, *Anaplecta vega* lived in warm (sub)tropical areas. It is second cockroach species described from Chiapan amber, Mexico and it belongs to the subfamily Anaplectinae, family Ectobiidae. Described individual shows noticeable asymmetries in maxillar palpomeres length, right cercus and some leg segments. The asymmetry however remains obscure and needs a further study.

399 REFERENCES

ANISYUTKIN, L.N. & GOROCHOV, A.V. 2008. A new genus and species of the cockroach family
Blattulidae from Lebanese amber (Dictyoptera, Blattina). *Paleontological Journal* 42(1),
402 44-47.

ANISYUTKIN, L.N. & GRÖHN, C. 2012. New cockroaches (Dictyoptera: Blattina) from Baltic amber, with the description of a new genus and species: *Stegoblatta irmgardgroehni*. *Trudy Zoologicheskogo Instituta* 316(3), 193–202.

106	ARCHIBALD, S.B, MATHEWES, R.W. 2000. Early Eocene insects from Quilchena, British
407	Columbia, and their paleoclimatic implications. Canadian Journal of Zoology 78(8), 1441-
408	1462.
109	BAI, M., BEUTEL, R.G., KLASS, K.D., ZHANG, W., YANG, X. & WIPFLER, B. 2016. †Alienoptera
410	— A new insect order in the roach–mantodean twilight zone, Gondwana Research 39, 317-
411	326.
412	Bai., M., Beutel, R. G., Zhang, W., Wang, S., Hörnig, M., Gröhn, C., Yan, E., Yang, X.,
413	Wiplfler, B. 2018 New Cretaceous Insect with a Unique Cephalo-thoracic Scissor Device.
414	Current Biology 28(3), 438-443.
415	BECCALONI, G.W. 2014. Cockroach Species File Online. Version 5.0/5.0. World Wide Web
416	electronic publication. http://Cockroach.SpeciesFile.org [accessed 06 February 2017].
417	BERENDT, G.C. 1836. Memoire pour servir a l'histoire des Blattes Antediluviennes. Annales de la
418	Societe Entomologique de France (Serie 1), 5, 539-546.
419	BRASERO, N. & NEL, A. 2009. Insects from the Early Eocene amber of Oise (France): diversity
420	and palaeontological significance. Denisia 26, 41–52.
421	BRONGNIART, C. 1885. Les Insectes fossiles des terrains primaires. Coup d'oeil rapide sur la
122	faune entomologique des terrains paleozoπques avec 5 planches en heliogravure. Bulletin
423	de la societe des amis des sciences naturelles de Rouen 3, 21, 50-68.
124	BRUNNER VON WATTENWYL, C. 1865. Nouveau Systume des Blattaires. 426 pp. Vienna, Austria.
425	BURMEISTER, H. 1938. Handbuch der Entomologie, vol. 2, part 2a. 312 pp. G. Reimer, Berlin.

420	CIFUENTES-RUIZ, P., VRSANSKY, P., VEGA, F.J., CEVALLOS-FERRIZ, S.R.S., GONZALEZ-
427	SORIANO, E. & DE JESUS, C.R.D. 2006. Campanian terrestrial arthropods from the Cerro
428	del Pueblo Formation, Difunta Group in northeastern Mexico. Geologica Carpathica 57(5)
429	347–354.
430	COCKERELL, T.D.A. 1920. Fossil Arthropods in the British Museum, I. Annals and Magazine of
431	Natural History (series 9) 5, 273–279.
432	DJERNAES, M., KLASS, K.D. & EGGLETON, P. 2014. Identifying possible sister groups of
433	Cryptocercidae + Isoptera: A combined molecular and morphological phylogeny of
434	Dictyoptera. Molecular Phylogenetics and Evolution 84, 284–303.
435	DONGEN, S.V. 2006. Fluctuating asymmetry and developmental instability in evolutionary
436	biology: past, present and future. Journal of Evolutionary Biology 19, 1727–1743.
437	EVANGELISTA, D.A., CHAN, K., KAPLAN, K.L., WILSON, M.M. & WARE, J.L. 2015. The
438	Blattodea s.s. (Insecta, Dictyoptera) of the Guiana Shield. Zookeys 457, 37–87.
439	FOSTER, B. 1891. Die Insekten des "plattigen Steinmergels" von Brunnstatt. Abhandlungen zur
440	geologischen Spezialkarte von Elsass-Lothringen 3, 333–594.
441	GERMAR, E.F. 1813. Insekten in Bernstein eingeschlossen, beschrieben aus dem academischen
442	Mineralien-Cabinet zu Halle. <i>Magazin der Entomologie 1</i> , 11–18.
443	GERMAR, E.F. & BERENDT, G.C. 1856. Die im Bernstein befindlichen Hemipteren und
444	Orthopteren der Vorwelt, 1-40. In BERENDT, G.C. (ed.) Die im Bernstein befindlichen
445	organischen Resten der Vorwelt. Berlin.

446	GIEBEL, C.G.A. 1856. Fauna der Vorwelt, Bd II. Die Insecten und Spinnen der Vorwelt. 511 pp.,
447	F.U. Brodhaus, Leipzig.
448	GIEBEL, C.G.A. 1862. Wirbelthier- und Insektenreste im Bernstein. Zeitschrift für die gesammten
449	Naturwissenschaften 2(1), 311–322.
450	GOROKHOV, A.V.2007. New and Little Known Orthopteroid Insects (Polyneoptera) from Fossil
451	Resins: Communication 2. Paleontological Journal 41(2), 156–166.
452	GREENWALT, D.E. & VIDLIČKA, Ľ. 2015. <i>Latiblattella avita</i> sp. nov. (Blattaria: Ectobiidae) from
453	the Eocene Kishenehn Formation, Montana, USA. Palaeontologia Electronica 18, 1.
454	GREENWOOD, G.R., ARCHIBALD, S.B., MATHEWES, R.W. & MOSS, P.T. 2005. Fossil biotas from
455	the Okanagan highlands, southern British Columbia and northeastern Washington state:
456	climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Science
457	<i>42(2)</i> , 167–185.
458	GRIMALDI, D.A. 1996. Amber: Window to the Past: Harry N. Abrams, American Museum of
459	Natural History. 216 pp.
460	GRIMALDI, D.A. & ROSS, A.J. 2004. Raphidiomimula, an enigmatic new cockroach in
461	Cretaceous amber from Myanmar (Burma) (Insecta: Blattodea: Raphidiomimidae). Journal
462	of Systematic Palaeontology 2(2), 101–104.
463	GUTIÉRREZ, E. & PÉREZ-GELABERT, D.E. 2000. Annotated Checklist of Hispaniolan Cockroaches.
464	Transactions of the American Entomological Society 126(3/4), 423-446.

