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ABSTRACT

Background. The co-inoculation of soybean with Bradyrhizobium and other plant
growth-promoting rhizobacteria (PGPR) is considered a promising technology. How-
ever, there has been little quantitative analysis of the effects of this technique on yield
variables. In this context, the present study aiming to provide a quantification of the
effects of the co-inoculation of Bradyrhizobium and PGPR on the soybean crop using
a meta-analysis approach.

Methods. A total of 42 published articles were examined, all of which considered the
effects of co-inoculation of PGPR and Bradyrhizobium on the number of nodules,
nodule biomass, root biomass, shoot biomass, shoot nitrogen content, and grain yield
of soybean. We also determined whether the genus of the PGPR used as co-inoculant,
as well as the experimental conditions, altered the effect size of the PGPR.

Results. The co-inoculation technology resulted in a significant increase in nodule
number (11.40%), nodule biomass (6.47%), root biomass (12.84%), and shoot biomass
(6.53%). Despite these positive results, no significant increase was observed in shoot
nitrogen content and grain yield. The response of the co-inoculation varied according
to the PGPR genus used as co-inoculant, as well as with the experimental conditions.
In general, the genera Azospirillum, Bacillus, and Pseudomonas were more effective than
Serratia. Overall, the observed increments were more pronounced under pot than that
of field conditions. Collectively, this study summarize that co-inoculation improves
plant development and increases nodulation, which may be important in overcoming
nutritional limitations and potential stresses during the plant growth cycle, even though
significant increases in grain yield have not been evidenced by this data meta-analysis.

Subjects Agricultural Science, Microbiology, Plant Science
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INTRODUCTION

The soybean crop (Glycine max (L.) Merrill) is one of the main commodities in the
world, mainly for its high protein and oil contents, favoring its use in several areas of the
agroindustry (Hart, 2017; Nguyen, 2018). In countries such as Brazil and Argentina, some
of the world’s leading producers, soybean is a highly profitable crop for farmers, since its
nitrogen (N) requirements are fully met by biological nitrogen fixation (BNF) (Hungria
et al., 2005). In BNF, the soybean establishes a symbiotic relationship with rhizobia,
providing photoassimilates in exchange for biologically active N (Hungria, Menna ¢
Delamuta, 2015; Gresshoff, 2018). These microorganisms usually inhabit the plant root
system, where they colonize and grow endophytically, producing the enzyme complex
nitrogenase, which allows them to convert atmospheric nitrogen (N;) to ammonia and
its further incorporation into biomolecules in several forms of organic N (Hungria et al.,
2006; Oldroyd, 2013; Hungria, Nogueira & Araujo, 2013).

The genus Bradyrhizobium (Jordan, 1982) is considered the main rhizobial genus
that establishes a symbiotic association with soybean (Hungria, Nogueira ¢ Araujo, 2015;
Sugiyama et al., 2015; Schmidt, Messmer ¢ Wilbois, 2015). According to List of Prokaryotic
Names with Standing in Nomenclature (LPSN, 2019), 41 species of Bradyrhizobium have
already been described, with the species B. elkanii, B. japonicum, and B. diazoefficiens
being the most used in commercial inoculants (Siqueira et al., 2014; Schmidt, Messmer ¢
Wilbois, 2015; Delamuta et al., 2017). The Bradyrhizobium-soybean symbiosis is considered
one of the most important natural relations exploited by the agricultural activity, since
these bacteria can lead to grain yield increase and, consequently, eliminate or reduce the
dependence on inorganic N fertilizers in crop cultivation (Chang, Lee ¢» Hungria, 2015;
Hungria, Marco & Ricardo, 2015; Collino et al., 2015).

