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ABSTRACT
Background. Mycoplasma hyopneumoniae (Mhp) is the main pathogen causing res-
piratory disease in the swine industry. Mhp infection rates differ across pig breeds,
with Chinese native pig breeds that exhibit high fecundity (e.g., Jiangquhai, Meishan,
Erhualian) more sensitive than Duroc, Landrace, and other imported pig breeds.
However, the genetic basis of the immune response to Mhp infection in different pig
breeds is largely unknown.
Aims. The aims of this study were to determine the relative Mhp susceptibility of the
Chinese native Jiangquhai breed compared to the Duroc breed, and identify molecular
mechanisms of differentially expressed genes (DEGs) using an RNA-sequencing (RNA-
seq) approach.
Methods. Jiangquhai and Duroc pigs were artificially infected with the sameMhp dose.
The entire experiment lasted 28 days. Daily weight gain, Mhp-specific antibody levels,
and lung lesion scores were measured to evaluate the Mhp infection susceptibility of
different breeds. Experimental pigs were slaughtered on the 28th day. Lung tissues were
collected for total RNA extraction. RNA-seq was performed to identify DEGs, which
were enriched by gene ontology (GO) and the Kyoto Encyclopedia annotation of Genes
and Genomes (KEGG) databases. DEGs were validated with real-time quantitative
polymerase chain reaction (RT-qPCR).
Results. Infection with the same Mhp dose produced a more serious condition in
Jiangquhai pigs than in Duroc pigs. Jiangquhai pigs showed poorer growth, higher
Mhp antibody levels, and more serious lung lesions compared with Duroc pigs. RNA-
seq identified 2,250 and 3,526 DEGs in lung tissue from Jiangquhai and Duroc pigs,
respectively. The two breeds shared 1,669 DEGs, which were involved in immune-
relevant pathways including cytokine-cytokine receptor interaction, PI3K-Akt signaling
pathway, and chemokine signaling pathway. Compared to Jiangquhai pigs, more
chemokines, interferon response factors, and interleukins were specifically activated
in Duroc pigs; CXCL10, CCL4, IL6 and IFNG genes were significantly up-regulated,
which may help Duroc pigs enhance immune response and reduce Mhp susceptibility.
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Conclusion. This study demonstrated differential immune-related DEGs in lung tissue
from the two breeds, and revealed an important role of genetics in the immune response
to Mhp infection. The biological functions of these important DEGs should be further
confirmed and maybe applied as molecular markers that improve pig health.

Subjects Biotechnology, Genomics, Veterinary Medicine
Keywords RNA-seq, Jiangquhai pig, Duroc pig, Mycoplasma hyopneumoniae, Candidate gene

INTRODUCTION
Mycoplasma hyopneumoniae (Mhp) exists in every country where pigs are raised and is the
main pathogen leading to respiratory disease in the swine industry (Maes et al., 2008; Stark,
Nicolet & Frey, 1998). The pathogen resides in the respiratory tract, and its secretions can
be found in infected pigs for a long time (Maes et al., 1996). The main clinical symptoms
of infected pigs are dry cough, as well as dramatically reduced porcine growth and feed
conversion rates, which cause great losses to the pig industry (Maes et al., 1996; Sarradell
et al., 2003).

Production practices on some Chinese pig farms revealed that Chinese local breeds are
more sensitive toMhp than imported breeds such as Duroc and Landrace. TheMeishan and
Erhualian, which are characterized by high fecundity, show extremely high susceptibility to
Mhp infection (Fang et al., 2015;Maingi et al., 2014). This suggests that genetic components
contribute to breed susceptibility or resistance to Mhp infection. Recently, it was reported
that quantitative trait loci (QTLs) are associated with respiratory disease lesions, and five
QTL were detected in Landrace pigs (Okamura et al., 2012). In Chinese Erhualian pigs,
QTLs affecting respiratory disease were identified by a genome-wide association study;
CXCL6, CXCL8, KIT, and CTBP2were highlighted as candidates that might associated with
resistance or susceptibility to swine enzootic pneumonia-like respiratory disease (Huang
et al., 2016). However, the genetic basis for the immune response to Mhp infection among
different pig breeds remains largely unknown.