465	HAUPT, H. 1956. Beitrage zur Kenntuis der eozgnen Arthropodenfauna des Geiseltales. <i>Nova</i>
466	Acta Leopoldina NS 18, 1–90.
467	HEBARD, M. 1921. Mexican records of Blattidae (Orthoptera). Transactions of the American
468	Entomological Society 47(3), 199–220.
469	HEER, O. 1849. Die Insektenfauna der Tertiargebilde von Oeningen und von Radoboj in
470	Croatien Vol 2. Heuschreken, Florfliegen, Alderflugen, Schmetterlinge, und Fliegen. 264
471	pp. Engelmann, Leipzig.
472	HEER, O. 1864. Die Urwelt der Schweiz. 366 pp. Friedrich Schulthess, Zurich.
473	HEER, O. 1870. Die Miocene Flora und Fauna Spitzbergens. Mit einen Anhang uber die
474	Diluvialen Ablagerungen Spitzbergens. Kongliga Svenska Vetenskapsakademiens
475	Avhandlingar I Naturskyddsarenden 8(7), 1–98.
476	HEYDEN, C.H.G. von. 1862. Gliedertiere aus der Braunkohle des Niederrheins, der Wetterau und
477	der Rhon. Palaeontographica 10, 62-82.
478	HÖRNIG, M.K., SOMBKE, A., HAUG, C., HARZSCH, S. & HAUG, J.T. 2016. What nymphal
479	morphology can tell us about parental investment - a group of cockroach hatchlings in
480	Baltic amber documented by a multi-method approach. Palaeontologia electronica 19, 1,
481	A6-A6.
482	HONG, Y.C. 2002. Amber Insects of China [In Chinese]. 653 pp. Scientific and Technical
483	Publishing House.
484	HUBER, B. A., SINCLAIR, B. J. & SCHMITT, M. 2007. The evolution of asymmetric genitalia in
485	spiders and insects. Biological Reviews 82(4), 647-698.

486 HUGHES, G. M., 1952. The Co-ordination of Insect Movements. Journal of Experimental 487 Biology 29, 267-285. 488 LI, X.-R., HUANG, D. 2018. A new Cretaceous cockroach with heterogeneous tarsi preserved in 489 Burmese amber (Dictyoptera, Blattodea, Corydiidae). Cretaceous Research 92, 12-17. 490 MARTÍNEZ-DELCLÒS, X., BRIGGS, D.E.G. & PEÑALVER, E. 2004. Taphonomy of insects in 491 carbonates and amber. Palaeogeography Palaeoclimatology Palaeoecology 203(1-2), 19-64. 492 493 MAEKAWA, K., LO, N., ROSE, H.A. & MATSUMOTO, T. 2003. The evolution of soil-burrowing 494 cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion 495 of the latter from Asia into Australia. Proceedings of the Royal Society B-Biological 496 Sciences 270(1521), 1301–1307. 497 MEUNIER, F. 1921. Die Insektenreste aus dem Lutetien von Messel bei Darmstadt. Abhandlungen 498 der Hessischen geologischen Landesanstalt zu Darmstadt 7(3), 2–15. 499 NAJARRO, M., PENALVER, E., ROSALES, I., PEREZ-DE LA FUENTE, R., DAVIERO-GOMEZ, V. & DELCLOS X. 2009. Unusual concentration of Early Albian arthropod-bearing amber in the 500 Basque-Cantabrian Basin (El Soplao, Cantabria, Northern Spain): Palaeoenvironmental and 501 palaeobiological implications. Geologica Acta 7(3), 363–387. 502 503 ORUŽINSKÝ, R., VRŠANSKÝ, P. 2017. Cockroach forewing area and venation variabilities relate. 504 Biologia 72(7), 814—818. 505 PERRICHOT, V. 2004. Early Cretaceous amber from south-western France: insight into the 506 Mesozoic litter fauna. Geologica Acta 2(1), 9–22.

507 PITON, L.E. 1936. Les Orthopteres tertiaires d'Auvergne. *Miscellanea Entomologica* 37, 77–79. 508 PITON, L.E. 1940. Paleontologie du gisement eocene de Menat (Puy-de-Dom) (Flore et Faune). 509 *Memoires de la Societe d'Histoire Naturelle d'Auvergne 1*, 1–303. 510 PODSTRELENÁ, L., SENDI, H. 2018. *Cratovitisma* Bechly, 2007 (Blattaria: Umenocoleidae) 511 recorded in Lebanese and Myanmar ambers. *Palaeontographica Abteilung A 310(3-6)*, 512 121-129. 513 POINAR G. JR. 1992: Life in Amber. Stanford University Press, Stanford, 1—350. 514 POINAR, G. JR. & BROWN, A.E. 2017. An exotic insect Aethiocarenus burmanicus gen. et sp. nov. 515 (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from mid-Cretaceous Myanmar 516 amber. Cretaceous Research 72, 100-104. 517 POINAR, G.O. JR. & MASTALERZ, M., 2000. Taphonomy of fossilized resins: Determining the biostratinomy of amber. In: Martínez-Delclòs, X., Nel, A. (Eds.), Studies on Mesozoic and 518 519 Tertiary Insects: Systematics, Phylogeny and Taphonomy. Acta Geologica Hispanica 35, 520 171-182. 521 PRINCIS, K. 1962. Blattariae: Subordo Polyphagoidea: Fam. Polyphagidae, 1–74. In: BEIER, M. 522 (ed.) Orthopterorum Catalogus, Pars 3. W. Junk's-Gravenhage. 523 PRINCIS, K. 1963 Blattariae: Suborde [sic] Polyphagoidea: Fam.: Homoeogamiidae, 524 Euthyrrhaphidae, Latindiidae, Anacompsidae, Atticolidae, Attaphilidae, Subordo 525 Blaberoidea: Fam. Blaberidae, 76–172. In: BEIER, M. (ed.) Orthopterorum Catalogus, Pars 4. W. Junk, 's-Gravenhage, 526