In addition to the use of rhizobia, another strategy that has been employed to increase
soybean productivity is the co-inoculation of Bradyrhizobium with other genera of
plant growth-promoting rhizobacteria (PGPR), such as Azospirillum (Hungria, Marco
& Ricardo, 2015; Zuffo et al., 2016), Bacillus (Mishra et al., 2009; Tonelli, Magallanes-
Noguera ¢ Fabra, 2017), Pseudomonas (Egamberdieva, Jabborova ¢ Berg, 20165 Pawar et
al., 2018), and Serratia (Bai, 2002; Pan, Vessey ¢ Smith, 2002). These microorganisms
act as promoters of plant growth via the production of amino acids, indole acetic acid
(IAA), gibberellins, and other polyamines, improving root growth and, consequently,
increasing water and nutrient absorption by the plants and generating rhizobia-soybean
interaction sites (Schmidt, Messmer ¢ Wilbois, 2015; Yadav et al., 2017). Among other
benefits, PGPR are also able to solubilize phosphates, produce siderophores, fix N,, and
mitigate biotic and abiotic stresses (Ahemad ¢ Kibret, 2014; Olanrewaju, Glick ¢ Babalola,
2017). In the sense, the co-inoculation of microorganisms with different functions can be
considered an economically viable and environmentally sustainable strategy to improve
plant performance (Muthukumar ¢ Udaiyan, 2018; Yan, Zhu ¢ Yang, 2018).

Although it is considered a promising technology, the co-inoculation of soybean
has shown contrasting results (Schmidt, Messmer ¢ Wilbois, 2015). Hungria, Nogueira ¢»
Araujo (2013) investigating the effects of co-inoculation of soybean seeds with B. japonicum
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and A. brasilense, observed an average increase of 420 kg ha™! (16.1%) compared to
the control treatment inoculated only with B. japonicum. Conversely, Zuffo et al. (2016)
reported no significant differences in grain yield between inoculated (B. japonicum) and co-
inoculated (B. japonicum + A. brasilense) treatments for six soybean cultivars. Nevertheless,
Atieno et al. (2012) observed that co-inoculation of B. japonicum and B. subtilis increased
traits related to soybean nodulation and biomass. Therefore, what is not yet clear is the
impact of co-inoculation on soybean grain yield. In view of this, the statistical technique
known as meta-analysis may be a powerful tool to determine the real effects of the
co-inoculation of PGPR and Bradyrhizobium on soybean cultivation, since this technique
allows the quantitative combination of results from different studies, leading to a synthesis
of results with high power and reliability. Therefore, the objective of this study was to
investigate and solve the inconsistency of results using a meta-analysis.

MATERIAL & METHODS

Bibliographic research and data collection

Figure 1 shows the search strategy for the review presented according to the PRISMA
reporting guidelines (Liberati et al., 2009). Data were collected from articles published

in scientific journals, which were obtained by a systematic literature review using the
Web of Science® and Google Scholar® databases. The search strategy “soybean AND
(co-inoculation OR PGPR)” was applied in both databases in February 2018 by two
independent reviewers (DMZ and LHF). Discussion between the two reviewers resolved
any differences. If no consensus could be reached, another reviewer (LSAG) resolved
the conflict. After screening relevant titles and filtering out duplicates, 79 articles were
reviewed. The final article number was then reduced to 42 based on the following criteria:
(i) articles written in English, Spanish, or Portuguese; (ii) studies that presented a measure
of variance: coefficient of variation (CV), mean square residual (MSR), standard error of
the mean (SE), or standard deviation of the mean (SD); (iii) studies showing the number of
nodules, nodule biomass, shoot biomass, root biomass, shoot N content, and/or grain yield
traits; and (iv) studies comparing inoculated treatments (Bradyrhizobium) x co-inoculated
(Bradyrhizobium 4+ PGPR). Interaction data with biotic or abiotic stresses were not extracted
from articles.

Nodule, root, and shoot biomass were generally presented as dry biomass; however,
in some cases, the values of fresh biomass were used when they were the only type of
measure available. For the variable shoot N content, protein content was also used as
an indirect source. The means and the measures of variance were extracted from the
article tables, when provided. For figures, we extracted data using the Image] 1.5 software
(Pérez e Pascau, 2013). Bar graphs that contained variance without specification were
considered as SD.
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Figure 1 Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram
for the meta-analysis.
Full-size B DOI: 10.7717/peerj.7905/fig-1

Effect size and moderator variables
Estimates of the effects of the PGPR on the evaluated traits were obtained using the natural
logarithmic response ratio (In R) as effect size (Hedges, Gurevitch ¢ Curtis, 1999):

InR=1n <2>
Tc

in which Ti is the mean of the co-inoculated treatment (Bradyrhizobium + PGPR) and
Tc is the mean of the control treatment (Bradyrhizobium). The rate of the response is
useful when different units are reported in the studies, while logarithmic transformation
is necessary to properly balance the treatments of positive and negative effects to maintain
symmetry within the analysis (Cooper, Hedges & Valentine, 2009). Thus, values above zero
indicate an increase in the variable induced by PGPR, while values below zero reflect a
reduction, and a value that equals zero means absence of the effect of PGPR. In addition,
the In R can be easily transformed into a percentage response (%R), using the following

formula:

%R =100 x [exp.(InR) — 1]
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Experimental conditions (field or pot) and PGPR genera used in co-inoculation were
used as moderator variables in the present study, since they may influence the response of
soybean to the effects of co-inoculation. Moderator variables were selected based on the
criterion of a minimum of 15 observations in at least two scientific articles. The moderator
variables were tested even when the evaluated trait presented no significant value, since the
positive results may have been diluted in the general effect.

Meta-analysis

Prior to the construction of the meta-analysis models, data heterogeneity was verified by the
Q (Cochran, 1954) and I? (Higgins ¢~ Thompson, 2002) tests to determine the use of fixed
or random/mixed-effects model approaches. The synthesis produced by the meta-analysis
is balanced according to the weight of each of the studies, so that they can contribute
individually to the meta-analytic result. In this study, the inverse variance method (Hedges,
Gurevitch & Curtis, 1999) was used to assign the weights:

Wiz —

Vi
in which Wi represents the weight assigned to the i-th study and Vi is the variance of the
i-th study. Thus, the lower the study variance, the greater its contribution to the synthesis
generated.

The estimates produced by the meta-analysis and their respective 95% confidence
intervals (95% CI) were presented in forest plot graphs. Therefore, the mean effect size
was considered significant when its 95% CI did not overlap with zero. Statistical analyses
were performed in the software R (https://r-project.org), using the meta (Schwarzer, 2007),
metafor (Viechtbauer, 2010), and ggplot2 (Wickham, 2016) packages.

RESULTS

Metadata

Metadata was obtained from 42 published articles from 13 countries between 1987

and 2018 (Fig. 2A; Table S1). A total of 976 observations (1) were obtained from an
aggregate of 74 trials, where each observation included a co-inoculated treatment (PGPR
+ Bradyrhizobium) and a control treatment (Bradyrhizobium) for the number of nodules
(n=278), nodule biomass (n =228), shoot N content (n=88), and grain yield (n =78).
Among the observations, 53% (n = 525) were obtained in pots and 47% (n =451) under
field conditions (Fig. 2B). Except for grain yield, reported only under field conditions, all
other traits were observed under pot and field conditions. A total of 16 different genera of
PGPR were used as co-inoculants (Fig. 2C).

Heterogeneity on the full dataset was highly significant by the Cochran test
(Q=129822.77, df =975, p < 0.0001). The I statistic also indicated high heterogeneity,
which showed a magnitude of 96.40%. Due to the great heterogeneity of the observations,
the meta-analysis was performed using random-effects models. Likewise, significant
heterogeneity (p < 0.0001) was observed for the six evaluated traits grouped by the
moderator variables, suggesting the use of mixed-effects models, in which we evaluated
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Figure 2 General data information (n = 976) obtained from 42 studies used in the meta-analysis, ac-
cording to (A) location of the experiments, (B) experimental conditions and (C) genera of PGPR used
as co-inoculants.

Full-size & DOLI: 10.7717/peerj.7905/fig-2

the moderator variables as random effect covariates and the observations as fixed effects
(Cooper, Hedges & Valentine, 2009).

General effect of co-inoculation

The co-inoculation of soybean with PGPR showed a positive and significant effect on
the number of nodules (11.40%, 95% CI [7.06 —=15.93%]), nodule biomass (6.47%, 95%
CI [0.59-12.70%]), root biomass (12.84%, 95% CI [3.64-22.85%]), and shoot biomass
(6.53%, 95% CI [3.34-9.82%]) (Fig. 3). However, there was no increase in grain yield and
shoot N content associated with co-inoculation, since their 95% CI overlapped with zero.

