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ABSTRACT
Objective. Increasing evidence has indicated an association between immune cells
infiltration in LSCC and clinical outcome. The aim of this research was tantamount
to comprehensively investigate the effect of 22 tumor infiltrating immune cells (TIICs)
on the prognosis of LSCC patients.
Methods. In our research, the CIBERSORT algorithm was utilized to calculate the
proportion of 22 TIICs in 502 cases from the TCGA cohort. Cases with a CIBERSORT
P-value of<0.05 were kept for further study. Using the CIBERSORT algorithm, we first
investigated the difference of immune infiltration between normal tissue and LSCC in
22 subpopulations of immune cells. Kaplan-Meier analysis was used to analyze the effect
of 22 TIICs on the prognosis of LSCC. An immune risk score model was constructed
based on TIICs correlated with LSCC-related recurrence. Multivariate cox regression
analysis was used to investigate whether the immune risk score was an independent
factor for prognosis prediction of LSCC. Nomogram was under construction to
comprehensively predict the survival rate of LSCC.
Results. The results of the different analysis showed that except of memory B cells,
naive CD4+T cells, T cells and activated NK cells, the remaining immune cells all
had differential infiltration in normal tissues and LSCC (p < 0.05). Kaplan-Meier
analysis revealed two immune cells statistically related to LSCC-related recurrence,
including activated mast cells and follicular helper T cells. Immune risk score model
was constructed based on three immune cells including resting memory CD4+T cells,
activated mast cells and follicular helper T cells retained by forward stepwise regression
analysis. The Kaplan-Meier curve indicated that patients in the high-risk group linked
to poor outcome (P = 8.277e−03). ROC curve indicated that the immune risk score
model was reliable in predicting recurrence risk (AUC = 0.614). Multivariate cox
regression analysis showed that the immune risk score model was just an independent
factor for prognosis prediction of LSCC (HR= 2.99, 95% CI [1.65–5.40]; P = 0.0002).
The nomogram model combined immune risk score and clinicopathologic parameter
score to predict 3-year survival in patients with LSCC.
Conclusions. Collectively, tumor-infiltrating immune cells play a major role in the
prognosis of LSCC.
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INTRODUCTION
Lung cancer, as a common malignant tumor, is part of the leading causes of cancer-related
death worldwide (Siegel, Miller & Jemal, 2017). Non-small cell lung cancer (NSCLC) is the
most frequent subtype of lung cancer, LSCC as a histologic subtype of NSCLC accounts for
more than 40% of the annual confirmed cases of lung cancer (Piperdi, Merla & Perez-Soler,
2014). Currently, the treatment and prognostic evaluation of LSCC mainly hinges on
TNM stage, and surgical resection is the most suitable treatment for patients with early
LSCC (Detterbeck, Boffa & Tanoue, 2009). However, although surgical resection improved
survival, recurrence took place in nearly a quarter of patients (Baltayiannis et al., 2013;
Fedor, Johnson & Singhal, 2013). Therefore, it is extremely important to accurately assess
the recurrent risk in LSCC patients.

The infiltration of immune cells in the tumor is closely related to clinical consequences,
and most likely to be used as drug targets to improve the survival rate of patients.
Immunocheckpoint therapy is a type of therapy to improve the anti-tumor immune
response by regulating T cell activity through co-inhibition or co-stimulation, which
shows significant clinical effects (Davidson, Okines & Starling, 2015; Lote, Cafferkey &
Chau, 2015; Newman et al., 2015; Schadendorf et al., 2015). With the development of
immunocheckpoint therapy, the distribution of infiltrating immune cells in tumors
has been the subject of research. Previous studies have primarily used flow cytometry
or immunohistochemistry to assess the composition of infiltrating immune cells in
tumors, but these methods have their limitations. Researchers recently developed a
new bioinformatics tool called CIBERSORT (Charoentong et al., 2017). CIBERSORT,
a deconvolution algorithm improved by Bindea et al. (2013), can estimate the cell
composition of composite tissues based on standardized gene expression data. This
method can quantify the abundance of specific cell types and has been properly validated
by flow cytometry. The composition of immune cells in breast and liver cancer tissues has
been successfully assessed by this method (Ali et al., 2016; Rohr-Udilova et al., 2018). Ali
et al. (2016) showed that the difference of immune infiltrating cell composition in breast
cancer may be an important factor in determining prognosis and treatment response.
Rohr-Udilova et al. (2018) reported that monocytes, activated mast cells and plasma cells
were decreased in HCC, while naïve B cells, resting mast cells, CD8+ T cells and CD4+
memory resting were increased when compared to healthy livers. In this study, gene
expression data from 502 patients with LSCC based on the TCGA database were analyzed.
CIBERSORT was used to assess the proportion of 22 immune cell types in tumor samples
and to analyze their relationship with overall survival.

