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Background. The co-inoculation of soybean with Bradyrhizobium and other plant growth-
promoting rhizobacteria (PGPR) is considered a promising technology. However, there has
been little quantitative analysis of the effects of this technique on yield paramet@ In this
context, the present study aiming to provide a quantification of the effects of the co-
inoculation of Bradyrhizobium and PGPR on the soybean crop using a meta-analysis
approach. Methods. A total of 42 published articles were examined, all of which
considered the effects of co-inoculation of PGPR and Bradyrhizobium on the number of
nodules, nodule biomass, root hiomass, shoot biomass, shoot nitrogen content, and grain
yield of soybean. We also verii:

well as the experimental conditions, interfere with the effect size of the PGPR. Results.
The co-inoculation technology resulted in a significant increase in nodule number
(11.40%), nodule biomass (6.47%), root biomass (12.84%), and shoot biomass (6.53%).
Despite these positive results, no significant increase was observed in shoot nitrogen
content and grain yield. The response of the co-inoculation varied according to the PGPR
genus used as co-inoculant, as well as with the experimental conditions. | neral, the
genera Azospirillum, Bacillus, and Pseudomonas were more effective when compared to
Serratia. Overall, the observed increments we ore pronounced under pot than under
field conditions. Collectively, these studies outline that co-inoculation improves plant
development and increases nodulation, which may be important in overcoming nutritional
limitations and potential stresses during the plant growth cycle, even though significant
increases in grain yield have not been evidenced by this data meta-analysis.

| wh@er the genus of the PGPR used as co-inoculant, as
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Abstract

Background. The co-inoculation of soybean with Bradyrhizobium and other plant growth-
promoting rhizobacteria (PGPR) is considered a promising technology. However, there has been
little quantitative analysis of the effects of this technique on yield parameters. In this context, the
present study aiming to provide a quantification of the effects of the co-inoculation of
Bradyrhizobium and PGPR on the soybean crop using a meta-analysis approach.

Methods. A total of 42 published articles were examined, all of which considered the effects of
co-inoculation of PGPR and Bradyrhizobium on the number of nodules, nodule biomass, root
biomass, shoot biomass, shoot nitrogen content, and grain yield of soybean. We also verified
whether the genus of the PGPR used as co-inoculant, as well as the experimental conditions,
interfere with the effect size of the PGPR.

Results. The co-inoculation technology resulted in a significant increase in nodule number
(11.40%), nodule biomass (6.47%), root biomass (12.84%), and shoot biomass (6.53%). Despite
these positive results, no significant increase was observed in shoot nitrogen content and grain
yield. The response of the co-inoculation varied according to the PGPR genus used as co-
inoculant, as well as with the experimental conditions. In general, the genera Azospirillum,
Bacillus, and Pseudomonas were more effective when compared to Serratia. Overall, the
observed increments were more pronounced under pot than under field conditions. Collectively,
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these studies outline that co-inoculation improves plant development and increases nodulation,
which may be important in overcoming nutritional limitations and potential stresses during the
plant growth cycle, even though significant increases in grain yield have not been evidenced by
this data meta-analysis.

Introduction

The soybean crop [Glycine max (L.) Merrill] is one of the main commodities in the
world, mainly for its high protein and oil contents, favoring its use in several areas of the
agroindustry (Hart, 2017; Nguyen, 2018). In countries such as Brazil and Argentina, some of the
world's leading producers, soybean is a highly profitable crop for farmers, since its nitrogen (N)
requirements are fully met by biological nitrogen fixation (BNF) (Hungria et al., 2005). In BNF,
the soybean establishes a symbiotic relationship with rhizobia, providing photoassimilates in
exchange for biologically active N (Hungria, Menna & Delamuta, 2015; Gresshoff, 2018). These
microorganisms usually inhabit the plant system, where they colonize and grow
endophytically, producing the enzymatic Qplex of nitrogenase, which allows them to convert
atmospheric nitrogen (N,) to ammonia and its further incorporation into biomolecules in several
forms of organic N (Hungria et al., 2006; Oldroyd, 2013; Hungria, Nogueira & Araujo, 2013).