Effects of the moderator variables

The effects of the moderator variables on the number of nodules are shown in Fig. 4.
Regarding the experimental conditions, the tests conducted under field and pot conditions
showed significant effects of 8.55% (95% CI [3.09-14.29%]) and 12.84% (95% CI [7.38—
20.12%]), respectively, on the evaluated traits (Fig. 4A). Both effect sizes can be considered
similar, since the 95% CI overlapped considerably. Regarding the PGPR, the genera
Azospirillum, Bacillus, and Pseudomonas showed positive effects for this moderator variable,
increasing the number of nodules in 11.05% (95% CI [1.90-19.48%]), 26.05% (95% CI
[14.71-36.59%] ), and 10.41% (95% CI [3.43—17.41]), respectively (Fig. 4B). In relation to
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Figure 3 Effect sizes (In R) of PGPR co-inoculation on nodule numbers, nodule biomass, root
biomass, shoot biomass, shoot N content and grain yield. The graph reflects the parameter estimates
from the random-effects meta-analysis model conducted for each variable, and the error bars represent
the 95% confidence interval. The values below the effect size of each variable are the percentages of the
PGPR effect (In R transformed back to the original values).

Full-size Gl DOI: 10.7717/peerj.7905/fig-3

PGPR, only the genus Bacillus presented significant effects, leading to average increments of
33.12% (95% CI [22.27-44.93%]) (Fig. 4C). In contrast, in the pot experiments, the genera
Azospirillum, Bacillus, and Pseudomonas presented significant effects of 26.77% (95% CI
[8.26-48.44]), 22.09% (95% CI [6.67—39.72%)]), and 9.81% (95% CI [2.13-26.30%)]) on
the number of nodules, respectively (Fig. 4D).

As shown in Fig. 5A, only the experiments conducted in pots showed significant effects
on nodule biomass, with an average increase of 9.50% (95% CI [1.40-18.40%]). As for
PGPR, the genera Azospirillum and Pseudomonas presented positive effects on this trait,
showing increases of 14.65% (95% CI [6.76-23.13%)]) and 17.34% (95% CI [7.17-29.49]),
respectively (Fig. 5B). Although no significant effect of co-inoculation on nodule biomass
was observed in the experiments conducted under field conditions, the partitioning of this
effect in relation to the PGPR genera indicated a positive and significant effect of the genus
Azospirillum, increasing the value of the trait in 10.69% (95% CI [3.70-18.16]) (Fig. 5C).
In contrast, different PGPR in the pot studies revealed that only the genus Pseudomonas
showed significant improvements in nodule biomass, presenting an increase of 16.80%
(95% CI [6.58-27.90]) (Fig. 5D). On the other hand, a reduction of —18.32% in the
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Figure 4 Effect sizes (In R) of PGPR co-inoculation on number of nodules grouped by the modera-
tor variables: (A) experimental conditions; (B) genera of PGPR; (C) genera of PGPR under field condi-
tions; and (D) genera of PGPR under pot conditions. The graph reflects the parameter estimates from
the random-effects meta-analysis model conducted for each variable, and the error bars represent the 95%
confidence interval. The values below the effect size of each variable are the percentages of the PGPR effect
(In R transformed back to the original values).

Full-size Gal DOI: 10.7717/peerj.7905/fig-4

average nodule biomass (95% CI [—32.08-1.74]) was observed by co-inoculation of other
PGPR genera (Actinomadura, Aeromonas, Bacillus, Enterobacter, Herbaspirillum, Nocardia,
Nonomuraea, Pseudonocardia, Rhizobium, and Streptomyces).

The effects of the moderator variables on root biomass are presented in Fig. 6. For
the experimental conditions, only the experiments conducted in pots showed significant
values, with an increase of 15.79% (95% CI [4.33-28.49%]) in root biomass (Fig. 6A).
Regarding PGPR, the genus Pseudomonas was the only one with a positive effect on this
trait, presenting an increment of 28.89% (95% CI [10.93-49.77%]) (Fig. 6B). Furthermore,
according to the results, only the genus Pseudomonas resulted in a significantly increased
root biomass (28.96%) (95% CI [10.68-50.25%]) (Fig. 6C).
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Figure 5 Effect sizes (In R) of PGPR co-inoculation on nodule biomass grouped by the moderator
variables: (A) experimental conditions; (B) genera of PGPR; (C) genera of PGPR under field condi-
tions; and (D) genera of PGPR under pot conditions. The graph reflects the parameter estimates from
the random-effects meta-analysis model and the error bars represents the 95% confidence interval. The
values below the effect size of each variable are the percentages of the PGPR effect (In R transformed back
to the original values).

