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ABSTRACT
Background:Water storage is a significant physiological index of vegetation growth.
However, information on water storage at the individual tree level and its
relationship to climatic conditions and productivity is scarce.
Methods: We performed a comparative analysis of water storage using field
measurements acquired three age classes of Chinese fir (Cunninghamia lanceolata)
and Korean larch (Larix olgensis). The distributions of water storage, water content
ratio and dry mass were presented, and regression analyses were used to confirm the
relationships of water storage and water content ratio to dry mass components,
respectively.
Results: Our results indicated that water was mostly concentrated in the stem xylem,
which aligned well with the distribution of dry mass in both conifer species. However,
the water storage of the stem xylem was always higher in Chinese fir than in
Korean larch. The average water content ratio of both conifer species decreased with
age, but that of Chinese fir was always higher than that of Korean larch. There was a
significant difference in the water storage proportion in the components of Chinese
fir (P < 0.001) and Korean larch (P < 0.001). The effects of age class on the water
storage of Chinese fir (P = 0.72) and Korean larch (P = 0.077) were not significant.
Interestingly, significant positive linear correlations were found between fine root
water and leaf water and mass in Chinese fir (P < 0.001, R2 ≥ 0.57) and Korean larch
(P < 0.001, R2 ≥ 0.74). The slopes showing that the linear relationship between tree
size and water content ratio of stem xylem were always steeper than that of other
components for the two conifers.
Conclusion: Our study indicates the similar water related characteristics and their
close relations to biomass accumulation and growth in both fast growing species at
contrasting climates, illustrating the same coherent strategies of fast growing conifers
in water utilization.

Subjects Plant Science, Forestry
Keywords Water content ratio, Dry mass, Regression analyse, Chinese fir, Korean larch

INTRODUCTION
Plant water storage plays a crucial role in physiological processes and biomass
accumulation (Lisar et al., 2012;Hoeber et al., 2014). Plants in different environments have
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different biophysiological responses and water use strategies to balance the needs of
survival and growth (Von Allmen, Sperry & Bush, 2015;Meinzer, 2016; Bongers et al., 2017;
Jia et al., 2017; Zhu et al., 2017; Conte et al., 2018). In arid environments, plants lower their
relative water storage, physiological and biochemical processes, and sacrifice growth for
survival (Bota, Medrano & Flexas, 2004; Flexas, Escalona &Medrano, 2010;Medrano et al.,
2015; Mendiguren et al., 2015; Moshelion et al., 2015; Šímová, Rueda & Hawkins, 2017).
In order to survive, plants modify their morphological features to reduce water loss
(Paz, Pineda-García & Pinzón-Pérez, 2015; Venegas-González et al., 2015; Longuetaud
et al., 2016). Different plant species also have different water use strategies when adapting
to environmental conditions (David et al., 2007; Hernández et al., 2010; Liu et al., 2018;
Tang et al., 2018; Werden et al., 2018).

The space-time change in soil water storage is one environmental factor that has been
thoroughly studied (Hu et al., 2008; Xu et al., 2017a, 2017b; Zhao et al., 2017). Although
the water storage of vegetation also plays an important ecohydrological role (Fan et al.,
2012; Hoeber et al., 2014), it has not received sufficient attention, partly because its study
involves destructive methods. Plant water storage and its dynamics are different based on
soil water availability, tree species, tree size, wood properties, drought tolerance, and
hydraulic strategy (Oliva Carrasco et al., 2014; Longuetaud et al., 2016; Matheny et al.,
2016). Most other studies have focused on water storage quantities, measurement method,
component connection, and species-specific water storage characteristics (Clevers,
Kooistra & Schaepman, 2010; Longuetaud et al., 2017; Matheny et al., 2016; Paz-Kagan &
Asner, 2017; Saito et al., 2016). Researchers have reported that trunk storage appears
to provide a buffer to water demands during transpiration (Matheny et al., 2016).
A recent study also indicated that trunk water storage was strongly coordinated with
ecophysiological traits such as growth rate (Oliva Carrasco et al., 2014). However, the
volume of stored water was shown to vary with tree size and species-specific hydraulic
properties (wood density, drought tolerance, and stomatal hydraulic strategy) (Matheny
et al., 2016). A better understanding of the relationship between water storage and biomass
components, which would increase our ability to predict how water storage interacts
with biomass productivity, is required, especially for fast growing conifers. To our best
knowledge, no study has been conducted to outline the relationships between water
storage and biomass components and to explore the coherent water utilization strategies in
Chinese fir (Cunninghamia lanceolata) and Korean larch (Larix olgensis).