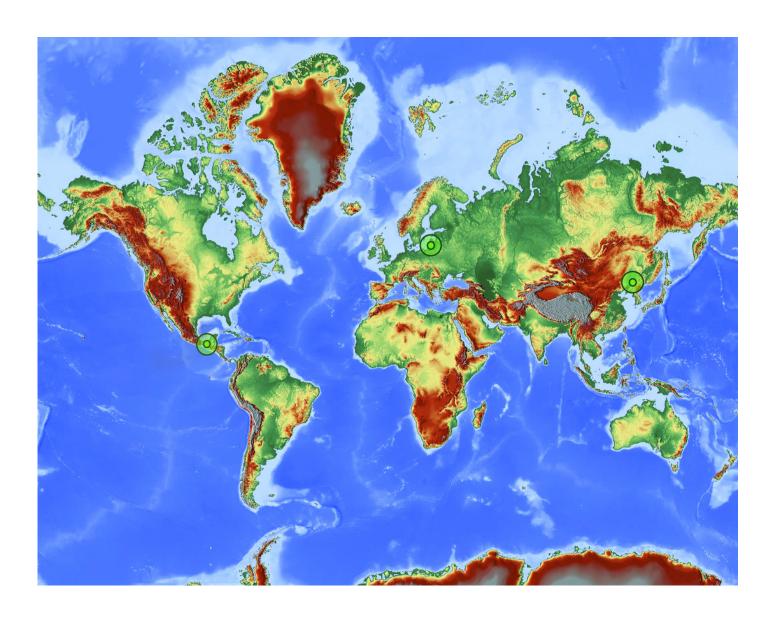
527	PRINCIS, K. 1964. Blattariae: Subordo Blaberoidea: Fam.: Panchloridae, Gynopeltididae,
28	Derocalymmidae, Perisphaeriidae, Pycnoscelididae, 174–281. In: BEIER, M. (ed.),
29	Orthopterorum Catalogus, Pars 6. W. Junk, 's-Gravenhage.
30	PRINCIS, K. 1965. Blattariae: Subordo Blaberoidea: Fam.: Oxyhaloidae, Panesthiidae,
31	Cryptocercidae, Chorisoneuridae, Oulopterygidae, Diplopteridae, Anaplectidae,
32	Archiblattidae, Nothoblattidae, 284-400. In: BEIER, M. (Ed.), Orthopterorum Catalogus,
333	Pars 7: W. Junk, 's-Gravenhage.
34	PRINCIS, K. 1966. Blattariae: Suborbo [sic] Blattoidea. Fam.: Blattidae, Nocticolidae, 402–614.
35	In: BEIER, M. (ed.), Orthopterorum Catalogus, Pars 8. W. Junk, 's-Gravenhage.
36	PRINCIS, K. 1967. Blattariae: Suborbo [sic] Epilamproidea. Fam.: Nyctiboridae, Epilampridae,
37	617–710. <i>In:</i> BEIER, M. (ed.), <i>Orthopterorum Catalogus, Pars 11</i> . W. Junk's-Gravenhage.
38	PRINCIS, K. 1969. Blattariae: Subordo Epilamproidea. Fam.: Blattellidae, 712–1038. <i>In:</i> BEIER,
39	M. (ed.), Orthopterorum Catalogus, Pars 13. W. Junk, 's-Gravenhage.
40	PRINCIS, K. 1971. Blattariae: Subordo Epilamproidea. Fam.: Ectobiidae, 1041–1224. <i>In:</i> BEIER,
41	M. (Ed.), Orthopterorum Catalogus, Pars 14. W. Junk, 's-Gravenhage.
42	SAUSSURE, H. de 1862. Orthoptera Nova Americana (Diagnoses praeliminares). Series III. Revue
343	et Magasin de Zoologie Pure et Appliquüe 2(14), 163-171, 227-234.
44	SAUSSURE, H. de 1868. Orthopterorum species novae aliquot. Revue et Magasin de Zoologie
345	Pure et Appliqu <i>ie</i> 2(20), 97-101, 354–357.
46	SAUSSURE, H. de 1869. Mŭlanges Orthoptŭrologiques. II ^{me} Fascicule. <i>Mŭmoires de la Sociŭtŭ de</i>
47	Physique et d'Histoire Naturelle de Geneve 20, 227–326.

548	SCUDDER, S.H. 1876. Brief synopsis of North American earwigs with an appendix on the fossil
549	species. Bulletin of the United States Geological and Geographical surveys of the
550	<i>Territories 2</i> , 249–260.
551	SCUDDER, S.H. 1890. The Tertiary insects of North America. Report of the United States
552	Geological Survey of the Territories 13, 1–734.
553	SENDI, H. & AZAR, D. 2017. New aposematic and presumably repellent bark cockroach from
554	Lebanese amber. Cretaceous Research 72, 13–17.
555	SMITH, D. R., CRESPI, B. J., BOOKSTEIN, F. L. Fluctuating asymmetry in the honey bee, <i>Apis</i>
556	mellifera: effects of ploidy and hybridization. Journal of Evolutionary Biology 10, 551-
557	574.
558	SOLÓRZANO-KRAEMER, M.M.S. 2007. Systematic, palaeoecology, and palaeobiogeography of
559	the insect fauna from Mexican amber. <i>Paleontographica Abteilung A</i> 282, 1-6, 1–133.
560	STATZ, G. 1939. Geradflugler und Wasserkдfer der Oligocanen Ablagerungen von Rott".
561	Decheniana A: Geologische Abteilung 99, 1–102.
562	ŠMÍDOVÁ, L. & LEI, X. 2017. The earliest amber-recorded type cockroach family was aposematic
563	(Blattaria: Blattidae). Cretaceous Research 72, 189–199.
564	VEGA, F.J.T., NYBORG T., COUTINO, M.A., SOLЙ, J. & HERNENDEZ-MONZYN, O. 2009. Neogene
565	Crustacea from southeastern Mexico. Bulletin of Mizunami Fossiil Museum 35, 51-69.
566	VIDLIČKA, Ľ. 2013. Cockroaches (Blattaria) of Ecuador - checklist and history of research.
567	Zootaxa 3599(5), 401–445.