Jiangquhai is a Chinese pig breed distributed in the central Jiangsu Province. Similar
to the Meishan and Erhualian breeds, Jiangquhai pigs exhibit sensitivity to Mhp infection
(Maingi et al., 2014). Vaccines and antibiotics are used to control the occurrence of
mycoplasma pneumonia of swine (MPS); however, these methods are not sufficient. It is
therefore necessary to study the molecular mechanism of pathogenesis. This knowledge
can be applied to carry out disease resistance breeding. In this study, we investigated
the immune response of Jiangquhai and Duroc pigs to artificial Mhp infection using an
RNA-sequencing (RNA-seq) approach. The goals were to identify genetic components that
contribute to Mhp susceptibility or resistance and lay a foundation for genetic breeding
that improve pig health.
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MATERIALS & METHODS
Experimental design and sample collection
Twenty healthy 50-day-old Jiangquhai pigs were selected from the Jiangquhai Pig Breed
Conservation Farm (Taizhou, China), and twenty healthy 50-day-old Duroc pigs were
selected from the Xingtai Agriculture and Animal Husbandry Technology Development
Company (Yangzhou, China). All pigs were free of all major porcine diseases and confirmed
to be negative forMhp, PRRSV, pseudorabies virus, and classical swine fever virus infection
by PCR or reverse-transcription (RT)-PCR. Jiangquhai and Duroc pigs were randomly
assigned to the control or infected group during the experiment and raised separately in
isolation. Ten Jiangquhai and ten Duroc pigs were inoculated with 5 mL viral suspension
of a virulent strain of Mhp (106 colour changing units [CCU]) (Xiong et al., 2014), which
was provided by the Veterinary Medicine Institute of Jiangsu Academy of Agricultural
Sciences (Nanjing, China). The remaining ten Jiangquhai and ten Duroc pigs were treated
with an equivalent volume of aseptic physiological saline, which served as a negative
control group. Four groups (i.e., Jiangquhai infection, Jiangquhai control, Duroc infection,
Duroc control) were raised in isolation rooms to prevent cross-infection. Approval for the
study was provided by the ethics committee of Yangzhou University (SYXK(Su) IACUC
2016-0131).

On day 28, all pigs were euthanized by stunning, and lung tissues were collected and
stored at −70 ◦C. At this time, pulmonary MPS lesions were confirmed and assessed
with the scoring system (Steinmann, Blaha & Meemken, 2014; Lee et al., 2011). From the
beginning to the end (day 28) of the study, all experimental pigs were weighed prior to
feeding in the morning to compare weight gain between groups. To assess the immune
response, blood samples were collected on days 0 and 28 via jugular venipuncture into
normal serum tubes without anticoagulant. The serum was separated by centrifugation
(1,600× g for 10 min at 4 ◦C), divided into aliquots, and stored at −20 ◦C until analysis.
Mhp-specific antibody in peripheral blood was detected.

RNA-seq library preparation and sequencing
Total RNA was extracted from lung tissue of three infected and three control pigs of each
breed (three pigs selected randomly from each group) using TRIzol reagent (Invitrogen,
South San Francisco, CA, USA) following the manufacturer’s protocol. RNA integrity
was evaluated using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). Samples with an RNA Integrity Number (RIN) >7 were subjected to subsequent
analysis. The libraries were constructed using the TruSeq Stranded mRNA LTSample Prep
kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. Then,
these libraries were sequenced on the Illumina Hiseq 2500 platform (Shanghai OE Biotech
Co., Ltd, Shanghai, China), and 125-bp paired-end reads were generated.

Quality control and mapping
Raw data (raw reads) were processed using the NGS QC Toolkit (Ravi, Mukesh & Liu,
2012). Low-quality reads and those containing poly-N were removed to ensure high-
quality mapping. Then the clean reads were mapped using the Sus scrofa genome 11.1
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as a reference with bowtie2 (Langmead & Salzberg, 2012) or Tophat software packages
(http://tophat.cbcb.umd.edu/) (Kim et al., 2013).

RNA-seq data analysis
The FPKM (Fragments Per Kilobase of transcript per Million fragments mapped) value
of each gene was calculated using cufflinks (Cole et al., 2012), and the read counts of each
gene were obtained by HTSeq-Count (Anders, Pyl & Huber, 2015). Differentially expressed
genes (DEGs) were identified using the DESeq estimateSizeFactors and nbinomTest
functions, corrected p-value of 0.05 and log2 (Fold change) (log2 FC) of 1 were set as the
threshold for significantly differential expression. Hierarchical clustering analysis of DEGs
was performed to inspect sample relations. The DEGs were annotated by GO functional
enrichment and KEGG pathway analysis using the Database for Annotation, Visualization
and Integrated Discovery (DAVID).