The genus Bradyrhizobium (1982) is considered the main rhizobial genus that establishes
a symbiotic association with soybean (Hungria, Nogueir g"D Araujo, 2015a; Sugiyama et al.,
2015; Schmidt, Messmer & Wilbois, 2015). According t tional Center for Biotechnology
Information (NCBI, 2019), 52 species of Bradyrhizobium have already been described, with the
species B. elkanii, B. japonicum, and B. diazoefficiens being the most used in commercial
inoculants (Siqueira et al., 2014; Schmidt, Messmer & Wilbois, 2015; Delamuta et al., 2017).
The Bradyrhizobium-soybean symbiosis is considered one of the most important natural relations
exploited by the agricultural activity, since these bacteria can lead to grain yield increase and,
consequently, eliminate or reduce the dependence on inorganic N fertilizers in crop cultivation
(Chang, Lee & Hungria, 2015; Hungria, Marco & Ricardo, 2015; Collino et al., 2015).

In addition to the use of rhizobia, another strategy that has been employed to increase
soybean productivity is the co-inoculation of Bradyrhizobium with other genera of plant growth-
promoting rhizobacteria (PGPR), such as Azospirillum (Hungria, Marco & Ricardo, 2015; Zuffo
et al., 2016), Bacillus (Mishra et al., 2009; Tonelli, Magallanes-Noguera & Fabra, 2017),
Pseudomonas (Egamberdieva, Jabborova & Berg, 2016; Pawar et al., 2018), and Serratia (Bai,
2002; Pan, Vessey & Smith, 2002). These microorganisms act as promoters of plant growth via
the production of amino acids, indole acetic acid (IAA), gibberellins, and other polyamines,
improving root growth and, consequently, increasing water and nutrient absorption by the plants
and generating rhizobia-soybean interaction sites (Schmidt, Messmer & Wilbois, 2015; Yadav et
al., 2017). Among other benefits, PGPR are also able to solubilize phosphates, produce
siderophores, fix N;, and mitigate biotic and abiotic stresses (Ahemad & Kibret, 2014;
Olanrewaju, Glick & Babalola, 2017).
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Although it is considered a promising technology, the co-inoculation of soybean has
shown contrasting res[m)] (Schmidt, Messmer & Wilbois, 2015). Hungria et al. (Hungria,
Nogueira & Arauia, 20T3), investigating the effects of co-inoculation of soybean seeds with B.
Jjaponicum and E asilense, observed an average increase of 420 kg ha! (16.1%) compared to
the control treatment inoculated only with B. japonicum. Conversely, Zuffo et al. (2016) reported
no significant differences in grain yield between inoculated (B. japonicum) and co-inoculated (B.
Jjaponicum + A. brasilense) treatments for six soybean cultivars. Nevertheless, the co-inoculation
of B. japonicum and B. subtilis increased traits related to soybean nodulation and biomass
(Atieno et al., 2012). Therefore, what is not yet clear is the impact of co-inoculation on soybean
grain yield. In view of this, the statistical technique known as meta-analysis may be a powerful
tool to determine the real effects of the co-inoculation of PGPR and Bradyrhizobium on soybean
cultivation. Therefore, the objective of this study was to investigate and solve the inconsistency
of results using a meta-analysis.