Full-size Gl DOL: 10.7717/peer;j.7905/fig-5

Figure 7 shows the effects of the moderator variables on the shoot biomass. When the
experimental conditions were analyzed, it was possible to verify that the trials carried
out under field and pot conditions presented significant values of 5.44% (95% CI [3.14—
7.80%]) and 8.27% (95% CI [3.06—13.76%]), respectively (Fig. 7A). Both effect sizes can
be considered similar, since the IC overlapped considerably. For this moderate variable,
the genera Azospirillum, Bacillus, and others (Actinomadura, Aeromonas, Enterobacter,
Herbaspirillum, Methylobacterium, Nocardia, Nonomurae, Pseudocardia, Rhizobium,
Stenotrophomonas, and Streptomyces) were the only ones that presented positive effects on
shoot biomass, leading to increases of 6.39% (95% CI [3.12-9.76%]), 4.92% (95% CI [1.82—
8.12%]), and 31.46% (95% CI [22.07—41.58]), respectively (Fig. 7B). The partitioning of
PGPR genera under field conditions indicated that co-inoculation with bacteria of the genus
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Figure 6 Effect sizes (In R) of PGPR co-inoculation on root biomass grouped by the moderator vari-
ables: (A) experimental conditions; (B) genera of PGPR; and (C) genera of PGPR under pot conditions.
The graph reflects the estimates of the effects of the parameter estimates from the random-effects meta-
analysis model and the error bars represent the 95% confidence interval. The values below the effect size of
each variable are the percentages of the PGPR effect (In R transformed back to the original values).
Full-size & DOTI: 10.7717/peerj.7905/fig-6

Azospirillum increased plant biomass in 5.42% (95% CI [2.95-7.95%]) (Fig. 7C). In the pot
trials, an extra 28.39% (95% CI [17.50—40.27%]) in the average shoot biomass (Fig. 7D) was
promoted by the grouped genera (Actinomadura, Aerobonas, Enterobacter, Herbaspirillum,
Methylobacterium, Nocardia, Nonomurae, Pseudocardia, Rhizobium, Stenotrophomonas,
and Streptomyces).

For the traits shoot N content and grain yield, none of the differences were
statistically significant, since the 95% CI of the moderator variables overlapped with zero
(Figs. 8 and 9).

DISCUSSION

The soybean co-inoculation technology, in which traditional inoculation with selected
strains of Bradyrhizobium is enhanced by the addition of bacteria considered plant growth
promotors, has shown prominent results due to the complementary effects that these
additional microorganisms promote. Whilst Bradyrhizobium acts as a microsymbiont,
colonizing the plant root system and inducing the formation of nodules, PGPR increase
root volume and number, thus enhancing the action of Bradyrhizobium in the supply
of N biologically fixed to the plant, thereby potentially increasing grain yield (Hungria,
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Nogueira ¢» Araujo, 2013; Hungria, Nogueira & Araujo, 2015). However, the literature lacks
a quantitative synthesis of the real contribution of the co-inoculation technology to the
soybean crop. Therefore, the results obtained in the present meta-analysis have great
relevance for our understanding of the responses to the co-inoculation of symbiotic and

associative bacteria in soybean cultivation, with implications for the commercialization of
PGPR-based mixed inoculants.
Co-inoculation of soybean with PGPR provides increments in traits of great importance

for obtaining high grain yields, such as number of nodules as well as nodule, root, and

shoot biomass. Previous studies have demonstrated the existence of positive correlations
between these traits and grain yield, although the interaction effects of genotype-genotype
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(macrosymbiont-microsymbiont) and genotype-environment are highlighted (Hwang et
al., 2014; Cui et al., 2016; Thilakarathna ¢ Raizada, 2017).

Meta-analysis studies quantifying the effects of PGPR on promoting plant-growth in
different agricultural crops have been reported previously. Veresoglou ¢ Menexes (2010)
observed a significant increase of 23.81% in shoot biomass of wheat (Triticum aestivum L.)
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when inoculated with Azospirillum spp. Corroborating results were found by Rubin, Van
Groenigen & Hungate (2017), who reported higher shoot and root biomass production (28
and 35%, respectively) induced by PGPR in a range of plant species. Furthermore, verifying
the influence of inoculation with Azospirillum spp. in maize, interesting results were found
by Zeffa et al. (2018), where the inoculated treatment out-yielded the control by 651 kg
ha™!. In general, it is believed that the production of phytohormones by PGPR is one of the
main mechanisms of action on the development of the host plant, whose effects are more
prominent on the root system (Olanrewaju, Glick ¢ Babalola, 2017; Puente et al., 2018).
Interestingly, the symbiotic relationship between rhizobia and legumes is also mediated
by bacterial phytohormones (Stacey et al., 1995; Iimada et al., 2017). In this context, auxins
produced by PGPR are believed to increase the number of root hairs, leading to the
formation of rhizobia-soybean interaction sites (Schinidt, Messmer ¢ Wilbois, 2015).