- 568 VIDLIČKA, Ľ, VRŠANSKÝ, P., KÚDELOVÁ, T., KÚDELA, M., DEHARVENG, L. & HAIN, M. 2017. 569 New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. 570 Zootaxa 4232(3), 361–375. VRŠANSKÝ, P. 2002. Origin and Early Evolution of Mantises. *Amba projekty* 6(1), 1–16. 571 572 VRŠANSKÝ, P. 2004. Cretaceous Gondwanian Cockroaches (Insecta, Blattaria). Entomological 573 Problems 34 (1-2), 49-54. 574 VRŠANSKÝ, P. 2008a. Mesozoic relative of the common synanthropic German cockroach 575 (Blattodea). Deutsche Entomologische Zeitschrift 55(2), 215–221. 576 VRŠANSKÝ, P. 2008b. A complete larva of a Mesozoic (Early Cenomanian) cockroach (Inesecta: 577 Blattaria: Blattulidae) from the Sisteron amber (Alpes de Haute Provence, SE France). 578 Geologica Carpathica 59(3), 269–272. 579 VRŠANSKÝ, P. 2009. Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. 580 *Geodiversitas 31(1)*, 73–98. 581 VRŠANSKÝ, P. 2010. Cockroach as the earliest eusocial animal. Acta Geologica Sinica (english 582 edition) 84(4), 793–808. 583 VRŠANSKÝ, P. & ARISTOV, D. 2014. Termites (Isoptera) from the Jurassic/Cretaceous boundary:
- 703 VRSANSK1, 1. & ARISTOV, D. 2014. Termines (Isophera) from the Jurassic/Cretaceous boundary
- Evidence for the longevity of their earliest genera. *European Journal of Entomology*
- 585 *111(1)*, 137–141.
- VRŠANSKÝ, P. & BECHLY, G. 2015. New predatory cockroaches (Inseta: Blattaria:
- Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber. *Geologica*
- 588 *Carpathica 66(2)*, 133–138.

589 Vršanský, P., Cifuentes-Ruiz, P., Vidlička, j., Čiampor jr, F.J. & Vega, F.J. 2011. Afro-590 Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. 591 Geologica Carpathica 62(5), 463–475. VRŠANSKÝ, P., CHORVÁT, D., FRITZSCHE, I., HAIN, M. & ŠEVČÍK R. 2012a. Light-mimicking 592 593 cockroaches indicate Tertiary origin of recent terrestrial luminescence. 594 Naturwissenschaften 99(9), 739–749. VRŠANSKÝ, P., VIDLIČKA, j., ČIAMPOR, F. Jr. & MARSH, F. 2012b. Derived, still living 595 596 cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Science 19(2), 143–152. 597 598 VRŠANSKÝ, P., VIDLIČKA, j., BARNA, P., BUGDAEVA, E., & MARKEVICH, V. 2013a. Paleocene 599 origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635(2), 117-126. 600 601 Vršanský, P., Van de Kamp, T., Azar, D., Prokin, A., Vidlička, L. & Vagovič, P. 2013b. 602 Cockroaches probably cleaned up after dinosaurs. *PLOS ONE 8(12)*, AN e80560. 603 Vršanský, P., Oružinský, R., Barna, P., Vidlička, j. & Labandeira, C. C. 2014. Native Ectobius (Blattaria: Ectobiidae) From the Early Eocene Green River Formation of 604 Colorado and Its Reintroduction to North America 49 Million Years Later. Annals of the 605 606 Entomological Society of America 107(1), 28–36. VRŠANSKÝ, P. & LABANDEIRA, C. (In Press) Early-derived Eocene Cockroaches (Blattaria: 607 Ectobiidae: Pseudophyllodromiinae, Blattelinae) from the Green River Formation, 608 609 Colorado, U.S.A.. *Proceedings of the Entomological Society of Washington*.

- VRŠANSKÝ, P.V., ŠMÍDOVÁ, L., VALAŠKA, D., BARNA, P., VIDLIČKA, L., TAKÁČ, P., PAVLIK, L.,
- KÚDELOVÁ, T., KARIM, T.S., ZELAGIN, D., SMITH, D. 2016. Origin of origami cockroach
- reveals long-lasting (11 Ma) phenotype instability following viviparity.
- 613 *Naturwissenschaften 103(9–10)*, 78.
- VRŠANSKÝ, P., WANG, B. 2017. A new cockroach, with bipectinate antennae, (Blattaria: Olidae
- 615 fam. nov.) further highlights the di□erences between the Burmite and other faunas. *Biologia*
- 616 *72(11)*, 1327—1333.
- Vršanský, P., Šmídová, L., Sendi, H., Barna, P., Müller, P., Ellenberger, S., Wu, H., Ren,
- 618 X., Lei, X., Azar, D., Šurka, J., Su, T., Deng, W., Shen, X., Lv, J., Bao, T., Bechly, G. 2018a.
- Parasitic cockroaches indicate complex states of earliest proved ants. *Biologia*
- 620 https://doi.org/10.2478/s11756-018-0146-y.
- VRŠANSKÝ, P., BECHLY, G., ZHANG, Q., JARZEMBOWSKI, E.A., MLYNSKÝ, T., ŠMÍDOVÁ, L.,
- BARNA, P., KÚDELA, M., ARISTOV, D., BIGALK, S., KROGMANN, L., LI, L., ZHANG, Q., ZHANG, H.,
- 623 ELLENBERGER, S., MÜLLER, P., GRÖHN, C., XIA, F., UEDA, K., VĎAČNÝ, P., VALAŠKA, D.,
- VRŠANSKÁ, L., WANG, B. 2018b. Batesian insect-insect mimicry-related explosive radiation of
- ancient alienopterid cockroaches. *Biologia* 73(10), 987-1006.
- WALKER, F. 1868. Catalogue of the Specimens of Blattaria in the Collection of the British
- 627 Museum, 239 pp. British Museum, London, UK.
- 628 ZHANG, J.F., Liu, D., SHANGGUAN, Y. 1989. Fossil insects from Shanwang, Shandong, China.
- [Chinese with English abstract], 459 pp. Shandong Science and Technology Publishing
- House, Jinan, China.