Material & Methods
Bibliographic research and data collection

Fig. 1 shows the search strategy for the review presented according to the PRISMA
reporting guidelines (Liberati et al., 2009). Data were collected from articles published in
scientific journals, which were obtained by a systematic literature review using the Web of
Science® and Google Scholar® databases. The search strategy "soybean AND (co-inoculation
OR PGPR)" was applied in both databases in February 2018 by two independent reviewers
(DMZ and LHF). Discussion between the two reviewers resolved any differences. If no
consensus could be reached, another reviewer (LSAG) resolved the conflict. After screening
relevant titles and filtering out duplicates, 79 articles were reviewed. The final article number
was then reduced to 42 based on the following criteria: i) articles written in English, Spanish, or
Portuguese; ii) studies that presented a measure of variance: coefficient of variation (CV), mean
square residual (MSR), standard error of the mean (SE), or standard deviation of the mean (SD);
ii1) studies showing the number of nodules, nodule biomass, shoot biomass, root biomass, shoot
N content, and/or grain yield traits; and iv) studies comparing inoculated treatments
(Bradyrhizobium) % co-inoculated (Bradyrhizobium + PGPR). Interaction data with biotic or
abiotic stresses were not extracted from articles.

adyjle, root, and shoot biomass were generally presented as dry biomass; however, in
some o E cases, the values of fresh biomass were[@}d when they were the only type of
measure available. For the variable shoot N content, protein content was also used as an indirect
source. The means and the measures of variance were extracted from the article tables, when
provided. For figures, we extracted data using the ImageJ 1.5 software (Pérez & Pascau, 2013).
Bar graphs that contained variance without specification were considered as SD.

Effect size and moderator variables
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Estimates of the effects of the PGPR on the evaluated traits were obtained using the
natural logarithmic response ratio (In R) as effect size:

| | Ti
nRkR= n(T—C)

in which 77 is the mean of the co-inoculated treatment (Bradyrhizobium + PGPR) and Tc is the
mean of the control treatment (Bradyrhizobium) (Hedges, Gurevitch & Curtis, 1999). The rate of
the response is useful when different units are reported in the studies, while logarithmic
transformation is necessary to properly balance the treatments of positive and negative effects to
maintain symmetry within the analysis (Cooper, Hedges & Valentine, 2009). Thus, values above
zero indicate an increase in the variable induced by PGPR, while values below zero reflect a
reduction, and a value that equals zero means absence of the effect of PGPR. In addition, the In R
can be easily transformed into a percentage response (%R), using the following formula:

%R =100 X [exp.(InR) - 1]

Experimental conditions (field or pot) and PGPR genera used in co-inoculation were used
as moderator variables in the present study, since they may influence the response of soybean to
the effects of co-inoculation. Moderator variables were selected based on the criterion of a
minimum of 15 observations in at least two scientific articles. The moderator variables were
tested even when the evaluated trait presented no significant value, since the positive results may
have been diluted in the general effect.

Meta-analysis

Prior to the construction of the meta-analysis models, data heterogeneity was verified by
the O (Cochran, 1954) and /7 (Higgins & Thompson, 2002) tests to determine the use of fixed or
random/mixed-effects model approaches. The synthesis produced by the meta-analysis is
balanced according to the weight of each of the studies, so that they can contribute individually
to the meta-analytic result. In this study, the inverse variance method (Hedges, Gurevitch &
Curtis, 1999) was used to assign the weights:

in which Wi represents the weight assigned to the i-th study and Vi is the variance of the i-th
study. Thus, the lower the study variance, the greater its contribution to the synthesis generated.
The estimates produced by the meta-analysis and their respective 95% confidence
intervals (95% CI) were presented in forest plot graphs. Therefore, the mean effect size was
considered significant when its 95% CI did not overlap with zero. Statistical analyses were
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performed in the software R (https://r-project.org), using the meta (Schwarzer, Guido), metafor
(Viechtbauer, 2010), and ggplot2 (Wickham, 2016) packages.

Results
Metadata

Metadata was obtained from 42 published articles from 13 countries between 1987 and
2018 (Fig. 2a; Table S1). A total of 976 observations (n) were obtained from an aggregate of 74
trials, where each observation included a co-inoculated treatment (PGPR + Bradyrhizobium) and
a control treatment (Bradyrhizobium) for the number of nodules (n = 278), nodule biomass (n =
228), shoot N content (n = 88), and grain yield (n = 78). Among the observations, 53% (n = 525)
were obtained in pots and 47% (n = 451) under field conditions (Fig. 2b). Except for grain yield,
reported only under field conditions, all other traits were observed under pot and field conditions.
A total of 16 different genera of PGPR were used as co-inoculants (Fig. 2c¢).