RT-qPCR verification
RNA was extracted from lung tissue of six infected and six control pigs of each breed using
the TRIzol reagent following the manufacturer’s protocol. First-strand cDNA synthesis
was performed using 5 µg of RNA and the Superscript II cDNA amplification system
(Invitrogen, South San Francisco, CA, USA) according to the manufacturer’s protocol.
Quantitative PCR was performed using an ABI 7500 real-time PCR system (Applied
Biosystems, Foster City, CA, USA) and Power SYBR Green PCR Master Mix (Invitrogen,
South San Francisco, CA, USA). The gene for glyceraldehyde 3-phosphate dehydrogenase
(GAPDH ) was included as an endogenous control, and the specific primers used in the
RT-qPCR assays are listed in Table S1. Relative expression of target genes was determined
by the comparative cycle threshold (CT) method (Livak & Schmittgen, 2001) and the 1CT

value was calculated by subtracting the target CT of each sample from itsGAPDH CT value.

Statistical analysis
Weight gain and antibody level data are presented as mean ± standard error (SE).
Comparison of variables was performed using one-way analysis of variance with SPSS13.0
software (SPSS Inc., Chicago, IL, USA).

RESULTS
Effect of Mhp infection on weight gain, antibody production, and lung
lesions in Jiangquhai and Duroc pigs
The average daily weight gain (ADG) of the Jiangquhai infected pigs was highly significantly
lower than the Jiangquhai control pigs (p < 0.01), while the ADG of Duroc infected pigs
was not significantly different from Duroc control pigs (p > 0.05) (Table 1). These results
demonstrate that Mhp infection had a greater impact on the growth rate of Jiangquhai pigs
compared to Duroc pigs.

On day 28, the level of Mhp-specific antibody (reported as the sample mean/positive
control mean (s/p) value) in the peripheral blood of Jiangquhai infected pigs reached at
0.85 ± 0.20, which was significantly higher than that of Duroc infected pigs (0.48 ± 0.19)
(p < 0.01) (Table 1). Mhp-specific antibody was not detected in control pigs.
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Table 1 Average daily weight gain andMhp-specific antibody levels of experimental pigs.

Groups N Average body weight (kg) ADG (g/d) Antibody levels (s/p)

0d 28d 0d 28d

Jiangquhai infection 10 8.54 ± 0.77 12.26 ± 0.51 132.86 ± 14.56A 0.05 ± 0.03 0.85 ± 0.20A

Jiangquhai control 10 8.46 ± 0.50 15.29 ± 0.76 244.11 ± 21.10B 0.05 ± 0.04 0.08 ± 0.07
Duroc infection 10 10.64 ± 0.83 18.41 ± 0.49 277.50 ± 25.81 0.02 ± 0.01 0.48 ± 0.19B

Duroc control 10 10.53 ± 0.72 18.81 ± 0.58 295.89 ± 18.86 0.02 ± 0.01 0.04 ± 0.01

Notes.
Different letters in the same column indicate significant differences of mean values (A and B) (p< 0.01).

Figure 1 Lung tissue of experimental pigs. (A) Jiangquhai infected pigs, (B) Jiangquhai control pigs, (C)
Duroc infected pigs, (D) Duroc control pigs. Lung pathological tissues are indicated with arrows.

Full-size DOI: 10.7717/peerj.7900/fig-1

Our analysis of lung tissue on day 28 revealed that Jiangquhai infected pigs had more
serious Mhp lung lesions (Fig. 1), a greater difference in Mhp lung lesion scores from
Jiangquhai infected pigs compared to Duroc infected pigs (p < 0.01) (Fig. 2).
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Figure 2 Lung lesion scores. Presence of pulmonary lesions was determined in Jiangquhai infected pigs
and Duroc infected pigs. Different letters indicate significant differences (A and B) (p< 0.01). Error bars
indicate the standard error.