There were many studies on canopy water storage (Clevers, Kooistra & Schaepman,
2010; Paz-Kagan & Asner, 2017) and stem water storage (Wullschleger, Hanson & Todd,
1996; Saito et al., 2016; Longuetaud et al., 2017). However, reported data were often
obtained remotely (Saatchi & Moghaddam, 2000; Zhou et al., 2018b), and there has been a
lack of field research in component water traits and their interaction with biomass
accumulation, growth, and productivity. Additionally, most of the previous studies
focused on different tree species in the same climatic environment (Hoeber et al., 2014;
Longuetaud et al., 2016, 2017). Different species in different ecosystems might have similar
hydraulic mechanisms (Domec et al., 2010; Yu & D’Odorico, 2015). Because of the strong
relationship between water storage and plant physiological processes (Guada et al., 2018),
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we hypothesized that the two conifers growing in contrasting climates would have similar
water storage distribution characteristics, due to their similar growth habits, and such
characteristics are closely related to growth and therefore biomass accumulation. Our
study focused on Chinese fir and Korean larch, which are two conifers adapted to warm
and moist, and cold and dry climates in China, respectively. We performed comparative
analyses of water content characteristics of these two conifers and explored their
relationships to biomass components at tree level with stand development.

MATERIALS AND METHODS
Site description
The study was carried out at the Jiangle state-owned forest farm (JF) in Fujian Province,
Southeast China, and the Dongzhelenghe forest farm in Heilongjiang Province
(DF, latitude 46�31′−46�49′N, longitude 128�55′−129�15′E), Northeast China (Fig. 1).
Jiangle County (latitude 26�26′−27�04′N, longitude 117�05′−117�40′E) is representative of
Southern China forest regions, and its forest coverage is 85.2%. The elevation of the
study site is approximately 200–500 m above mean sea level. The region is situated in
a typical humid tropical monsoon climate, with an average annual precipitation of
1,910 mm and an annual mean temperature of 18.2 �C. Frost rarely occurs in this area. The
topography of the region is low mountains and hilly landforms. The soil is clay loamy
and red, developed from shale and slate parent rocks. The dominant tree species is
Chinese fir, but Masson pine (Pinus massoniana), Schima superba (Schima superba), and
bamboo species (Bambusoideae) are also found (Guangyi, Yujun & Saeed, 2017; Liping,
Yujun & Saeed, 2018; Saeed et al., 2019). DF is located in the southern foothills of the
Xiaoxinganling Mountains, Yichun city, in the Northeast China forest region. The forest

Figure 1 Study sites in Southeast and Northeast China. Each black point indicates the location of the
study sites. Dongzhelenghe forest farm is the study site for 12 Korean larch, and Jiangle state-owned
forest farm is for 12 Chinese fir. The black lines indicate the national or province boundary. Dongz-
helenghe forest farm is in Heilongjiang Province. Jiangle state-owned forest farm is in the Fujian
Province. Full-size DOI: 10.7717/peerj.7901/fig-1
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farm is mainly composed of fast-growing, high-yield forests of Korean larch. The
topography is low hills with an elevation of 260–410 m. The area is situated in a typical
northern temperate continental climate, with an annual mean temperature of 1.0 �C,
ranging from an average of −22.4 �C during the coolest month (January) to 21.0 �C during
the warmest month (July). The mean annual precipitation is 750–820 mm, occurring
mostly between June and August. The frost-free period is 110–125 days. The soil is dark
brown, a typical forest soil in Northeast China, with a thickness of 30–60 cm and a little
gravel (Ma et al., 2014; Fu et al., 2016).