Heterogeneity on the full dataset was highly significant by the Cochran test (Q =
29822.77, df =975, p < 0.0001). The I statistic also indicated high heterogeneity, which showed
a magnitude of 96.40%. Due to the great heterogeneity of the observations, the meta-analysis
was performed using random-effects models. Likewise, significant heterogeneity (p < 0.0001)
was observed for the six evaluated traits grouped by the moderator variables, suggesting the use
of mixed-effects models, in which we evaluated the moderator variables as random effect
covariates and the observations as fixed effects (Cooper, Hedges & Valentine, 2009).

General effect of co-inoculation

The co-inoculation of soybean with PGPR showed a positive and significant effect on the
number of nodules (11.40%, 95% CI = 7.06 -15.93%), nodule biomass (6.47%, 95% CI = 0.59—
12.70%), root biomass (12.84%, 95% CI = 3.64-22.85%), and shoot biomass (6.53%, 95% CI =
3.34-9.82%) (Fig. 3). However, there was no increase in grain yield and shoot N content
associated with co-inoculation, since their 95% CI overlapped with zero.

Effects of the moderator variables

The effects of the moderator variables on the number of nodules are shown in Fig. 4.
Regarding the experimental conditions, the tests conducted under field and pot conditions
showed significant effects of 8.55% (95% CI = 3.09-14.29%) and 12.84 % (95% CI = 7.38—
20.12%), respectively, on the evaluated traits (Fig. 4a). Both effect sizes can be considered
similar, since the 95% CI overlapped considerably. Regarding the PGPR, the genera
Azospirillum, Bacillus, and Pseudomonas showed positive effects for this moderator variable,
increasing the number of nodules in 11.05% (95% CI = 1.90-19.48%), 26.05% (95% CI =
14.71-36.59%), and 10.41% (95% CI = 3.43—17.41), respectively (Fig. 4b). In relation to PGPR,
only the genus Bacillus presented significant effects, leading to average increments of 33.12%
(95% CI =22.27-44.93%) (Fig. 4c). In contrast, in the pot experiments, the genera Azospirillum,
Bacillus, and Pseudomonas presented significant effects of 26.77% (95% CI = 8.26-48.44),
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22.09% (95% CI = 6.67-39.72%), and 9.81% (95% CI =2.13-26.30%) on the number of
nodules, respectively (Fig. 4d).

As shown in Fig. 5a, only the experiments conducted in pots showed significant effects
on nodule biomass, with an average increase of 9.50% (95% CI = 1.40-18.40%). As for PGPR,
the genera Azospirillum and Pseudomonas presented positive effects on this trait, showing
increases of 14.65% (95% CI = 6.76-23.13%) and 17.34% (95% CI = 7.17-29.49), respectively
(Fig. 5b). Although no significant effect of co-inoculation on nodule biomass was observed in
the experiments conducted under field conditions, the partitioning of this effect in relation to the
PGPR genera indicated a positive and significant effect of the genus Azospirillum, increasing the
value of the trait in 10.69% (95% CI = 3.70-18.16) (Fig. 5¢). In contrast, different PGPR in the
pot studies revealed that only the genus Pseudomonas showed significant improvements in
nodule biomass, presenting an increase of 16.80% (95% CI = 6.58-27.90) (Fig. 5d). On the other
hand, a reduction of -18.32% in the average nodule biomass (95% CI =-32.08—-1.74) was
observed by co-inoculation of other PGPR genera (Actinomadura, Aeromonas, Bacillus,
Enterobacter, Herbaspirillum, Nocardia, Nonomuraea, Pseudonocardia, Rhizobium, and
Streptomyces).