MATERIAL AND METHODS
Data acquisition
Training cohort of LSCC for this study were obtained from the shared database TCGA
(The Cancer Genome Atlas) (Deng et al., 2016; Sato et al., 2013;Wang, Jensen & Zenklusen,
2016). We downloaded transcription data of 502 patients with LSCC from the TCGA
database by typing the keyword ‘‘lung squamous cell carcinoma’’ of UCSC Xena website
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(https://xenabrowser.net/). These included 49 cases of normal lung tissue and 436 cases
of LSCC. Secondly, we also obtained the quantifiable information including prognostic
information, age, gender, stage, TNM stage and so on. Finally, we utilized the ‘‘lemma’’
package in R software to calibrate the transcription data of LSCC.

Evaluation of tumor infiltrating immune cells
CIBERSORT is a deconvolution algorithm utilizing 547 labeled gene expression values to
determine the proportion of 22 immune cells in tissues (Gentles et al., 2015;Newman et al.,
2015). In this study, we used this algorithm to calculate the proportion of 22 infiltrating
immune cells in LSCC tissues. We upload corrected transcription data to CIBERSORT
website (http://cibersort.stanford.edu/). Each sample in the data set will get a P value, and
samples with a P value less than 0.05 will be selected for further study.

Statistical analyses
SPSS 23.0 (IBM,Armonk,NY,USA) andR 3.5.3 (R Core Team, 2019) were used for analysis.
All statistical tests were bilateral, and a P value less than 0.05 was studied statistically
significant. Continuous variables having to be in conformity with customary distribution
were compared by independent t test, while continuous variables with skewed distribution
were compared by Mann–Whitney U test. Pearson’s correlation analysis and spearman’s
correlation analysis was employed in the correlation analysis. The Kaplan-Meier curve
was utilized to analyze the relationship between immune risk score and overall survival.
Log-rank test is employed to evaluation. Immune risk score model was constructed based
on TIICs correlated with LSCC-related recurrence. Multivariate cox regression analysis was
used to investigate whether the immune risk score was an independent factor for prognosis
prediction of LSCC. The nomogram was under construction to comprehensively predict
the survival rate of LSCC.

RESULTS
The landscape of immune infiltration in LSCC
CIBERSORT algorithm was used to screen out samples with CIBERSORT output P value
less than 0.05 for research, and 485 samples including 49 normal lung tissues and 436
LSCC tissues were screened out. We plotted bar plot to demonstrate the proportion of
22 immune cells in each sample (Fig. 1A). The results revealed that the five immune cells
with the highest proportion in LSCC were M0 Macrophages (21.0%), M2 Macrophages
(16.8%), Plasma cells (11.0%), resting memory CD4+ T cells (10%) and naive B cells
(9.0%). Then, we plot the heat map of 22 immune cells in Fig. 1B. Figure 1C indicated the
correlation coefficient between 22 immune cells, among which naive B cells and memory
B cells have the strongest positive correlation (r = 0.58), resting memory CD4+ T cells had
the strongest negative correlation with follicular helper T cells (r =−0.53).

The different proportion of 22 immune cells in normal lung tissue and
LSCC
We compared the differential infiltration of 22 immune cells between normal lung tissues
and LSCC tissues. The results showed that except for memory B cells, naive CD4+T cells,
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Figure 1 The landscape of Tumor-infiltrating immune cells in LSCC. (A) The proportion of 22 im-
mune cells in LSCC tissues. (B) The heat maps of 22 immune cells in LSCC tissues, the horizontal axis
shows the clustering information of samples which were divided into two major clusters. (C) Correlation
matrix between 22 immune cells in LSCC, red means positive correlation, blue means negative correlation,
and the darker the color, the stronger the correlation.

Full-size DOI: 10.7717/peerj.7918/fig-1

Figure 2 The different proportion of 22 immune cells in normal lung tissue and LSCC tissue. (A) Vari-
ance analysis, blue represents normal lung tissue, and red represents LSCC tissue. (B) Principal compo-
nent analysis, the first two principal components which explain the most of the data variation are shown.

Full-size DOI: 10.7717/peerj.7918/fig-2

gamma delta T cells and activated NK cells, the remaining immune cells were infiltrated
differently in normal lung tissues and LSCC tissues (p< 0.05, Fig. 2A). The results of
principal component analysis showed that there are significant individual differences
between normal lung tissues and LSCC tissues (p< 0.05, Fig. 2B).

Predictive value of TIICs in LSCC
Kaplan–Meier analysis was utilized to investigate the prognostic value of 22 tumours
infiltrating immune cells in LSCC tissues. We can find that high infiltration of activated
mast cells (P = 0.041) and follicular helper T cells (P = 0.009) in LSCC tissues are linked
to poor prognosis (Fig. 3B).
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Figure 3 (A–V) Prognostic value of 22 immune cells in LSCC by Kaplan–Meier analysis, high infiltra-
tion of activated mast cells and follicular helper T cells in LSCC tissues are linked to poor prognosis.