Sampling and processing
A total of 24 trees (representing young, medium, and old ages) for both sites were
destructively sampled from 12 permanent sample plots of the Chinese fir plantation in JF
during July 2017, and 12 permanent sample plots of the Korean larch plantation in DF
during July 2018. The plots were different ages. The 2 years were normal for the two
sample sites. Meteorological data from the National Meteorological Information Centre
(http://data.cma.cn/) showed that the July temperature and precipitation were 30.2 �C
and 296.3 mm, respectively, at JF in 2017, and 23.5 �C and 161.9 mm at DF in 2018. The
plot size was 20 × 30 m. The stand characteristics of the two conifers are presented in
Table 1. Tree age was checked against diameter at breast height (DBH, 1.3 m) and the
management records of the forest farms. According to the historical records, the stands at
the two study sites were both second-generation plantations.

Sampled trees were measured for diameter and total height after felling with a mechanical
chain saw. Stems, live branches, dead branches, and roots were separated and recorded for
fresh weights immediately in the field using an electronic scale (to either nearest 0.1 kg
or 10 mg). All live and dead branches were measured for basal diameter, branch length,
extent width, branch angle, and depth into crown. Stems were cut into one m sections and
two to three branches (live and dead) of average size in each section were bagged in plastic
bags for determination of water storage and biomass. The tree top (top section < 1 m) was
treated as a branch. Stem discs of four cm in thickness were taken at the small end of
each section and determined for fresh weight with and without bark. Bark samples of
approximately 50 g for each disc were randomly taken and placed into a paper bag for
determination of water storage and biomass. In the lab, leaves were removed from sample
branches and recorded for fresh weight. About 50 g samples were taken separately for leaves
and bare branch for determination of water storage and biomass of each sample branch.

Table 1 Stand characteristics of the two study species.

Species Age class Average DBH (cm) Average H (m) Stand density (n · hm−2) Basal area (m2 · hm−2)

Chinese fir Young 6.6 7.0 2,800.2 4.8

Medium 16.6 15.8 1,503.1 23.2

Old 24.7 22.4 933.3 36.4

Korean larch Young 5.3 5.4 2,011.8 5.2

Medium 15.0 15.3 1,255.7 20.1

Old 22.9 19.7 780.8 31.5
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Whole roots were carefully excavated with shovels within the projected area of tree
crown and brought back to the lab to determine fresh and oven-dried weight (Wang et al.,
2015). Stump samples were taken by saw (approximately 50 g each stump) and roots were
sampled by soil depth of 0–20, 20–40, 40–60, and 60–80 cm. Within each soil layer, roots
were separated into large (>20 mm), coarse (5–20 mm), medium (2–5 mm), and fine
(<2 mm) classes. The roots of each root class in each soil layer were recorded for fresh
weight and sampled (approximately 50 g each sample) for fresh weight and dry mass.

The fresh samples of each component were oven-dried at 105 �C for 48 h to a constant
weight before dry mass was recorded with an electronic scale (Longuetaud et al., 2017).

Calculation of water storage, water content ratio and dry mass
The water content ratio of each sample was calculated as a ratio of water weight (difference
between fresh weight and dry mass) to fresh weight as follows:

WCRsample ¼ 1�DMsample

FWsample
(1)

Where WCRsample is sample water content ratio, DMsample is sample dry mass, and
FWsample is sample fresh weight.

The water storage and dry mass of sample stem were calculated using Eqs. (2) and (3).