The effects of the moderator variables on root biomass are presented in Fig. 6. For the
experimental conditions, only the experiments conducted in pots showed significant values, with
an increase of 15.79% (95% CI = 4.33-28.49%) in root biomass (Fig. 6a). Regarding PGPR, the
genus Pseudomonas was the only one with a positive effect on this trait, presenting an increment
0f 28.89% (95% CI = 10.93-49.77%) (Fig. 6b). Furthermore, according to the results, only the
genus Pseudomonas resulted in a significantly increased root biomass (28.96%) (95% CI =
10.68-50.25%) (Fig. 6c).

Fig. 7 shows the effects of the moderator variables on the shoot biomass. When the
experimental conditions were analyzed, it was possible to verify that the trials carried out under
field and pot conditions presented significant values of 5.44% (95% CI = 3.14-7.80%) and 8.27
% (95% CI =3.06-13.76%), respectively (Fig. 7a). Both effect sizes can be considered similar,
since the IC overlapped considerably. For this moderate variable, the genera Azospirillum,
Bacillus, and others (Actinomadura, Aeromonas, Enterobacter, Herbaspirillum,
Methylobacterium, Nocardia, Nonomurae, Pseudocardia, Rhizobium, Stenotrophomonas, and
Streptomyces) were the only ones that presented positive effects on shoot biomass, leading to
increases of 6.39% (95% CI = 3.12-9.76%), 4.92% (95% CI = 1.82-8.12%), and 31.46% (95%
CI=22.07-41.58), respectively (Fig. 7b). The partitioning of PGPR genera under field
conditions indicated that co-inoculation with bacteria of the genus Azospirillum increased plant
biomass in 5.42% (95% CI = 2.95-7.95%) (Fig. 7c). In the pot trials, an extra 28.39% (95% CI =
17.50-40.27%) in the average shoot biomass (Fig. 7d) was promoted by the grouped genera
(Actinomadura, Aerobonas, Enterobacter, Herbaspirillum, Methylobacterium, Nocardia,
Nonomurae, Pseudocardia, Rhizobium, Stenotrophomonas, and Streptomyces).

For the traits shoot N content and grain yield, none of the differences were statistically
significant, since the 95% CI of the moderator variables overlapped with zero (Figs. 8 and 9).
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Discussion

The soybean co-inoculation technology, in which traditional inoculation with selected
strains of Bradyrhizobium is enhanced by the addition of bacteria considered plant growth
promotors, has shown prominent results due to the complementary effects that these additional
microorganisms promote. Whilst Bradyrhizobium acts as a microsymbiont, colonizing the plant
root system and inducing the formation of nodules, PGPR increase root volume and number, thus
enhancing the action of Bradyrhizobium in the supply of N biologically fixed to the plant,
thereby potentially increasing grain yield (Hungria, Nogueira & Araujo, 2013, 2015b). However,
the literature lacks a quantitative synthesis of the real contribution of the co-inoculation
technology to the soybean crop. Therefore, the results obtained in the present meta-analysis have
great relevance for our understanding of the responses to the co-inoculation of symbiotic and
associative bacteria in soybean cultivation, with implications for the commercialization of
PGPR-basgZznixed inoculants.

Th » ults obtained by the present meta-analysis indicate that the co-inoculation of
soybean with PGPR provides increments in traits of great importance for obtaining high grain
yields, such as number of nodules as well as nodule, root, and shoot biomass. Previous studies
have demonstrated the existence of positive correlations between these traits and grain yield,
although the interaction effects of genotype-genotype (macrosymbiont-microsymbiont) and
genotype-environment are highlighted (Hwang et al., 2014; Cui et al., 2016; Thilakarathna &
Raizada, 2017).