Full-size DOI: 10.7717/peerj.7918/fig-3

Table 1 Multivariate Cox PHR based on 3 immune cells.

id Coef HR HR.95L HR.95H p value

T cells CD4 memory resting −3.03219 0.04821 0.002677 0.868148 0.039799
T cells follicular helper −15.2555 2.37E−07 2.34E−11 0.002394 0.001184
Mast cells resting −21.6671 3.89E−10 3.29E−22 459.8077 0.126588

Notes.
HR, hazard ratio.

Establishment of immune risk score model
Multivariate Cox PHR was carried out to construct an excepted risk score model based
on resting memory CD4+T cells, activated mast cells and follicular helper T cells selected
by forward stepwise regression analysis. Formula is this: Risk3 = −3.03 * resting memory
CD4 + T cells −15.26 * activated mast cells −21.67 * follicular helper T cells (Table 1).
Each sample will be paid a risk score built on the model. Patients were divided into a
high-risk group and a low-risk group according to the median risk score. Kaplan–Meier
curves indicated that patients in the high-risk group had a poorer prognosis than those
in the low-risk group (p= 8.277e−03, Fig. 4A). The ROC curve showed that the immune
risk score model is reliable to predict the prognosis of patients with LSCC (AUC=0.614,
Fig. 4B). In addition, Figures 4C, 4D and 4E respectively showed the risk score, survival
status and three immune cells infiltration of patients with LSCC.
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Figure 4 Establishment of immune risk scores model. (A) Kaplan–Meier survival curves of overall sur-
vival between high-risk and low-risk patients. (B) ROC curve AUC statistics assess the predictive power of
the immune risk score model. (C) The distribution of patients’ risk score. (D) The distribution of patients’
survival state. (E) Three immune cell infiltration of patients with LSCC.

Full-size DOI: 10.7717/peerj.7918/fig-4

Independent predictive power of immune risk score model
Multivariate analysis was used to investigate whether the risk score as predictors of overall
survival was independent of other clinicopathological data such as age, gender and clinical
stage. The results suggested that the risk score (HR= 1.30, 95% CI [1.20–1.40]; P < 0.001)
and clinical stage (HR = 1.70, 95% CI [1.49–2.10]; P < 0.001) are two independent
predictors of overall survival in LSCC patients (Table 2).
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Table 2 Independent predictive power of immune risk score model.

id Univariate analysis Multivariate analysis

HR HR.95L HR.95H p value HR HR.95L HR.95H p value

RiskScore 2.78 1.63 4.74 0.0002 2.99 1.65 5.4 0.0003
Sex 0.8 0.56 1.12 0.19 0.67 0.46 0.99 0.048
T 1.26 1.05 1.52 0.014 0.98 0.71 1.36 0.9
N 1.16 0.94 1.43 0.16 0.97 0.64 1.46 0.88
M 3.03 1.11 8.21 0.03 1.08 0.27 4.34 0.92
Stage 1.24 1.04 1.49 0.02 1.31 0.83 2.06 0.25
Age 1.02 1 1.04 0.01 1.03 1.01 1.06 0.003

Notes.
HR, hazard ratio.

Table 3 Correlation between the immune risk score and clinicopathological parameters.

Item Mean IRS value P

Age <68 1.07 0.34
>68 1.01

Stage I 1.05 0.9
II 1.08
III 1.03
IV 1.09

Gender Female 1.05 0.96
Male 1.05

T T1 1 0.03
T2 1.07
T3 1.08
T4 0.94

N N0 1.05 0.69
N1 1.06
N2 1.04
N3 1.15

M M0 1.06 0.98
M1 1.09

Notes.
IRS, immune risk score.

Correlation between immune risk score and clinicopathological
parameters
To analyze the correlation between immune risk score (IRS) and clinicopathological
parameters in 436 LSCC samples. The results revealed that immune risk score is associated
with T stage of LSCC, while there was no correlation between the patient’s immune risk
score and clinicopathological parameters such as age, gender, clinical stage, N stage and M
stage (P > 0.05, Table 3).
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Figure 5 Construction of the nomogrammodel, each variable axis represented an individual risk fac-
tor, and the line drawn upwards was used to determine the points of each variable. Then the total points
would be calculated to obtain the probability of 1-, 2- and 3-year OS.

Full-size DOI: 10.7717/peerj.7918/fig-5

Construction of nomogram model
In order to take full advantage of the clinicopathological parameters of LSCC and the
excepted risk model to predict the survival rates of LSCC patients, we constructed a
nomogram. We can take note of the prognosis of patients according to clinicopathological
parameters and immune riskmodel. Then, total scores were used to evaluate 3-year survival
in patients with LSCC (Fig. 5).