WSleaf or bare branch ¼
Xm
j¼1

��Xn
i¼1

FWleaf or bare branch=n

�
� N �WCRleaf or bare branch

�
(2)

DMleaf or bare branch¼
Xm
j¼1

��Xn
i¼1

FWleaf or bare branch=n

�
�N�

�
1�WCRleaf or bare branch

��
(3)

where WSleaf or bare branch is leaf (or bare branch) water storage of sample stem,
FWleaf or bare branch is leaf (or bare branch) fresh weight of the nth sample branch, n is
the number of sample branches within each stem section, N is the number of total
branches within each stem section, WCRleaf or bare branch is the water content ratio of the
leaf (or bare branch) samples in each stem section,m is the number of stem section of each
sample tree, and DMleaf or bare branch is leaf (or bare branch) dry mass of sample tree.

Water storage and dry mass were calculated separately for roots and stumps with
Eqs. (4) and (5), and for fine roots with Eqs. (6) and (7):

WSroot¼
X4
j¼1

X4
i¼1

ðFWðdi; layer jÞ �WSðdi; layer jÞ þ FWstump �WCRstumpÞ (4)

DMroot¼
X4
j¼1

X4
i¼1

ðFWðdi; layer jÞ � ð1�WCRðdi; layer jÞÞÞþ FWstump � ð1�WCRstumpÞ (5)
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where WSroot is the root water storage of the sample tree, FW(di, Layer j) is the root fresh
weight by diameter class (d1 = 0–2 mm, d2 = 2–5 mm, d3 = 5–20 mm, d4 > 20 mm)
and soil layer (j1 = 0–20 cm, j2 = 20–40 cm, j3 = 40–60 cm, j4 = 60–80 cm), WCR(di, Layer j)

is the root water content ratio by diameter class and soil layer, FWstump is the stump fresh
weight, WCRstump is the stump water content ratio, and DMroot is the root dry mass of
sample tree.

WSfine root ¼
X4
j¼1

ðFWðdi; layer jÞ�WCRðdi; layer jÞÞ ðdi ¼ 0�2mmÞ (6)

DMfine root¼
X4
j¼1

ðFWðdi; layer jÞ � ð1�WCRðdi; layer jÞÞÞ ðdi ¼ 0�2mmÞ (7)

where WSfine root is the fine root water storage and DMfine root is the fine root dry mass of
the sample tree.

The average stem xylem and bark water content ratios of the sample tree were calculated
from those of various stem sections.

Statistical analysis
The data were log-transformed to ensure that the residuals were normally distributed.
Statistical comparisons of water storage, dry mass proportion, and water content ratio were
conducted using SPSS 20.0 software (a two-way ANOVA test: age class and biomass
component). Tukey’s multiple comparison procedure was used to assess differences
between age classes or biomass components. The differences were considered statistically
significant when P < 0.05. Linear regression analyses were used to analyze the relationship
between water storage (or water content ratio) and dry mass using Origin Pro 2016.
Origin Pro 2016 was also used to display the statistical results.

RESULTS
Water storage distribution
The water storage proportion differed among different biomass components (P < 0.001 for
both Chinese fir and Korean larch), which varied with age class in Korean larch, especially
for leaves and stem xylem (significant biomass component and age class interaction,
P < 0.001). The water storage proportion was the highest in stem xylem (30–70%) and
varied between 10% and 20% for leaves, live branches, stem bark, and roots in both
conifers, but was the lowest in dead branches (<2%) (Table 2). The stem xylem water
proportion of Chinese fir increased with age class, while that of Korean larch reached the
maximum at medium age, although the differences among age classes were not statistically
significant in both species. The variation of water storage proportions with age class
was similar between leaves and live branches, generally decreasing with age in both
conifers. Among the biomass components, the root and stem bark water storage
proportions showed the smallest differences among age classes and between species.
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The dry mass distribution among different organs was similar to that for water storage,
except for the high biomass proportion of young age with the stem bark of Chinese fir.
Statistically, the dry mass proportion differed among different components (P < 0.001 for
Chinese fir and <0.001 for Korean larch) (Table 3), which varied with age class (significant
biomass component and age class interaction, P < 0.05 for Chinese fir and <0.001 for
Korean larch). The largest difference among biomass components was in old age Chinese
fir and medium age Korean larch.