631	ZHANG, J.F., SUN, B. & ZHANG, X. 1994. Miocene Insects and spiders from Shanwang,
632	Shandong. [In Chinese, English summary], 298 pp. Science Press Beijing, Beijing.
633	ZHANG, Z.J., SCHNEIDER, J.W. & HONG, Y.Q. 2012. The most ancient roach (Blattida): A new
634	genus and species from the earliest Late Carboniferous (Namurian) of China, with
635	discussion on the phylomorphogeny of early blattids. Journal of Systematic Paleontology,
636	11(1), 27–40.
637	Link for the specimen records "MNHN-EP-EP1398" and "MNHN-EP-EP1385" [available on
638	18/11/2018] here:
639	https://science.mnhn.fr/institution/mnhn/collection/ep/item/ep1398?lang=en_US.
640	https://science.mnhn.fr/institution/mnhn/collection/ep/item/ep1385.
641	

Figure 1

Distribution map of amber *Anaplecta* spp. with the Baltic amber reaching out of the present range.

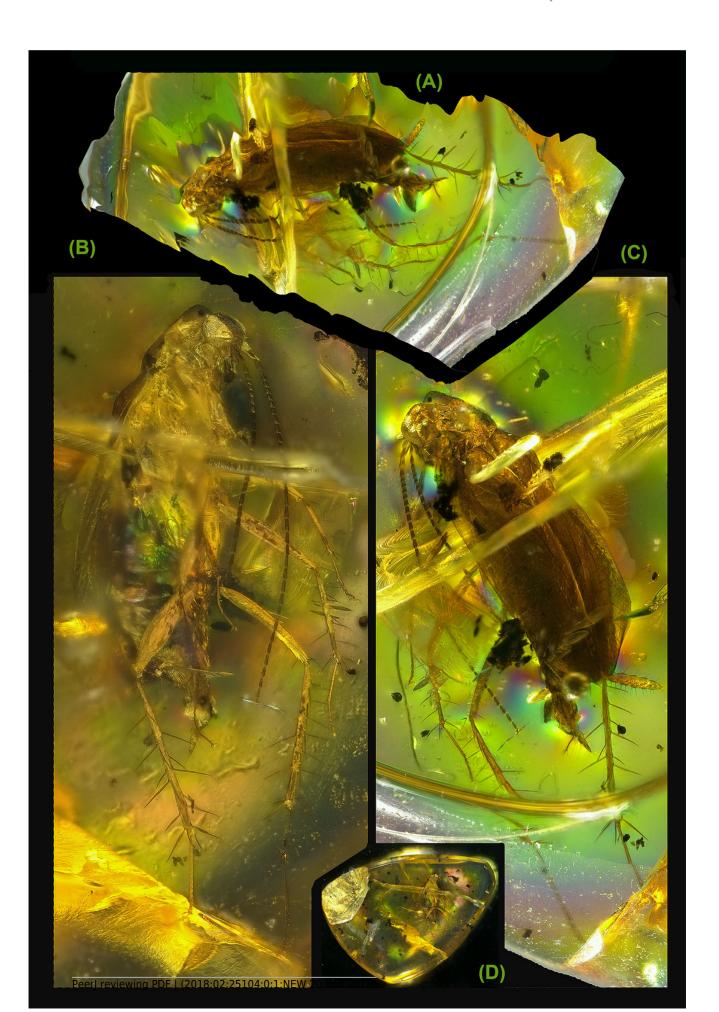


Figure 2

Anaplecta vega sp.n.

(A) Partial 3D extraction. (B) Ventral view. (C) Dorsal view. (D) Whole piece of amber, ventral view. Specimen overall length head-abdomen, 4.89mm.

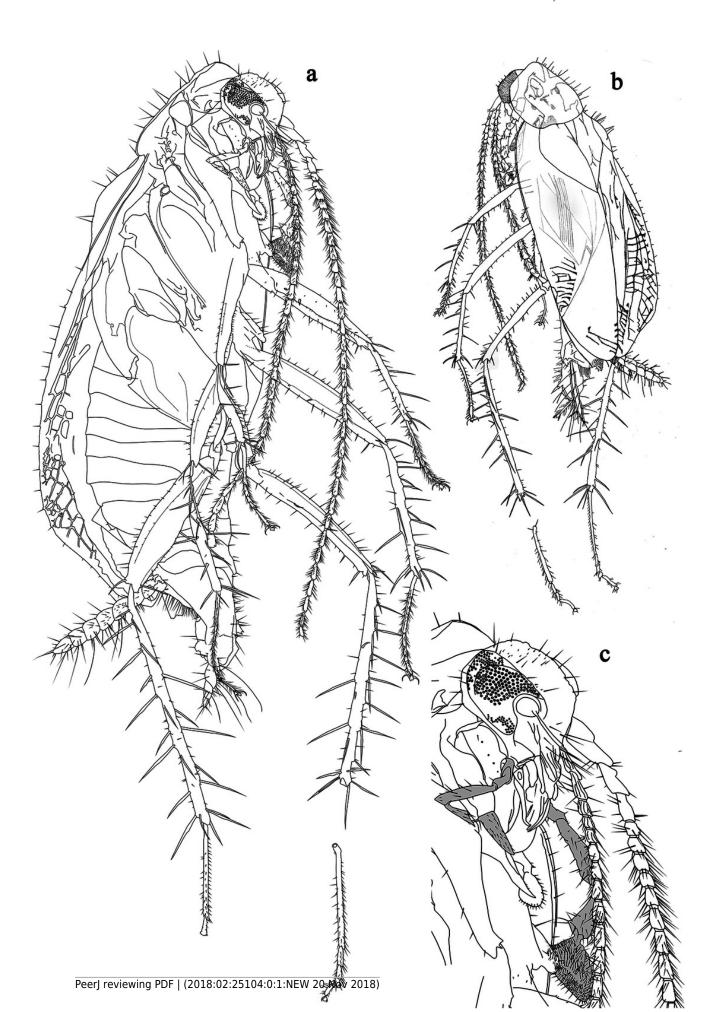


Figure 3

Line drawing of Anaplecta vega sp.n.

