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ABSTRACT
Aquaculture has become a primary method to produce various aquatic products, and
intensive aquaculture technologies have become commercially important. To improve
the efficiency of intensive aquaculture per unit area without reducing the growth
rate of cultured fish, the present study explored the potential of artificial substrata
in ponds. Our results showed that the concentrations of total nitrogen (TN) and total
phosphorous (TP) in the ponds with different stocking densities of grass carp were
lower than those in the control group in most cases. Further, the feed conversion rate
of grass carp was significantly reduced by introducing these artificial substrata, and the
culture density could be significantly increased without reducing the growth rates of
these fish. Artificial substrata also significantly enriched specific bacteria and changed
the structure of themicrobiota in pondwater. The relative abundance of Proteobacteria
was significantly increased, and bacteria closely related to N and P cycles, such as
Hyphomicrobium, Chitinimonas, Legionella, Shewanella, Roseiflexus, and Planktothrix
were significantly enhanced. These results showed that the artificial substratum could
increase TN and TP removal in aquaculture pond water by enriching N and P cycle-
related bacteria, thus significantly increasing the specific growth rate of grass carp and
significantly reducing their feed conversion rate. Finally, the stocking density of grass
carp and the yield per unit area of pond could be increased without reducing the growth
rate.

Subjects Aquaculture, Fisheries and Fish Science, Bioinformatics, Ecology, Microbiology,
Freshwater Biology
Keywords Artificial substratum, Grass carp, Aquaculture, Nitrogen and phosphorus cycles,
Microbiota

INTRODUTION
Aquaculture has become a primary method to produce aquatic products, and plays an
important role in solving world food shortages and improving the physical qualities of
humans (Bardach, 1985; Perschbacher, 2015). However, with continuous advancements in
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global industrialization, aquaculture production space is constantly decreasing. Traditional
aquaculture has been unable to meet the rapid growth of human demand for related
food. Therefore, improving the yield per unit area could become an effective means to
ensure adequate aquaculture production (Cressey, 2009). Increasing the farming density is
the most commonly used method to increase the yield per unit area, but this ultimately
increases the self-purifying load of farming water. Approximately 75% of the feed nitrogen
and phosphorus are not utilized and remain as waste in the water (Gutierrez-Wing &
Malone, 2006), which seriously exceeds the limits of self-purification, thus affecting water
quality and indirectly delaying the growth of fish (Bagley, Bentley & Gall, 1994;North et al.,
2006; Hosfeld et al., 2009).

Introducing artificial substrata that improve microbial attachment can significantly
promote the growth of aquaculture species while restoring water properties in situ (Bo
et al., 2010; Audelo-Naranjo, Martínez-Córdova & Voltolina, 2010; Schveitzer et al., 2013;
Kumar et al., 2015; Li et al., 2017). The main ways that artificial substrata promote fish
growth include the following: reducing ammonia and nitrite concentrations in farming
water through the assimilation and dissimilation of microorganisms that adhere to the
surface of artificial substrata (Arndt et al., 2002; Zhang et al., 2019); providing natural
feed to farming organisms through the presence of adherent microorganisms on the
surface of artificial substrata, such as bacteria, fungi, algae, protozoa, and zooplankton
(Azim et al., 2002); reducing energy consumption caused by stress reactions through the
physical shelter provided by these structures (Huang et al., 2013; Pandey, Bharti & Kumar,
2014). Bratvold & Browdy (2001), and Kumar et al. (2017) both reported that introducing
artificial substrata can increase the growth and viability of Litopenaeus vannamei and reduce
ammonia and nitrite concentrations in farming water.

As one of the most important native Chinese freshwater fish, grass carp
(Ctenopharyngodon idella) is already the largest freshwater aquaculture product worldwide
(Ni et al., 2014). The output of grass carp in China alone in 2018 reached 5.345million tons,
accounting for 18.4% of the total output of freshwater aquaculture species (Administrative
Administration of Fisheries and Fisheries of the Ministry of Agriculture and Countryside of
China, 2019), and this provided sufficient amounts of high-quality, low-cost protein for
global consumption. To further increase the yield of grass carp per unit pond area without
affecting the growth rate and to analyse the potential role of microbial flora that are
enriched by the artificial substratum, the present study used grass carp farming density
as a variable to determine whether this artificial substratum could effectively alleviate the
deterioration in aquaculture water quality caused by the increased culture density.