Water content ratio
In both species, tissue water content ratio significantly differed among biomass
components (P < 0.001 for both Chinese fir and Korean larch) and age classes (P < 0.05
for Chinese fir and P < 0.001 for Korean larch), and the differences among biomass
components in Chinese fir also varied with age class, especially for dead branch and stem
xylem (P < 0.001 for interaction) (Fig. 2). In general, water content ratio was higher in
Chinese fir than in Korean larch and decreased with age in both species. However, water
content ratios were similar among different organs of Chinese fir trees at different ages and
lower in woody organs in Korean larch trees at older ages, with the exception of necromass.
Among different organs, water content ratio was generally highest in stem xylem with
Chinese fir and in leaves with Korean larch, and lowest with dead branches in both species.

Table 2 Water fraction (%) of Chinese fir and Korean larch at different age classes.

Species Age class Leaf Live branch Dead branch Stem bark Stem xylem Root system

Chinese fir Young 16.11 ± 2.75b 9.88 ± 2.70c 0.00 ± 0.00d 6.97 ± 2.94c 53.57 ± 6.13a 13.47 ± 3.44bc

Medium 7.97 ± 1.47b 6.55 ± 1.22b 0.39 ± 0.33c 8.38 ± 0.72b 60.88 ± 7.67a 15.83 ± 4.61b

Old 2.66 ± 0.75cd 5.40 ± 1.08bc 1.13 ± 1.43d 8.64 ± 0.24b 69.08 ± 4.19a 13.08 ± 3.76b

Korean larch Young 19.78 ± 2.60b 16.53 ± 0.70b 0.13 ± 0.11d 9.25 ± 1.21c 34.04 ± 4.26a 20.27 ± 2.83b

Medium 4.44 ± 1.02c 9.41 ± 2.63b 1.26 ± 1.04d 9.24 ± 1.40b 60.38 ± 3.87a 15.28 ± 4.74b

Old 7.89 ± 1.54cd 11.88 ± 1.03c 0.37 ± 0.26e 7.13 ± 1.33d 52.80 ± 5.57a 19.93 ± 4.54b

Notes:
Values are means ± S.D. (standard deviation) (n = 3–5).
Different lowercase letters indicate significant differences in water fraction among different organs of each species at same age. Significance level is at P = 0.05.

Table 3 Dry mass fraction (%) of Chinese fir and Korean larch at different age classes.

Species Age class Leaf Live branch Dead branch Stem bark Stem xylem Root system

Chinese fir Young 20.45 ± 3.82ab 9.50 ± 3.30b 0.00 ± 0.00b 15.49 ± 3.21ab 38.39 ± 6.25a 16.17 ± 3.96ab

Medium 9.43 ± 3.52c 8.36 ± 2.32bc 1.32 ± 0.53c 9.96 ± 1.30b 51.96 ± 5.80a 18.98 ± 4.18ab

Old 2.50 ± 0.44c 5.45 ± 0.90bc 4.10 ± 1.35c 11.50 ± 0.60b 62.82 ± 4.57a 13.63 ± 1.76b

Korean larch Young 15.88 ± 3.68b 20.71 ± 3.99ab 0.78 ± 0.71c 9.58 ± 2.02b 34.50 ± 4.18a 18.55 ± 1.79ab

Medium 2.75 ± 1.09c 8.33 ± 1.52b 4.24 ± 2.08c 8.31 ± 1.29b 60.18 ± 4.73a 16.19 ± 3.57b

Old 4.34 ± 1.17d 11.96 ± 2.10bc 1.66 ± 0.76e 6.66 ± 0.80cd 57.88 ± 5.42a 17.49 ± 3.05b