Full-size DOI: 10.7717/peerj.7900/fig-2

Preliminary analysis and summary of RNA-Seq data quality
We performed RNA-seq to analyze the transcriptional profile of lung tissue from the four
experimental groups. We found that 87.54–96.47% of clean reads were mapped to the
reference genome (Sus scrofa 11.1), and 80.19–93.33% were uniquely mapped (Table S2).
The sample to sample distance heat map showed a good degree of similarity between
all three replicates (Fig. S1), indicating that there were no significant differences in gene
expression among the biological replicates. These results showed that the RNA-seq data
were reliable and met the conditions for differential expression analysis.

DEGs analysis and RT-qPCR validation
We analyzed the DEG profiles of lung tissues from Mhp-infected Jiangquhai and Duroc
pigs by comparing infected and control animals of the same breed. Genes with relative
expression levels that showed log2 FC > 1 (p < 0.05) were considered up-regulated, and
those with log2 FC <−1 (p < 0.05) were considered down-regulated. Of the 2,250 DEGs
detected in Jiangquhai pigs, 966 genes were up-regulated and 1,284 down-regulated. Of
the 3,526 DEGs detected in Duroc pigs, 1,326 and 2,200 were up- and down-regulated,
respectively (Fig. 3). Jiangquhai and Duroc pigs shared 1,669 DEGs in response to Mhp
infection, with 632 up-regulated genes and 1,037 down-regulated genes. Further analysis
showed that Duroc pigs had 694 uniquely up-regulated DEGs, which was two times higher
than the number in Jiangquhai pigs (334 DEGs) (Fig. 3).

To verify the RNA-seq results, eight genes were randomly selected for RT-qPCR
analysis. Expression FCs determined by RT-qPCR analysis was compared against the
profiles predicted by RNA-seq. The RT-qPCR results verified the changes in expression
levels of the eight genes (Fig. 4), indicating that the RNA-seq data were reliable.
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Figure 3 Venn diagram displaying the numbers of DEGs in the two groups.DEGs in infected
Jiangquhai pigs and infected Duroc pigs were compared against their control groups. The numbers
in the overlapping areas represent DEGs shared between the two groups.

Full-size DOI: 10.7717/peerj.7900/fig-3

Figure 4 The RT-qPCR identification of randomly selected DEGs and correlation with RNA-seq data.
The X-axis is the name of genes and the Y -axis is the log2 Ratio (Treatmented group/Control group) rela-
tive expression value.

Full-size DOI: 10.7717/peerj.7900/fig-4

Terms and pathways associated with immunobiology were enriched
in both breeds
To determine the biological function of DEGs after Mhp infection in lung tissue,
the common 1,669 DEGs were submitted to DAVID for GO analysis, which revealed
enrichment of 281 GO terms (p < 0.05). The top 10 significant enrichments are shown
in Fig. 5, among which cell adhesion, inflammatory response and immune response were
the most significantly regulated by Mhp infection. Pathway analysis based on the KEGG
database revealed the top 20 significant signaling pathways of the two breeds (Fig. 6).
Many immune-related pathways were enriched, including the cytokine-cytokine receptor
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Figure 5 The top 10 gene ontology (GO) enrichments of commonDEGs shared by Jiangquhai and
Duroc pigs. The Y -axis is the name of each category, the X-axis is their –log10 (p-value).

Full-size DOI: 10.7717/peerj.7900/fig-5

interaction (IL18, IL1R1), PI3K-Akt signaling pathway (TLR2, ITGA1, ITGB7, PIK3R5),
and chemokine signaling pathway (CXCL8, CXCL13).

Specific terms and pathways in Jiangquhai and Duroc pigs
Jiangquhai and Duroc pigs also had different responses to Mhp infection. The specific
DEGs of Jiangquhai (581 DEGs) and Duroc pigs (1,857 DEGs) were separately submitted
to DAVID for GO analysis. The results revealed 100 GO enrichments in Jiangquhai pigs
and 314 GO enrichments in Duroc pigs. Table S3 shows the top 10 significant enrichments
in Jiangquhai pigs, including cell adhesion, leukocyte migration and extracellular matrix
disassembly. Table S4 lists the top 10 significant enrichments in Duroc pigs, including
cilium assembly, cilium-dependent cell motility and interleukin-7-mediated signaling
pathway.