MATERIALS AND METHODS
Experimental design
The experiment was conducted in the precise aquaculture base of the Pearl River Fisheries
Research Institute. The experimental period was 60 days. Thirty square cement ponds with
of 2×2 m were employed. An explosion disc was placed in the centre of each pond by
continuous aeration 24 h every day, with an approximate airflow of 0. 42×10−4m3/s. Before
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Figure 1 Top view (A) and side view (B) of artificial substratum placement in pond. AS, artificial sub-
stratum; ED, explosion disc. Source credit: Zhifei Li and Yankun Cao.

Full-size DOI: 10.7717/peerj.7906/fig-1

the experiment, the ponds were sterilized for 2 h using 0.1% of potassium permanganate.
Then, water was added the ponds to a depth of 1 m. The ponds for treatment groups
(D0+S2, D20+S2, D30+S2, D40+S2, and D50+S2, based on density, described as follows)
contained two artificial substrata (AquaMats). The polypropylene nonwoven that does not
easily decompose and is environmentally friendly was used for the artificial substratum.
The size of the artificial substratum was 1×1 m and its density was described by Azim et
al. (2004) and Zhang et al. (2019). The artificial substrata were placed as shown in Fig. 1.
The ponds for control groups (D0, D20, D30, D40, and D50) did not contain the artificial
substratum. There were three replicates for each group and five densities were tested,
including 0, 20, 30, 40, and 50 individuals per pond, for both the control and treatment
groups. The initial average body weight of the grass carp was 0.35 ± 0.07 kg. Commodity
feed containing 30% crude protein was administered at 9:00 and 16:00 every day, and
the daily feed amount was 3% of the total weight of the grass carp in pond. During the
experiment, all ponds were aerated by disc microporous aeration. The pond water was
changed according to the pH value of the water. Specifically, the pH value was determined
once per day and when this value was less than 6.0, 10% of the pond water was exchanged
with aerated tap water.

Determination of physical and chemical indexes
Starting from the stocking of grass carp, the dissolved oxygen, pH, and temperature in
the water were measured daily using the ProPlus portable multiparameter water quality
measurer (YSI, USA). Total nitrogen (TN), total phosphorus (TP), ammonia nitrogen
(NH4

+-N), nitrate nitrogen (NO3
−-N), nitrite nitrogen (NO2

−-N), and chemical oxygen
demand (COD) were measured at 10:00 once every 7 days. Among them, TN and TP
contents were measured using the Kjeldahl method and molybdenum blue colorimetry
method, respectively (Lu, 2000). NH4

+-N, NO3
−-N, and NO2

−-N were measured using
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a Pharo100 multi-parameter water quality analyzer (Merck, Germany), and COD was
measured with a COD measurer (HACH, USA).

The total exchange ratio of water (TERW) was calculated as follows:

TERW=TVEW/VPWS,

where TVRW is the total volume of exchanged water and VPWS is the volume of pond
water at the start.

Growth performance evaluation
At the end of the experiment, after 24 h of starvation, the pond water was drained and
the body weights of grass carp were determined. The specific growth rate (SGR, %/d) and
feed conversion rate (FCR, %) were calculated as follows (Cui & Wootton, 1988): SGR =
{[ln(final weight)− ln(initial weight)]×100}/experimental days. FCR = feed consumption
(dry weight)/(final fish weight (wet weight) − initial fish weight (wet weight)).

Microbiota collection, DNA extraction, and sequencing
Each 200-ml pond water sample was collected at the end of the experiment and filtered
using aGF/C filter with a 0.22-µmpore size. The filter was cut into fragments and placed in a
50-ml sterile centrifuge tube for DNA extraction. Three grams of each artificial substratum
sample were also weighed and added to 200 ml of sterile water. The mixture was then
vortexed for 2 h. The mixture was centrifuged at 2,500 × g for 15 min at 4 ◦C and the
suspension was collected for DNA extraction. For this, the suspensions were filtered using
GF/C filters with 0.22-µmpore size. The filter was cut into fragments and placed in a 50-ml
sterile centrifuge tube for DNA extraction. Bacterial DNA was extracted using a kit for the
extraction of bacterial DNA from water (Omega, Norcross, GA, USA). DNA concentration
and purity were evaluated with 1% agarose gels. Based on the concentration, DNA was
diluted to 1 ng/µl with sterile water for further amplification. The V4 hypervariable region
of the 16S rRNA gene was amplified using the 515F and 806R primers with sample-specific
barcodes (Yan et al., 2016). PCR was performed in 30-µl reaction volumes with 15 µl of
Phusion High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, USA), each
primer at 0.2 µM, and approximately 10 ng of template DNA. Thermal cycling conditions
were as reported previously (Li et al., 2017). The PCR products were mixed at ratios of
equal density and the mixed PCR products were purified using the Gene JET Gel Extraction
Kit (Thermo Scientific, Waltham, MA, USA). Sequencing libraries were constructed using
the NEB Next Ultra DNA Library Prep Kit for Illumina (New England Biolabs), according
to the manufacturer’s recommendations, and index codes were added. Finally, the libraries
were sequenced using the Illumina MiSeq platform and 250-bp paired-end reads were
generated. MiSeq sequencing was conducted by Novogene Co. (Beijing, China).