Puente et al. (2018) examined the effect of IAA on the co-inoculation response of soybean
with Bradyrhizobium and A. brasilense and demonstrated that the increase in root system
growth, which improves the soybean-Bradyrhizobium interaction, is a result of the action
of phytohormones. Moreover, the authors co-inoculated soybean with A. brasilense Az39
(ipdC+) and with its respective mutant deficient in IAA biosynthesis (ipdC-). The authors
observed that co-inoculation with A. brasilense Az39 promoted a greater efficiency in the
Bradyrhizobium-soybean symbiosis when compared to the treatment of co-inoculation
with the mutant (Az39 ipdC-) or the application of synthetic IAA and concluded that
both the presence of Azospirillum and IAA biosynthesis by these bacteria are responsible
for the positive effects of soybean co-inoculation with Bradyrhizobium and PGPR. Several
other studies have linked phytohormone production to the successful interaction between
rhizobia and legumes (Fukuhara et al., 1994; Srinivasan, Holl & Petersen, 1996; Vicario et
al., 2015).

Although the correlation between nodulation parameters in soybean (nodule number
and nodule biomass) is already widely described, the data assembled by the present meta-
analysis indicated no significant increase in grain yield and shoot N content as a result of
soybean co-inoculation compared to conventional inoculation (only Bradyrhizobium). It
is important to emphasize that the meta-analysis for grain yield considered only data from
field studies, in which the variables are difficult to control, such as the presence of native
strains competing with the inoculant for nodulation. Furthermore, soybean responses
to co-inoculation may vary according to plant genotype, bacterial strain, environmental
conditions, as well as the quantity and quality of PGPR cells used as inoculants (Schmidt,
Messmer ¢ Wilbois, 2015; Pannecoucque et al., 2018; Chibeba et al., 2018). These variations
in responses to co-inoculation were evident in the studies evaluated, which can be observed
in the CI for different PGPR strains, in all the traits described.

The results of this meta-analysis point to a lack of a positive and significant contribution
of co-inoculation to soybean grain yield. Nevertheless, indirect evidence indicates that the
identification of inoculant strains that cause complementary effects on plant development
is a crucial step for the development of more efficient soybean inoculants. Moreover, based
on the analysis of the data gathered, it can be concluded that the improvement of soybean
tolerance to abiotic stresses (such as drought and high temperatures) can be achieved by
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co-inoculation, since significant increases have been demonstrated for plant biomass and
nodule number and biomass when this technique was applied.

In general, the results obtained in the present meta-analysis indicate the need for more
experimental data from field experiments to produce more robust analyses to assess the
real contribution of the co-inoculation technology for soybean cultivation. Among the
traits that did not present statistical significance, shoot N content and grain yield were the
ones with the lowest numbers of observations considered in the analysis. This situation
is reinforced by the fact that co-inoculation of soybean with PGPR is more effective for
experiments in pots compared to experiments conducted in the field. In addition to
greater environmental control, the reader should bear in mind that experiments in pots
present a less diverse native bacterial community compared to native soils, which means a
greater competition between inoculant organisms and soil bacterial communities in field
experiments (Cakmakgi et al., 2006).

CONCLUSIONS

Our results demonstrated that the co-inoculation of soybean with Bradyrhizobium and
other PGPR can substantially increase nodule number (11.40%), nodule biomass (6.47%),
root biomass (12.84%), and shoot biomass (6.53%) in soybean. On the other hand, no
significant differences were observed for shoot N content and grain yield. The bacterial
genera Azospirillum, Bacillus, and Pseudomonas were more effective when compared to the
genus Serratia. In general, co-inoculation results were more pronounced in experiments
conducted in pots than in the field. The co-inoculation technology can be considered an
economically viable and environmentally sustainable strategy for soybean cultivation.
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