(A) Ventral view. (B) Dorsal view. (C) Head and asymmetric palps. Overall specimen length head-abdomen 4.89mm.

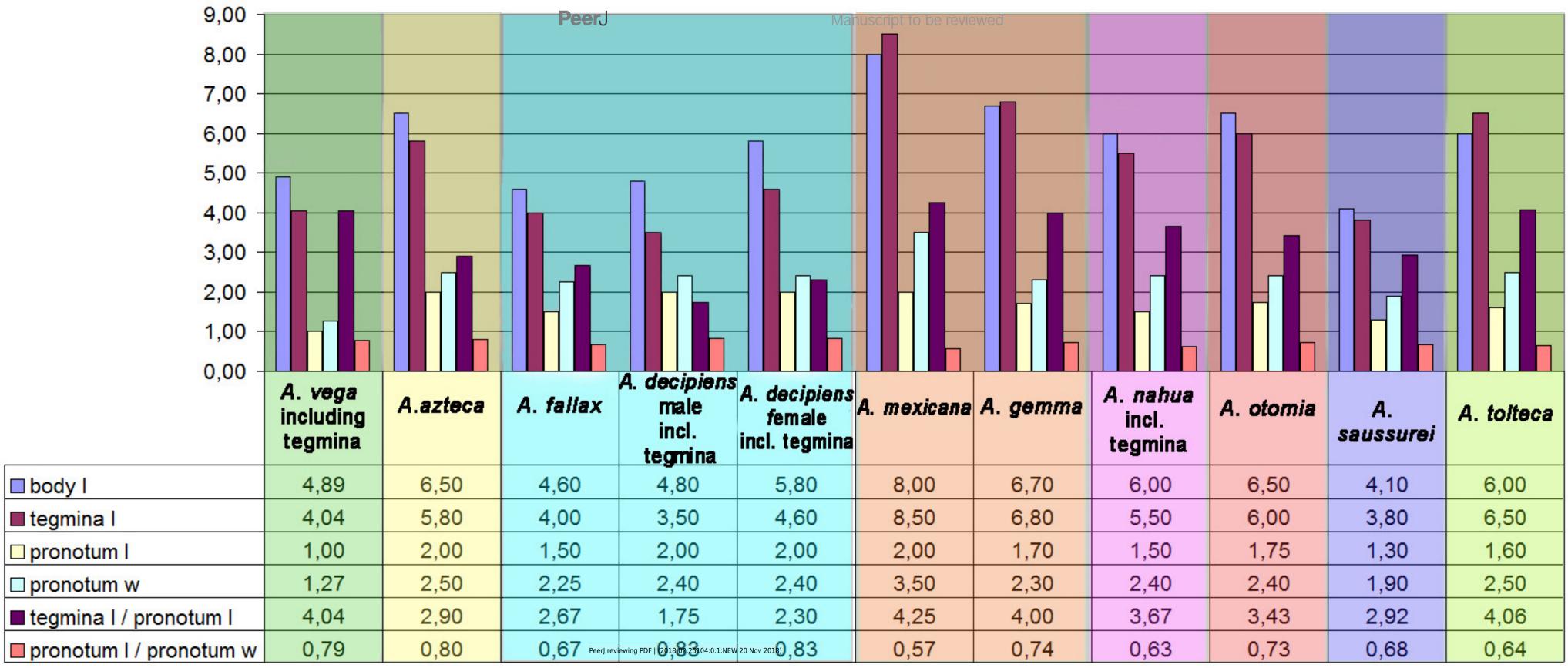


Figure 4(on next page)

Body measurements of Anaplecta vega sp.n. and different Anaplecta species.