The paired-end reads from the raw DNA fragments were merged using FLASH software.
The merged tags were assigned to each sample according to the sample-specific barcodes,
and the low-quality sequences were detected and removed using QIIME 1.9.0 software
according to previous reports (Li et al., 2017; Huang et al., 2018; Ni et al., 2017; Ni et al.,
2019). Chimeric sequences were detected and removed using Uchime algorithm (Edgar et

Li et al. (2019), PeerJ, DOI 10.7717/peerj.7906 4/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.7906


al., 2011) embedded to QIIME 1.9.0 software. QIIME 1.9.0 software (Caporaso et al., 2010)
and the vegan package (Dixon, 2003) in the R platform (R Core Team, 2014) were used to
analyze alpha (within samples) and beta (among samples) diversity. Sequences with≥97%
similarity were assigned to the same operational taxonomic unit (OTU) using UPARSE
software (Edgar, 2013). Representative sequences for each OTU were selected and the RDP
classifier was used to annotate them with appropriate taxonomic information (Wang et al.,
2007). In-house Perl scripts were used to analyse alpha and beta diversity.

All merged DNA sequences have been submitted to the genome sequence archive
database (https://bigd.big.ac.cn/) under the accession number CRA001827 (https:
//bigd.big.ac.cn/gsa/s/Z6ZLD9E9).

Data analysis
Data were recorded and pre-treated using Excel. Data are shown as the mean ± standard
error. Principle component analysis (PCoA) was conducted using QIIME 1.7.0, non-
parametric multivariate analysis of variance (PERMANOVA; Anderson, 2001) was
conducted using R software with the vegan package (Dixon, 2003), and one-way ANOVA
and t-tests were conducted using R software with the base packages. Linear discriminant
analysis effect size (LEfSe) was conducted using the Galaxy platform as our previous
description (Li et al., 2019). P values <0.05 were considered significant.

RESULTS
Artificial substrata significantly increase the pond farming density of
grass carp
The water temperatures of ponds were not significantly different during the experiment
(one-way ANOVA, F = 0.736, p = 0.676). Dissolved oxygen in the pond water was closely
and negatively correlated with farming density. The pH values of ponds without farmed
fish ranged from 7.9 to 8.4, which were significantly higher than those of ponds housing
farmed fish (from 5.5 to 7.5; one-way ANOVA, p <0.05; Table S1 ). No fish died during the
experimental process. Except for those in the pond without grass carp (D0 and D0S), the
concentrations of TN and TP in other ponds fluctuated and increased with culture time
from the beginning of the experiment, but remained in specific range after the middle of
the experiment (Figs. S1 and S2). The increase in TN concentration was mainly due to the
significant increase in nitrate concentration in the pond water (Fig. S3), because nitrite
and ammonia nitrogen concentrations did not gradually increase during the experimental
process, but rather fluctuated within a certain concentration range (Figs. S4 and S5). In
most cases, TN and TP in the ponds that contained artificial substrata were lower than
those in the control ponds at the later stage of the experiment (Figs. S1 and S2). Similar
results were also obtained regarding the concentrations of nitrate, nitrite, and ammonia
nitrogen, especially for the high stocking density ponds (D40 and D50; Figs. S3–S5).

With an increase in grass carp farming density, the TERW and FCR of both treatment
and control groups increased, whereas the SGR of grass carp decreased gradually (Fig. 2).
The SGR of grass carp was significantly increased with the presence of artificial substrata
(Paired t -test, t = −3.070, p = 0.011), and the FCR was significantly reduced (Paired
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t -test, t = 3.045, p = 0.011), which indicated that the introduction of artificial substrata
into aquaculture ponds promotes the growth of grass carp. According to the fitting
formulas SGRtreatment= 6.1075 (farming density)−0.553treatment and SGRcontrol= 5.3384 (farming
density)−0.565control , the artificial substrata were able to increase stocking density to 10.68 grass
carp per pond while maintaining an SGR of 0.8. Thus, the estimated stocking density in
the pond could be increased by 0.88 kg/m3 (2.67 individuals/m3).