Meta-analysis studies quantifying the effects of PGPR on promoting plant-growth in
different agricultural crops have been reported previously. Vereseglou and Menexes (Veresoglou
& Menexes, 2010) observed a significant increase of 23.81% in shoot biomass of wheat

(Triticum aestivum L.) when inoculated with Azospirillum spp. Corroborating results were found
by Rubin et al. (Rubin, van Groenigen & Hungate, 2017), who reported hi@ shoot and root
biomass production (28 and 35%, respectively) induced by PGPR in diffe plant species.
Furthermore, verifying the influence of inoculation with Azospirillum spp. in maize, interesting
results were found by Zeffa et al. (2018), where the inoculated treatment out-yielded the control
by 651 kg ha-!. In general, it is believed that the production of phytohormones by PGPR is one of
the main mechanisms of action on the development of the host plant, whose effects are more
prominent on the root system (Olanrewaju, Glick & Babalola, 2017; Puente et al., 2018).
Interestingly, the symbiotic relationship between rhizobia and legumes is also mediated by
bacterial phytohormones (Stacey et al., 1995; Imada et al., 2017). In this context, auxins
produced by PGPR are believed to increase the number of root hairs, leading to the formation of
rhizobia-soybean interaction sites (Schmidt, Messmer & Wilbois, 2015).

Puente et al. (2018) examined the effect of [AA on the co-inoculation response of
soybean with Bradyrhizobium and A. brasilense and demonstrated that the increase in root
system growth, which improves the soybean-Bradyrhizobium interaction, is a result of the action
of phytohormones. Moreover, the authors co-inoculated soybean with A. brasilense Az39

Peer] reviewing PDF | (2019:05:37998:0:2:NEW 10 Jun 2019)


Reviewer
Sticky Note
Change "different" to "a range of".  

Reviewer
Sticky Note
Delete "The results obtained by the present meta-analysis indicate that the".     


PeerJ

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

(ipdC+) and with its respective mutant deficient in IAA biosynthesis (ipdC-). The authors
observed that co-inoculation with A. brasilense Az39 promoted a greater efficiency in the
Bradyrhizobium-soybean symbiosis when compared to the treatment of co-inoculation with the
mutant (Az39 ipdC-) or the application of synthetic IAA and concluded that both the presence of
Azospirillum and IAA biosynthesis by these bacteria are responsible for the positive effects of
soybean co-inoculation with Bradyrhizobium and PGPR. Several other studies have linked
phytohormone production to the successful interaction between rhizobia and legumes (Fukuhara
et al., 1994; Srinivasan, Holl & Petersen, 1996; Vicario et al., 2015).

Although the correlation between nodulation parameters in soybean (nodule number and
nodule biomass) is already widely described, the data assembled by the present meta-analysis
indicated no significant increase in grain yield and shoot N content as a result of soybean co-
inoculation compared to conventional inoculation (only Bradyrhizobium). It is important to
emphasize that the meta-analysis for grain yield considered only data from field studies, in which
the variables are difficult to control, such as the presence of native strains competing with the
inoculant for nodulation. Furthermore, soybean responses to co-inoculation may vary according
to plant genotype, bacterial strain, environmental conditions, as well as the quantity and quality
of PGPR cells used as inoculants (Schmidt, Messmer & Wilbois, 2015; Pannecoucque et al.,
2018; Chibeba et al., 2018). These variations in responses to co-inoculation were evident in the
studies evaluated, which can be observed in the CI for different PGPR strains, in all the traits
described.

The results of this meta-analysis point to a lack of a positive and significant contribution
of co-inoculation to soybean grain yield. rtheless, indirect evidence indicates that the
identification of inoculant strains that pre complementary effects on plant development is a
crucial step for the development of more efficient soybean inoculants. Moreover, based on the
analysis of the data gathered, it can be concluded that the improvement of soybean tolerance to
abiotic stresses (such as drought and high temperatures) can be achieved by co-inoculation, since
significant increases have been demonstrated for plant biomass and nodule number and biomass
when this technique was applied.