DISCUSSION
Built on the ‘‘seed and soil’’ theory of cancer metastasis proposed by Paget, cancer cells,
as ‘‘seed’’, depend on the surrounding microenvironment ‘‘soil’’ for their occurrence and
metastasis (Paget, 1989). Tumor microenvironment (TME) relates to bioactive molecules
secreted by extra-cellular matrix (ECM), stomatal cells, tumor and stomatal cells, as
well as lymphatic and vascular systems (Hanahan &Weinberg, 2011). On the one hand,
tumor cells affect the surrounding microenvironment by autocrine and paracrine to
continue their invasion, growth and tumor formation. On the other hand, various cells
and extracellular matrix in tumor microenvironment play an important role in tumor
development, invasion, metastasis and tumor treatment. Nowadays, a series of studies have
shown that tumor immune cells as an important component of tumor microenvironment
play a major role in tumor prognosis. For example, Liu et al. (2019) stated that Tregs T
cells and M2 macrophages have different prognostic values in gastric cancer patients with
distinct clinicopathological characteristics and chemotherapy strategies. Elevated tumor
infiltrating lymphocytes were significantly related to better survival in colorectal cancer
(Ko & Pyo, 2019).

At present, the conventional surgical method utilised for the treatment of LSCC is still
resection. Being dependent on the investigation data, there is still a high recurrence rate after
the resection of LSCC (Wang et al., 2019). Therefore, it is of profound significance to study
the factors affecting the prognosis of LSCC patients to increase their long-term survival.
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To explore the prognostic value of tumor infiltrating immune cells in LSCC, CIBERSORT
algorithm was used to calculate the proportion of 22 infiltrating immune cells in LSCC
tissues, and samples with P value less than 0.05 were selected for this study. Kaplan–Meier
analysis of 22 immune cells showed that activated mast cells were linked to poor prognosis
of LSCC, while follicular helper T cells were associated with a better outcome of LSCC.
Mast cells, as an important component of tumor microenvironment, have been proved to
exist in a large number of solid tumors (Oldford & Marshall, 2015; Ribatti, 2016). Mast cells
play both positive and negative roles in tumors, depending on bioactive substances secreted
(Ribatti, 2016). A large number of studies have shown that high infiltration mast cells in
tumors are associated with a good prognosis of patients (Carlini et al., 2010; Dabiri et al.,
2004;Welsh et al., 2005), which runs counter to our results. Follicular helper T cells induce
B cells to begin antibody responses outside the follicle and the germinal center. Previous
studies have shown that invasive follicular helper T cells have a protective effect in colorectal
cancer and breast cancer, which are substantially corelated with patient survival (Zhang et
al., 2019). Amultivariate cox regressionmodel was used to construct the immune risk score
model based on resting memory CD4+T cells, activated mast cells and follicular helper T
cells selected by forward stepwise regression analysis, and the ROC curve indicated that the
model was reliable in predicting the recurrence risk of LSCC. In addition, we tried to look
for datasets in the GEO database to validate our results, but due to the limited number
of LSCC patients, we were unable to make meaningful validation results. Given the rapid
development of high-throughput technologies, it is reasonable to suppose that our immune
risk score model has great potential for transforming clinical practice. In addition, we also
found that naive B cells, memory B cells, plasma cells, CD8+T cells, memory CD4+T cells,
trees T cells, resting NK cells, mast cells, monocytes cells and other cells had no statistical
significance on the prognosis of LSCC. However, these cells show differential expression
in normal lung tissues and LSCC tissues, suggesting that they are closely connected with
the occurrence and progress of LSCC. Besides, correlation analysis showed that immune
risk score is associated with T stage of LSCC, while there was no correlation between the
patient’s immune risk score and clinicopathological parameters such as age, gender, clinical
stage, N stage and M stage. The result indicated that the immune risk score is associated
with local infiltration of LSCC, but not with distant metastasis. Finally, a nomogrammodel
was constructed to predict the survival rates of LSCC patients. The line segment length
corresponding to each variable in the nomogram represents the contribution of predictors
to survival outcome. The immune risk score has the greatest effect on prognosis, while
T stage has a smaller effect on prognosis compared with other factors. In future studies,
external data should be used to verify the wide applicability of the nomogram.

CONCLUSION
In conclusion, the present study demonstrated the prognostic value of 22 immune cells
in LSCC. The immune risk score model was reliable for predicting the prognosis of LSCC
based on the TCGA database, and the risk score model was an independent factor affecting
the prognosis of LSCC. However, due to the limited number of LSCC patients, this immune
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risk score model could not be verified in GEO database. It is hoped that sufficient samples
can be collected in future studies to verify this result.
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