Artificial substrata significantly increase the bacteria that participate
in nitrogen and phosphorus cycles
To determine whether the introduction of artificial substrata could increase the microbial
species involved in nitrogen metabolism in pond water, the microbiota community
structures of 30 pond water samples (three duplicate samples in five treatment groups
and five control groups) and 15 artificial substrata were analysed. In total, 2,557,442
(56,832.04 ± 1,202.30) high-quality sequences were obtained. To exclude the influence
of sequencing depth, 28,604 sequences were randomly resampled from each sample
for further analysis. A total of 6782 OTUs were obtained based on 97% sequence
similarity. These sequences belonged to 51 phyla, except for a few (1.03 ± 0.06%)
sequences that could not be classified at the phylum level. Acidobacteria, Actinobacteria,
Armatimonadetes, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes,
Fusobacteria, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria,
Synergistetes, and Verrucomicrobia were the dominant phyla, for which relative
abundance was more than 1% in at least one sample (Fig. 3A). The relative abundances
of Actinobacteria, Chlamydiae, Fusobacteria, and Planctomycetes in pond water were
significantly decreasedwith the treatment, whereas the relative abundance of Proteobacteria
was significantly increased (Fig. 3B). This was closely correlated with the significant
enrichment of Proteobacteria induced by the artificial substrata (Fig. 3B).

Except for a few sequences (1.03 ± 0.06%), 928 prokaryotic genera were obtained, of
which 320 were dominant genera (their relative abundances weremore than 0.1% in at least
one sample). PCoA results showed that the introduction of an artificial substratum could
not only result in the formation of microbial communities in the artificial substrata that
were distinct from those in pond water, but could also significantly change the composition
of microbiota in the pond water (PERMANOVA, F = 6.77, p = 0.005). Interestingly, the
composition of microbiota in pond water with artificial substrata was more similar to that
of the artificial substrata (Fig. 4).

LEfSe based on dominant genera showed that those that were significantly enhanced by
the artificial substratum gradually decreased with increasing grass carp stocking densities,
mainly because the microbiota on the artificial substrata were closer to those of the pond
water (Fig. 4). Significantly enriched bacteria on the artificial substrata mainly comprised
Proteobacteria, in which Ideonella, Nordella, Hyphomicrobium, Pseudoduganella, and
Chitinimonas were the most significantly enriched (they were significantly enriched with at
least two farming densities; Fig. 5). In addition, Perlucidibace, Polynucleobacter, Legionella,
Romboutsia, Shewanella, Roseiflexus, Planktothrix, and Limnothrix in the pond water with
artificial substrata were significantly enhanced (Fig. 5).
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DISCUSSION
High-density culture in ponds not only reduces the growth rate of cultured fish, but also
increases their FCR, and increases the accumulation of TN and TP in pond water and
sediment (Rahman et al., 2005; Besson et al., 2016). The accumulation of TN and TP, and
especially the increase in nitrite and ammonia nitrogen, will lead to the slow growth of
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Figure 4 Principle component analysis (PCoA) profile showing the differences in microbiota among
pond water and artificial substratum samples. The dotted line ellipses depict the microbiota samples
from pond water without farmed fish and with artificial substrata, whereas the black solid line ellipses de-
pict the microbiota samples in pond water and artificial substrata, eliminating the samples without farmed
fish.

Full-size DOI: 10.7717/peerj.7906/fig-4

cultured fish (Ni et al., 2018). In the present study, our results also showed that the growth
rate of grass carp decreased gradually (Fig. 2C) and that the FCR increased continuously
(Fig. 2B) with an increase in the culture density of grass carp. We further demonstrated
that the presence of an artificial substratum could effectively increase the culture density
while maintaining the growth rate of grass carp (Fig. 2C), ultimately increasing the yield
per unit pond area. Considerable production gains and reduced FCR were reported when
using an artificial substratum, based on the culture of Farfantepenaeus paulensis (Ballester et
al., 2007), Litopenaeus vannamei (Audelo-Naranjo, Martínez-Córdova & Voltolina, 2010),
and Panaeus monodon (Anand et al., 2013), as this increases the available surface area of
biofilm and reduces the negative effects of fish overcrowding. Similarly, our results showed
the importance of an artificial substratum in aquaculture ponds. Based on the fitting curve
equation obtained in the present study, under the premise of guaranteeing the SGR, the
stocking density of grass carp could be increased by including artificial substrata. Taking
the SGR of 0.8 as an example, the stocking density could be increased by 0.88 kg/m3 and
the stocking biomass could be increased by 37%.