Notes:
The standard error is S.D. (n = 3–5).
Different lowercase letters indicate significant differences in dry mass fraction among different organs of each species at same age. Significance level is at P = 0.05.
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Figure 2 Water content ratio in different structural components of Chinese fir and Korean larch
trees by different age classes (±S.D.). The horizontal straight line represents the average water con-
tent ratio for Chinese fir (A, C, and E) and Korean larch (B, D, and F). Different lowercase letters indicate
significant differences in water content ratio among different organs of each species at same age. Different
uppercase letters indicate significant differences in water content ratio of same organ among different age
classes of each species. Significance level is at P = 0.05. Full-size DOI: 10.7717/peerj.7901/fig-2
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Relationships between water storage and dry mass
Both leaf and root water storage increased with DBH and H significantly (Fig. 3). Using the
same DBH (or H), Chinese fir showed lower fine root (or leaf) water storage than Korean
larch, although the differences among slopes were not statistically significant in either
species. Similarly, using the same DBH (or H), fine root showed relatively lower water
storage than in leaves for the two conifers. There were differences in the positive linear
correlation between fine root water storage, leaf water storage, and component dry mass
for the two conifers (Fig. 4). With the same component dry mass, Chinese fir showed lower
fine root (or leaf) water storage than Korean larch based on the differences in the linear
regression coefficient. Similarly, with the same component dry mass, fine root showed
relatively lower water storage than leaves for the two conifers.

There were significant positive linear regressions between leaf dry mass and leaf water
storage and between fine root dry mass and fine root water storage in both conifers (Fig. 5).
The linear correlation between fine root dry mass and fine root water storage of Korean
larch was the strongest (P < 0.001, R2 = 0.99), and the linear correlation between leaf dry
mass and leaf water storage of Chinese fir was also strong (P < 0.001, R2 = 0.97).
Interestingly for both conifers, there was also a strong linear correlation between fine root
dry mass and leaf water storage (P < 0.001, R2 = 0.87 and P < 0.001, R2 = 0.78, respectively).
The slope of the relationship between leaf dry mass and fine root water storage of
Chinese fir was relatively higher than that of Korean larch. In contrast, the slope of the
relationship between fine root dry mass and leaf water storage in Chinese fir was relatively
lower than that of Korean larch. The slopes of the leaf dry mass and leaf water storage
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line. Full-size DOI: 10.7717/peerj.7901/fig-3

Zhou et al. (2019), PeerJ, DOI 10.7717/peerj.7901 9/20

http://dx.doi.org/10.7717/peerj.7901/fig-3
http://dx.doi.org/10.7717/peerj.7901
https://peerj.com/


and fine root dry mass and fine root water storage (ratio of dry mass and water storage) of
both conifers ranged from 0.54 to 0.74.

Relationships between water content ratio and dry mass
For most of the components, the tree sizes (DBH, H, and dry mass components) showed
a decreasing trend with the increase of water content ratio component for the two
conifers (Figs. 6 and 7). The linear correlation between tree size and stem xylem water
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content ratio was consistently the strongest for the two conifers. The slopes of the
relationship between tree size and stem xylem water content ratio were consistently steeper
than any other components of the two conifers. The slopes of the relationship between
DBH (or H) and stem xylem water content ratio of Chinese fir were relatively higher than
those of Korean larch. In contrast, the slopes of the relationship between stem xylem dry
mass and stem water content ratio were higher than those of Chinese fir. In general, there
was no significant linear correlation between tree size and water content ratio for many
components of the two conifers.