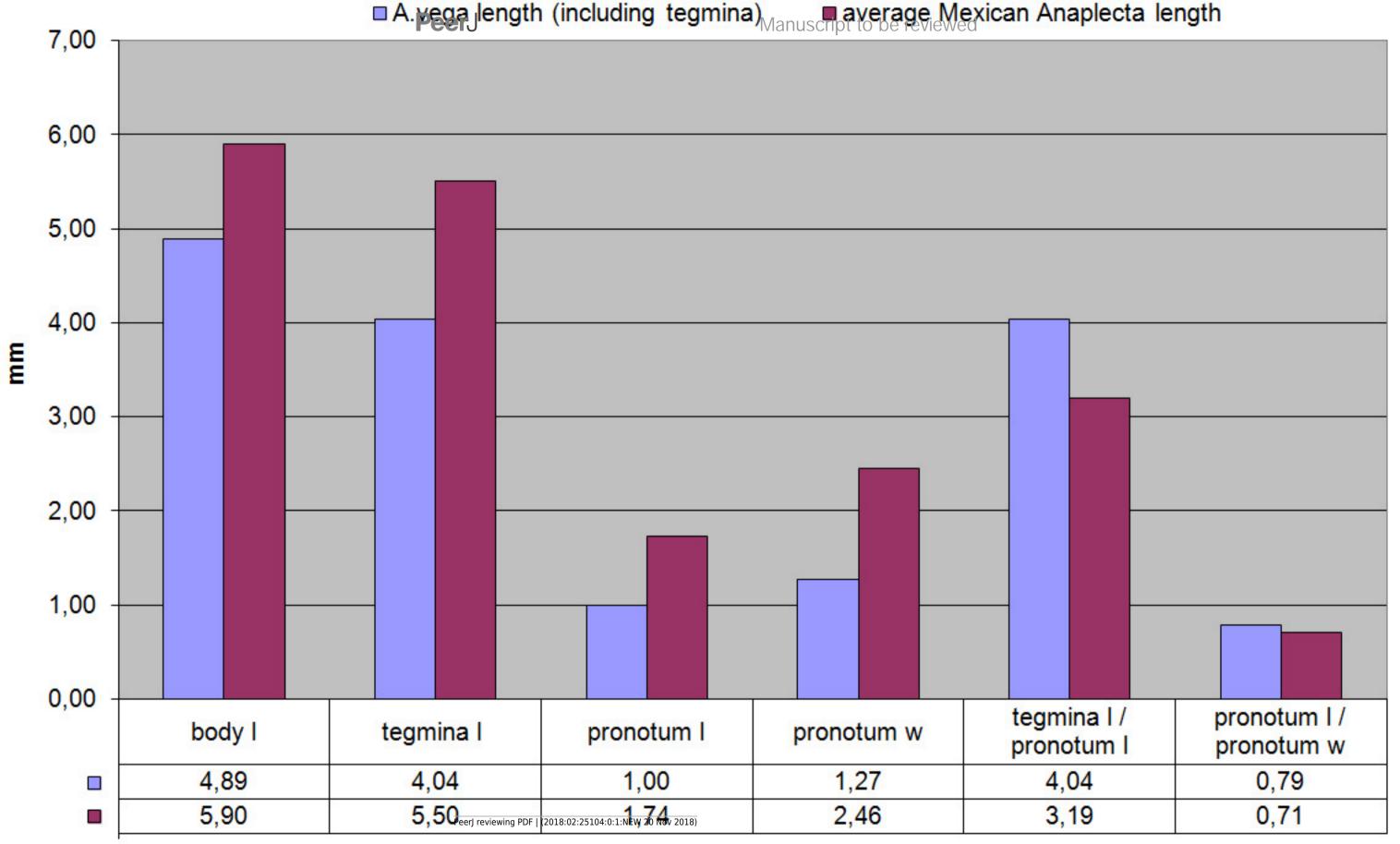

Plot depicts comparison of dimensions of *Anaplecta vega* sp.n., *A. azteca*, *A. fallax*, *A. decipiens* (=*A. fallax*), *A. mexicana*, *A. gemma* (synonym for *A. mexicana*), *A. nahua*, *A. otomia*, *A. sausserei*, *A. tolteca* holotypes.

Figure 5(on next page)

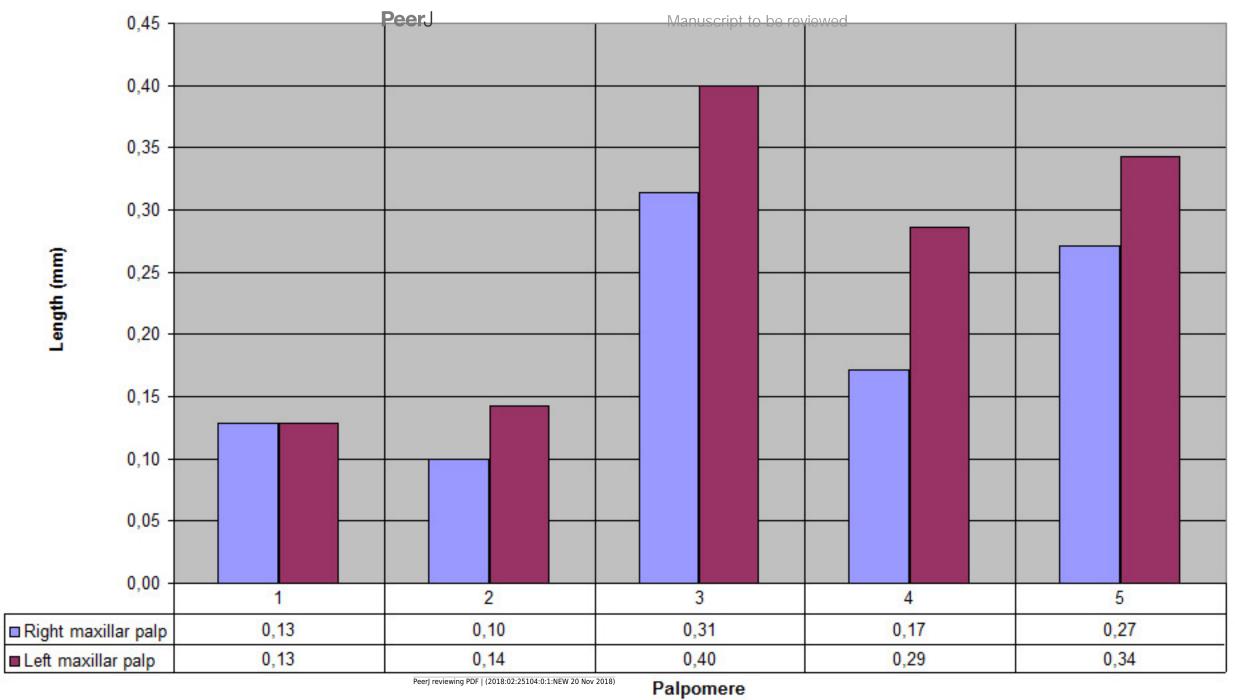

Comparison of *A. vega* sp.n. dimensions (blue) and average of living Mexican *Anaplecta* species dimensions (purple).

Figure 6(on next page)