The accumulation of TN and TP in pond water is considered an important reason for
slower growth rates in aquaculture (Rahman et al., 2005; Besson et al., 2016;Ni et al., 2018).
In the present study, our results showed that TN and TP in pond water fluctuated but
increasedwith culture time (Figs. S1 and S2). The increasing trend for TNwasmainly caused
by an increase in nitrate-nitrogen (Fig. S3), whereas an increase in ammonia-nitrogen and
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Figure 5 Linear discriminant analysis effect size (LEfSe) profiles showing the significant differences
in microbiota among pond water and artificial substratum samples. (A–E) Significantly different taxa
in the samples from the pond without farmed fish, farmed fish at five individuals/m2, farmed fish at 7.5
individuals/m2, farmed fish at 10 individuals/m2, and farmed fish at 12.5 individuals/m2, respectively. Red,
green, and blue indicate significantly different taxa in the artificial substratum microbiota, control pond
water, and pond water from the ponds containing artificial substrata, respectively. Source credit: Zhifei Li
and Yankun Cao.

Full-size DOI: 10.7717/peerj.7906/fig-5
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nitrite was not obvious during the experiment (Figs. S4 and S5). This might be due to the
continuous explosion during the experiment, in addition to the fact that high dissolved
oxygen promotes the growth of heterotrophic bacteria through nitrification, which results
in the oxidation of ammonia-nitrogen and nitrite to form nitrate through nitrification
(Ebeling, Timmons & Bisogni, 2006; Kumar et al., 2017). Asaduzzaman et al. (2008) also
showed that the total ammonia-nitrogen concentration in the treatment pond can be
controlled at a lower level than that in the control pond after the addition of a substrate,
implying that the substrate supports the growth of nitrifying bacteria and algae, which in
turn reduces total ammonia-nitrogen and NO2

−-N levels. In addition, our results also
showed that in most cases, the concentration of TN and TP in pond water could be reduced
by the presence of artificial substrata; nitrite, ammonia-nitrogen, and nitrate also showed
a similar trend, especially for grass carp cultured at a high culture density (D40 and D50),
in accordance with the results of previous studies (Azim et al., 2002; Asaduzzaman et al.,
2008; Kumar et al., 2015;Henares et al., 2015). These results thus showed that water quality
might be very important for the growth of aquaculture species, suggesting that water quality
control should be strictly maintained during this process.

Biofilms that effectively promote N and P metabolism, maintaining these elements
at low concentrations in freshwater ecosystems, have been identified (Flemming &
Wingender, 2010; Li et al., 2017). Further, artificial substrata have been used in ponds
to enhance the formation of biofilms that aid in controlling N and P (Li et al., 2014;
Yu et al., 2016). Our previous study also showed that adding artificial substrata to an
aquaculture pond could create a habitat for denitrifiers and phosphorus-removing
bacteria (Li et al., 2017). In the present study, bacteria involved in N and P cycles such as
Hyphomicrobium (Sperl & Hoare, 1971; Van der Drift & De Windt, 1983; Brooke, Duchars
& Attwood, 1987; Kloos et al., 1995), Chitinimonas (Chang et al., 2004), Legionella (Keen &
Hoffman, 1984), Shewanella (Al-Harbi & Uddin, 2006; Hau & Gralnick, 2007; Fredrickson
et al., 2008), Roseiflexus (Wawrik et al., 2011; Penton et al., 2013; Gerbl et al., 2014; Hug et
al., 2015; Wang et al., 2018), and Planktothrix (Zotina, Köster & Jüttner, 2003; Davis et al.,
2015) were enhanced on the artificial substrata and in associated pond water (Fig. 5). These
results implied that such artificial substrata can reduce TN and TP levels in pond water by
enriching bacteria involved in N and P cycles, thus alleviating the inhibitory effects of high
TN and TP on the growth of grass carp.

CONCLUSION
The SGR of grass carp was significantly increased and the FCR was significantly reduced by
introducing artificial substrata. This was thought to be mainly due to changes in microbial
community structure in the pond water, which resulted in the enrichment of bacteria
involved in N and P cycles, as well as the reduction of N and P concentrations in pond
water.
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