KEGG pathway analysis revealed 38 specific signaling pathways in Jiangquhai pigs
(Table S5) and 54 specific signaling pathways in Duroc pigs (Table S6). Further analysis
found that Duroc pigs hadmore immune-related pathways (18 immune-related pathways),
including chemokine signaling pathway, NOD-like receptor signaling pathway, antigen
processing and presentation, toll-like receptor signaling pathway, 253 DEGs were enriched
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Figure 6 The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of commonDEGs
shared by Jiangquhai and Duroc pigs. The Y -axis is the name of each category, the X-axis is their –log10
(p-value). The number of genes enriched in each category were shown at the top of each bar.

Full-size DOI: 10.7717/peerj.7900/fig-6

in those 18 pathways (Table 2). Jiangquhai pigs only identified 8 immune-related pathways,
including leukocyte transendothelial migration, hematopoietic cell lineage, cell adhesion
molecules, 99 DEGs were enriched in those 8 pathways (Table 2).

Analysis of important DEGs related to immune responses
In this study, wemainly focused on the importantDEGs related to immune responses. Based
on gene clustering and specific KEGG pathways (Table 2), some DEGs that we identified
were well-known components of the innate immune response, such as chemokines,
interleukins, interferon response factors and complement components. Forty-five
important specific DEGs related to innate immune responses had been identified in Duroc
pigs (Fig. 7B), and only 20 important specific DEGs had been identified in Jiangquhai pigs
(Fig. 7A). Furthermore, some immune-related genes were down-regulated in Jiangquhai
pigs, such as adhesion molecules (PECAM1, CD34, CD7, CDH4), WNT molecules
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Table 2 Important immune-related KEGG pathways of specific DEGs in Jiangquhai pigs and Duroc pigs.

Breeds Pathway terms Categories Genes

Cytosolic DNA-sensing pathway Immune system IFNB1, NFKBIA, CXCL10, IRF7, ZBP1, CCL5, CCL4, DDX58, IL6, RIPK3, POLR3D, NFKBIB

Intestinal immune network for
IgA production

Immune system CCR9, CXCL12, ICOS, SLA-DRB1, CD28, LOC106504372, IL10, IL6, AICDA, IL15RA

Complement and coagulation cascades Immune system C1QA, C1S, F7, BDKRB1, F2, THBD, VSIG4, C1QB, C1QC, VWF, SERPINE1, C7, CPB2, C1R

Chemokine signaling pathway Immune system CCR5, CCR1, XCR1, CXCR6, CCR9, CXCL2, NFKBIA, CXCL10, CXCL12, CCL5, AKT3, CCL4,
PTK2B, ADCY4, GRK5, JAK3, CXCR3, NFKBIB, LOC110255211, GNG3, PARD3, CXCR2, HCK,
ADCY1, PLCB2

NOD-like receptor signaling pathway Immune system NFKBIA, CCL5, PSTPIP1, TNFAIP3, IL6, MAPK10, TRIP6, NFKBIB, BIRC3, MAPK11

RIG-I-like receptor signaling pathway Immune system IFNB1, NFKBIA, CXCL10, IRF7, ISG15, DHX58, DDX58, TKFC, MAPK10, NFKBIB, TANK,
MAPK11

Antigen processing and presentation Immune system TAP1, SLA-DRB1, CALR, PDIA3, LOC106504372, CD8B, HSP70.2, IFNG, PSME2, KLRD1,
LOC100523789

Toll-like receptor signaling pathway Immune system IFNB1, NFKBIA, CXCL10, IRF7, CD14, LY96, CCL5, IFNAR2, AKT3, CCL4, IL6, MAPK10,
MAP3K8, MAP2K6, MAPK11

T cell receptor signaling pathway Immune system NFKBIA, ICOS, PDCD1, AKT3, CD28, CD8B, IFNG, IL10, CTLA4, NFKBIB, MAP3K8, CARD11,
MAPK11, PAK6, NFKBIE

TNF signaling pathway Signal transduction CXCL2, NFKBIA, CXCL10, CREB3L4, CCL5, AKT3, TNFAIP3, FAS, PTGS2, IL6, LTA, RIPK3,
MAPK10, MAP3K8, MAP2K6, BIRC3, TRAF1, MAPK11