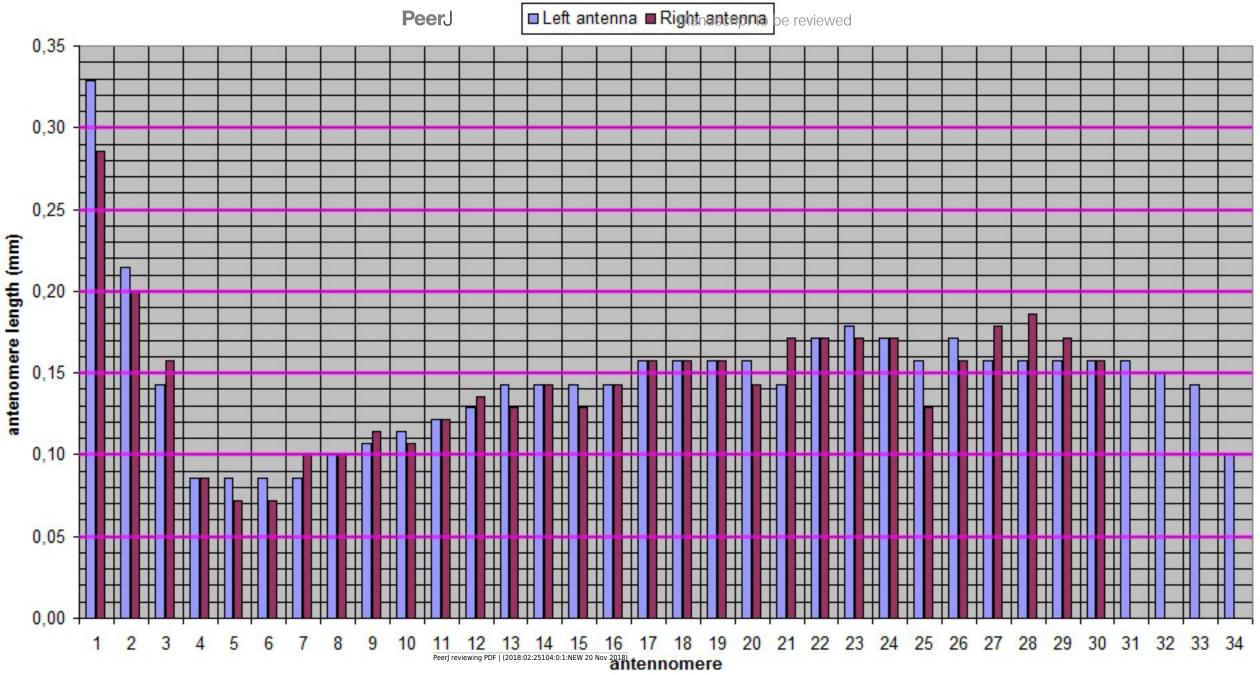

Comparison of *Anaplecta vega* sp.n. left (blue) and right (purple) maxillar palpomere lengths.

Figure 7(on next page)

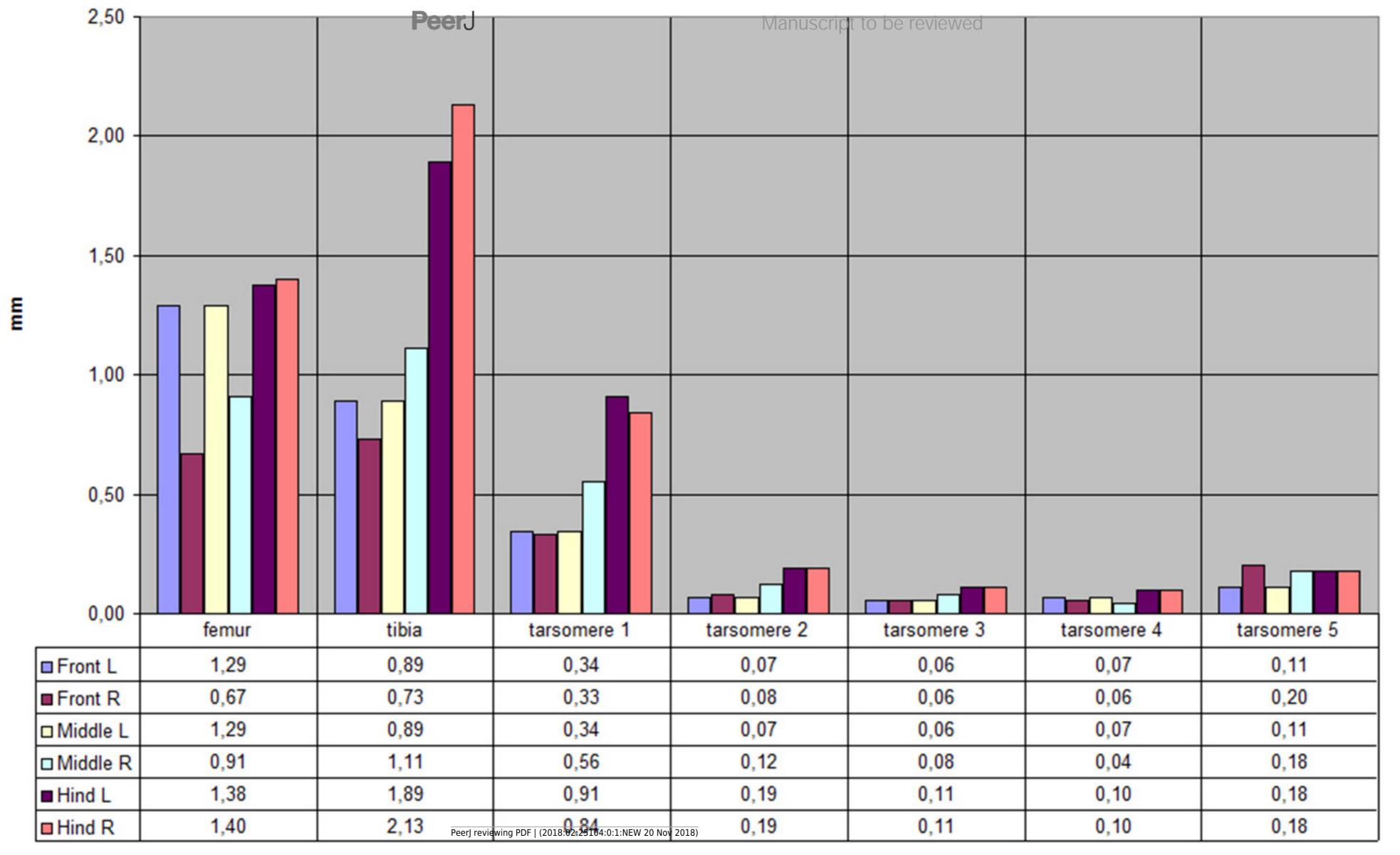

Left (blue) and right (purple) antennomeres length comparison including scape and pedicel present in *Anaplecta vega* sp.n.

Figure 8(on next page)

Comparison of length of each leg femur, tibia and tarsomeres of *Anaplecta vega* sp.n.