In general, the results obtained in the present meta-analysis indicate the need for more
experimental data from field experiments to produce more robust analyses to assess the real
contribution of the co-inoculation technology for soybean cultivation. Among the traits that did
not present statistical significance, shoot N content and grain yield were the ones with the lowest
numbers of observations considered in the analysis. This situation is reinforced by the fact that
co-inoculation of soybean with PGPR is more effective for experiments in pots compared to
experiments conducted in the field. In addition to greater environmental control, the reader
should bear in mind that experiments in pots present a less diverse native bacterial community
compared to native soils, which means a greater competition between inoculant organisms and
soil bacterial communities in field experiments (Cakmakgi et al., 2006).

Conclusions
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313 Our results demonstrated that the co-inoculation of soybean with Bradyrhizobium and
314 other PGPR can substantially increase nodule number, nodule biomass, root biomass, and shoot
315 biomass in soybean. On the other hand, no significant differences were observed for shoot N
316 content and grain yield. The bacterial genera Azospirillum, Bacillus, and Pseudomonas were
317 more effective when compared to the genus Serratia. In general, co-ino ition results were
318 more pronounced in experiments conducted in pots than in the field. Thj inoculation

319 technology can be considered efficient in promoting plant growth in soybean.

320
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Figure 2

Fig 2. General data information (n = 976) obtained from 42 studies used in the meta-
analysis, according to (a) location of the experiments, (b) experimental conditions and
(c) genera of PGPR used as co-inoculants.
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Figure 3

Fig 3. Effect sizes (In R) of PGPR co-inoculation on nodule numbers, nodule biomass,
root biomass, shoot biomass, shoot N content and grain yield. The graph reflects the
parameter estimates from the random-effects meta-analysis model conducted for e
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Figure 4

Fig 4. Effect sizes (In R) of PGPR co-inoculation on number of nodules grouped by the
moderator variables: (a) experimental conditions; (b) genera of PGPR; (c) genera of
PGPR under field conditions; and (d) genera of PGPR under pot conditions. The g
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Figure 5

Fig 5. Effect sizes (In R) of PGPR co-inoculation on nodule biomass grouped by the
moderator variables: (a) experimental conditions; (b) genera of PGPR; (c) genera of
PGPR under field conditions; and (d) genera of PGPR under pot conditions. The grap

Peer] reviewing PDF | (2019:05:37998:0:2:NEW 10 Jun 2019)



PeerJ Manuscript to be reviewed

Field studies (n=73) - I—¢—| a
Pot studies (n=114) I—O—I
Azospirillum spp. (N=50) - —— b
Pseudomonas spp. (n=73) E —o—
Serratia spp. (n=32) - |—0—;
Others (n=32) - : @ :
Azospirillum spp. (n=30) | —o— C
Serratia spp. (n=32) - -
Azospirillum spp. (n=20) = ¢ | d
Pseudomonas spp. (n=70) —o—
Others (n=24) - : ¢ :
T : T

| i |
-06 -04 -02 00 0.2 0.4 0.6
Effect size (In R)

Peer] reviewing PDF | (2019:05:37998:0:2:NEW 10 Jun 2019)



PeerJ

Figure 6

Fig 6. Effect sizes (In R) of PGPR co-inoculation on root biomass grouped by the
moderator variables: (a) experimental conditions; (b) genera of PGPR; and (c) genera of
PGPR under pot conditions. The graph reflects the estimates of the effects of th
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Figure 7

Fig 7. Effect sizes (In R) of PGPR co-inoculation on shoot biomass grouped by the
moderator variables: (a) experimental conditions; (b) genera of PGPR; (c) genera of
PGPR under field conditions; and (d) genera of PGPR under pot conditions. The graph
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Figure 8

Fig 8. Effect sizes (In R) of PGPR co-inoculation on the shoot N content grouped by the
moderator variables: (a) experimental conditions; (b) genera of PGPR; and (c) genera of
PGPR under field conditions. The graph reflects the parameter estimates f
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Figure 9

Fig 9. Effect sizes (In R) of PGPR co-inoculation on grain yield considering the PGPR
genera moderator variable. The graph reflects the parameter estimates from the
random-effects meta-analysis model and the error bars represent the 95% confidence i
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