Jak-STAT signaling pathway Signal transduction IFNB1, IL7R, SOCS1, IFNAR2, IL27RA, AKT3, IL2RA, CSF3, IFNG, IL10, IL2RG, IL6, JAK3, OSMR,
IL15RA, IL20RB, LOC100736818, PIM1, CDKN1A, IL2RB, TSLP, IL22, PTPN2

cAMP signaling pathway Signal transduction NFKBIA, TNNI3, CREB3L4, GABBR1, SSTR1, PLD1, AKT3, HTR1B, AMH, ADCY4, MAPK10,
GRIA4, GRIA3, PDE4D, SUCNR1, LOC110255845, GRIN3A, PPP1R1B, HCAR2, GRIA1, ADCY1,
GLI3, PDE3B, GRIN2A, GRIN2B, CACNA1C, GIPR, CNGB1

NF-kappa B signaling pathway Signal transduction NFKBIA, CXCL12, CD14, LY96, BCL2A1, TNFAIP3, CCL4, DDX58, PTGS2, LTA, BIRC3, TRAF1,
NFKB2, CARD11

MAPK signaling pathway Signal transduction CD14, NTF3, DDIT3, PLA2G4B, RPS6KA1, AKT3, HSP70.2, FAS, EGF, FGF14, NTRK1, FGFR4,
MAPK10, DUSP4, PRKCG, GADD45B, MAP3K8, MAP2K6, PTPN7, CACNA2D2, CACNA2D3,
FGF12, NFKB2, CACNA1H, DUSP2, MAPK8IP2, MAPK11, CACNA1C, CACNA1I, MAP4K1,
CACNA1E

FoxO signaling pathway Signal transduction CCNB2, IL7R, PCK2, CCNB1, AKT3, EGF, IL10, IL6, MAPK10, PRKAG2, GADD45B, CCNB3,
CDKN1A, IRS2, PLK1, MAPK11

Cytokine-cytokine receptor
interaction

Signaling molecules
and interaction

CCR5, CCR1, XCR1, CXCR6, CCR9, CXCL2, IFNB1, CXCL10, CXCL12, CCL5, IL7R, IFNAR2, TN-
FRSF9, CD27, CCL4, IL2RA, FAS, CSF3, IFNG, EGF, IL10, IL2RG, AMH, IL6, LTA, OSMR, CXCR3,
IL15RA, IL20RB, LOC100736818, IL18RAP, IL25, IL2RB, CXCR2, TSLP, IL22

Cell adhesion molecules (CAMs) Signaling molecules
and interaction

ICOS, SELL, SLA-DRB1, OCLN, PDCD1, VCAN, CLDN1, CD28, LOC106504372, CD8B, CTLA4,
MPZ, L1CAM, TIGIT, NLGN3, LOC100525346, ITGA8, NCAM2, NEGR1

Duroc pigs

Neuroactive ligand–receptor
interaction

Signaling molecules
and interaction

P2RY2, BDKRB1, F2, GABBR1, GZMA, CRHR2, SSTR1, P2RY6, TRH, TSPO, HRH4, OPRL1,
HTR1B, PTH1R, TAAR1, LTB4R2, THRB, PTGDR, GRIA4, GRIA3, P2RX3, PTGIR, GRIK1,
GABRB2, CNR1, LRRC74B, PARD3, GRIN3A, P2RX1, GRM2, GABRR3, GRIK2, GRIA1, GRIN2A,
GRIN2B, GIPR

Complement and coagulation cascades Immune system C5, MBL1, C6, PLAU, F5, SERPINA5, ITGAM, KNG1, SERPINF2

Leukocyte transendothelial migration Immune system CLDN23, CLDN18, CLDN5, PECAM1, ITGAM, TXK, ESAM, GNAI1, PLCG2

Natural killer cell mediated cytotoxicity Immune system NCR1, IFNAR1, KLRK1, CD244, LOC100739080, SHC3, LOC100523789, PLCG2

Hematopoietic cell lineage Immune system CD4, GP1BB, CD34, CD19, ITGAM, CD7

Hippo signaling pathway Signal transduction PARD6B, BMP2, WNT10B, WNT16, GDF7, WNT11, TCF7L1, GDF6, WTIP, FZD1

cAMP signaling pathway Signal transduction FXYD2, FOS, PDE4A, DRD2, GNAI1, LOC100738425, LOC110255845, LOC110255846, CACNA1F,
PDE4C

Notch signaling pathway Signal transduction HES1, DTX2, RBPJL

Jiangquhai pigs

Cell adhesion molecules (CAMs) Signaling molecules
and interaction

NECTIN1, CD4, CLDN23, CLDN18, CLDN5, PECAM1, CD34, ITGAM, VTCN1, ESAM, CDH4,
CNTNAP2
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Figure 7 Important immune-related genes showing specific expression in Jiangquhai pigs (A) and
Duroc pigs (B).Genes have been arbitrarily positioned along the x-axis.