DISCUSSION
Distributions of water storage and dry mass
Water storage is an important physiological and biochemical index in plants. Our results
demonstrated that the water distribution in the two conifers were similar (Table 2),
indicating that there are similar rules for conifer species with no water stress, regardless of
climate and tree species. The experimental results also showed that the water storage of
Chinese fir and Korean larch was mainly distributed in the stem xylem. This was consistent
with the results of Tian et al.’s (2018) results in temperate forests of African woodland
regions and tropical woodlands in the south-eastern USA. The dry mass of the two conifers
was also mainly distributed in the stem xylem. The water storages of the leaf and root
systems were proportional to their dry mass proportions. Regression analyses showed that
the dry mass and water storage of the leaves and fine roots of the two conifers were
significantly proportional, and the slopes (ratio of dry mass and water storage) were close
to one. The results were consistent with the relative relationship between the proportions
of water storage and dry mass, indicating the reliability of the experimental results. The
results of the stem xylem dry mass were directly proportional to the stem xylem water
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storage (Tables 2 and 3). This was consistent with the results of Becker et al.’s (2012)
research on 23 angiosperm tree species (Alstonia boonei et al.) in East African rain forests,
which found a significant proportional relationship between the specific gravity of
wood and water storage. This may be partly due to the importance of water to plant
physiological and biochemical reactions (Guada et al., 2018). In total, the two typical
coniferous species had similar water storage distribution characteristics, which supported
biomass accumulation (a proxy for productivity) at the individual tree level.

Effects of age class and component on water storage
The statistical results of our study showed that both component and age class had an effect
on the water storage of the two conifers. At the young tree stage, the water storage
proportions of vegetative organs (leaf and root system) were relatively high (Table 2). This
might be due to the nutritional requirements (CO2 and inorganic fertilizers) of the growth
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of the two conifers. A relatively high proportion of water storage was allocated to vegetative
organs, which may be more conducive to nutrient uptake by young trees (Lisar et al.,
2012). With increasing age, the water storage proportion in stem xylem increased relative
to that in the other organs, except in Korean larch in the old tree stage (Table 2). This
might be due to the demand for mechanical support from tree crowns (Hoeber et al., 2014),
which might promote the development of stem xylem. At the same time, the stem xylem
played an important role in storing and transporting plant water (Von Allmen, Sperry &
Bush, 2015; Saito et al., 2016).

Additionally, there were some differences, such as stem xylem and root system, in
component water storage between the two conifers (Table 2). Water content ratios were
similar among different structure components of Chinese fir trees at different ages and
lower in stem xylem in Korean larch trees at older ages, with exception of necromass
(Fig. 2). These differences may indicate the differences in biomass productivity between
the two species (Oliva Carrasco et al., 2014). Specifically, the water status difference in stem
xylem of the two species may indicate that Chinese fir has a relative higher wood
production function than Korean larch. These differences may be due to the contrasting
climates, in which precipitation and temperature during the growing period could
significantly affect the growth, and hence the water requirements, of the trees. The
meteorological data on the sampling sites and periods showed that both the temperature
and precipitation were normal. The temperature and precipitation of JF were both higher
than those of DF. Paz-Kagan & Asner (2017) reported that the canopy water storage
change in Mediterranean-type communities was much more closely related to
environmental factors than to the species composition in the northern portion of
California, USA. The average temperature and precipitation might partly contribute to the
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water storage difference between the two conifers. Moreover, the two conifers belong to
species with different successional status. Species with different successional statuses might
have inherently different water storage distributions, which might partly lead to the
observed difference. It would be best to compare the same species, or species with the same
successional status, living in contrasting climates, but there is no such a species. If trees of
the same types are chosen, the difference in component water storage may be lower than
those of different species. Although different climatic conditions and successional statuses
affect both conifers, the consistently higher stem xylem water storages in both conifers
illustrated their similar water use and storage strategies. Additionally, considering that the
selected two conifers were typical, local, fast-growing coniferous species in two different
climate regions, the results of our study might help to better understand the relationship
between water storage and dry mass component for conifers, regardless of the climatic
conditions and species.

Regression analyses of biomass accumulation and fine root
Fine roots play an important role in forest carbon flux and nutrient and water acquisition.
Leaves are also important physiological organs in plants. However, information on the
relationship between fine root and leaf water storage remains scarce. Regression analyses
have determined the interspecific relationships between leaf and fine root traits in order to
better understand plant strategies of resource acquisition (Murty, McMurtrie & Ryan,
1996; Magnani, Mencuccini & Grace, 2000; Li & Bao, 2016). Our results indicated the
similar water related characteristics and their close relations to biomass accumulation and
growth in both fast growing species at contrasting climates first, illustrating the same
coherent strategies of fast growing conifers in water utilization. Such result was
demonstrated by significant relationships between fine root water and component
biomass, growth and especially leaf mass and water traits, as fine root is the important
organ for water uptake and foliage is the important organ for carbon sequestration.

Our study found that there was a strong positive linear correlation between the dry mass
of the fine root and leaf of Chinese fir and Korean larch. A similar relationship has been
reported for some other forest species (L. gmelinii, Spiraea ussuriensis, Sorbaria
sorbifolia et al.) (Meng et al., 2018; Zhou et al., 2018a). In a previous study, Santantonio
reported a linear relationship between fine root biomass and leaf biomass in several conifer
species (Abies amabilis, Picea sitchensis, Pinus contorta, etc.) (Dan, 1989). Strong linear
relationships between leaf biomass and fine root biomass were also found for Eucalyptus
globulus (O’Grady, Worledge & Battaglia, 2006) and Pinus tabuliformis (Jia, Liu & Li,
2015). Zhou et al. (2018a) also found that there was a significant linear relationship
between tree fine root biomass and leaf biomass for coniferous species. These results
strongly support the hypothesis that fine roots were related to leaf biomass and functional
equilibrium relationships (Brouwer, 1963; Mäkelä & Sievänen, 1987).

Furthermore, our study also found a significant linear relationship between fine root
dry mass and leaf water storage for both Chinese fir and Korean larch. This is partly
because the root system is the main organ for plant water absorption, the leaf is the main
organ of photosynthesis, and the fine roots provide water for photosynthesizing leaves
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(Zhou et al., 2018a). Therefore, the fine root biomass and leaf water storage maintain a
dynamic balance. The relationship between leaf water storage and fine root dry mass is not
often calculated, making comparisons with the results of other studies difficult. Our results
may also support the functional equilibrium relationships between fine roots and leaves.

Diameter at breast height and H are proxies for biomass. Relationships between tree fine
roots and tree attributes are important for the establishment of tree-level fine root biomass
models (Zhou et al., 2018a). The results highlighted that the linear relationships between
fine root water storage and DBH and H were stronger for Chinese fir, while the linear
relationships between leaf water storage and DBH and H were stronger for Korean larch.
This indicates that the fine root water storage of Chinese fir is closely related to biomass,
while the leaf water storage in Korean larch is closely related to biomass. The results were
consistent with Fig. 4. Additionally, according to the scatter plot (Figs. 3E–3H), other types
of relationships may be more appropriate for Korean larch. We can deduct similar trend of
biomass and water content relationships as those of growth-water for Chinese fir and
Korean larch, respectively, evidenced by different R2s (Figs. 3–5), indicating the
importance of fine root water to Chinese fir and leaf water to Korean larch, respectively.

CONCLUSIONS
The results of this study indicate the similar water related characteristics and their close
relations to biomass accumulation and growth in both fast growing species at contrasting
climates, illustrating the same coherent strategies of fast growing conifers in water
utilization. The fine root is the main water absorption component for the two conifers and
determined the leaf mass and water traits. The fine root and leaf biomass coordinated with
biomass productivity. For the two conifers, water storage was basically proportional to
biomass component with no water stress, regardless of different climatic conditions and
tree species. The higher water storage in its stem xylem may support Chinese fir to have a
relatively higher wood production function than Korean larch does.

In future research, the dynamic characteristics of the relationship between water storage
and biomass components caused by environmental factors in diverse forest types should be
further investigated.
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