Full-size DOI: 10.7717/peerj.7900/fig-7

(WNT11, WNT16). As for Duroc pigs, more immune-related genes were up-regulated,
including chemokines (CCL4, CCL5, CCR1, CCR5, CXCL2, CXCL10, CXCL12, CXCR6),
interferon response factors (IFNAR2, IFNG), and interleukins (IL6, IL10, IL15RA, IL2RA,
IL18RAP, IL2RB, IL2RG, IL27RA, IL7R). Among these immune-related genes, CXCL10,
CCL4, IL6 and IFNG were the most differently expressed genes.

DISCUSSION
Previous reports state that the primary effect of Mhp infection on pigs is reduced growth
performance (Maes et al., 2008; Pointon, Byrt & Heap, 1985). However, the degree to which
Mhp effect differs between Chinese local breeds and imported breeds (such as Duroc and
Landrace), and the effect on Chinese local breeds is much more serious (Fang et al.,
2015). Our results were consistent with previous reports, Jiangquhai pigs infected with
Mhp exhibited poorer growth performance than Duroc pigs. Some studies have reported
that Mhp infection causing a humoral immune response in pigs (Blanchard et al., 1992).
Moreover, the level of antigen-specific antibody is an important indicator of MPS lesion
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formation in animals, and increased antigen-specific antibody production may exacerbate
MPS lung lesion severity (Borjigin et al., 2016; Davis et al., 1985; Katayama et al., 2011).
Our results also showed Mhp-infected Jiangquhai pigs exhibited higher blood levels of
Mhp antibody and more serious Mhp lung lesions. These results confirm that Jiangquhai
pigs are more susceptible to Mhp infection, and Duroc pigs possess greater resistance. In
addition, it was reported that the age and weight of pigs do not affect the susceptibility
to Mhp infection (Piffer & Ross, 1984). Therefore, it is theoretically possible that genetic
components contribute to Mhp resistance/susceptibility differs among breeds.

To gain insight into how the transcriptome profiles of different pig breeds vary in
response to Mhp infection, we performed RNA-seq to analyze the transcriptional profiles
of lung tissue from two breeds. We identified 2,250 and 3,526 DEGs in lung tissue from
Jiangquhai pigs and Duroc pigs, respectively. Duroc pigs had 694 unique up-regulated
DEGs, whereas Jiangquhai pigs only had 334. Taken together, these results indicate that
the molecular interactions and signaling pathways following Mhp infection may be more
complex in Duroc pigs.

Our analysis revealed 1,669 DEGs shared between Jiangquhai andDuroc pigs in response
to Mhp infection. These common DEGs also showed significant enrichment of many
immune-relevant terms and pathways. Among these, many up-regulated immune-relevant
genes were observed in both breeds that could play a role in resistance to Mhp infection.
One TLR family member, TLR2, has a fundamental role in pathogen recognition, signal
transmission and activation of innate immunity, and stimulation of inflammatory cytokine
production (Yoshihiro et al., 2003). IL18 and IL1R1 are pro-inflammatory mediators
involved in many cytokine-induced immune and inflammatory responses (Dale & Nicklin,
1999). PI3Ks (PIK3R5) are important enzymes involved in various signal transduction
pathways, and play important roles in regulating cell growth, survival, death and chemotaxis
(Margaria et al., 2019). Chemokines such as CXCL8 and CXCL13 can recruit immune cells
to the site of infection (Strieter et al., 1999; Sun et al., 2006). Moreover, ITGA1 and ITGB7,
which help recruit immune cells such as T, B, and natural killer (NK) cells, were up-
regulated following Mhp infection (Campbell & Humphries, 2011; Cheli et al., 2007; Lim,
Leung & Krissansen, 1998). These immune-related DEGs help clarify the immune response
in pigs following Mhp infection.

Comparison of the specific DEGs between Jiangquhai and Duroc pigs revealed some
important DEGs related to immune responses were specifically altered in Jiangquhai or
Duroc pigs, and these important DEGs enriched in immune-related pathways play an
important role in the underlying host mechanism to defend against Mhp infection.

Adhesion molecules are important signal transmitters of the immune system, they
function as signal transduction, transported signals from outside to inside of cell (Kumar
et al., 2016; Korytina et al., 2019), In this study, many adhesion molecules were specifically
down-regulated in Jiangquhai pigs, including PECAM1, CD34, CD7 and CDH4. These
adhesion molecules were significantly enriched in Cell adhesion molecules (CAMs) and
Hematopoietic cell lineage pathway, have the function in pathogen recognition, signal
transmission and regulating cell movement (Chasiotis et al., 2012; Samanta & Almo, 2015;
Xiao et al., 2010). However, these adhesion molecules were down-regulated may reduce
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host’s capacity for antigen presentation and processing. In addition, two WNT molecules
(WNT11,WNT16) enriched in Hippo signaling pathway were identified in Jiangquhai pigs.
WNT genes exert immune modulatory functions during pathogens infection (Brandenburg
& Reiling, 2016), and could regulate the expression of immune response genes during
challenge by pathogens, such as interferon genes, Toll-like receptors and MHC genes
(Garcia-Rodriguez et al., 2017). WNT11 and WNT16 were down-regulated, which may
induce the inhibition of its downstream signaling, including cell growth, survival and cell-
cycle progression. Therefore, thus results may interfere with Jiangquhai pigs to establish
an effective immune response against Mhp infection.

Chemokines constitute a large family of chemotactic molecules that are fundamentally
involved in the inflammatory response by attracting immune cells to sites of inflammation,
and promote the immune response and wound healing (Le et al., 2004; Zlotnik & Yoshie,
2012). Many chemokines are expressed in immune tissues and cells in pigs infected
with Mhp (Li et al., 2014; Zhang et al., 2011). In this study, many specific up-regulated
chemokines (CCL4, CCL5, CCR1, CCR5, CXCL2, CXCL10, CXCL12 and CXCR6)
were identified in Duroc pigs, these chemokines were mainly enriched in cytokine-
cytokine receptor interaction and chemokine signaling pathway. The two pathways are
involved in specific functional tasks that recruit immune cells to induce inflammatory
and adaptive immune responses (Carvalho et al., 2012; Hu et al., 2016). Therefore, these
up-regulated chemokines could recruit more immune cells for pathogen defense, and
Duroc pigs exhibited a larger chemotactic immune cell capacity. Among these chemokines,
CXCL10 and CCL4 were most highly expressed. CXCL10 is an important regulator of
pulmonary diseases (Gao et al., 2018;Tighe et al., 2011), andhas the function of chemotactic
monocytes/macrophages, T cells, and NK cells and promotion of T-cell adhesion
to endothelial cells (Angiolillo et al., 1995; Dufour et al., 2002). CCL4 is an important
chemoattractant for natural killer cells, monocytes and a variety of other immune cells,
regulates immune response to pathogen infection (Bystry et al., 2001; Zhao et al., 2007).
Therefore, CXCL10 and CCL4 maybe important chemokines involved in chemokine
signaling pathway, and regulate the process of immune response to Mhp infection.

Mhp stimulates host immune response by inducing macrophages to release pro-
inflammatory cytokines, such as IL-2, IL-6, IL-8, IL10 and IL-1β (Fourour et al., 2019;
Lorenzo et al., 2006). These pro-inflammatory cytokines are important players in innate
and adaptive immunity, and affect immune balance by suppressing cell-mediated immunity
(Zhang et al., 2018). In this study, we also identified some specific up-regulated interleukins
(IL6, IL10, IL15R A, IL2RA, IL18RAP, IL2RB, IL2RG, IL27RA and IL7R) inDuroc pigs. These
interleukin cytokines can modulate a broad spectrum of immune response processes, such
asNOD-like receptor signaling pathway, toll-like receptor signaling pathway, TNF signaling
pathway and Jak-STAT signaling pathway. Thus, activation of interleukin cytokines
in Duroc pigs may induce additional immune cytokine production and immune cell
recruitment for pathogen defense. In addition, interferon response factors have the function
of activate macrophages, protect host cells to resist pathogen infection (Rodriguez et al.,
2007). Two interferon response factors (IFNAR2, IFNG) were highly expressed in Duroc
pigs, which may further activated macrophages and enhanced the ability to resistance Mhp
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infection. Moreover, IL6 and IFNG were most highly expressed among these cytokines.
IL-6 is a primary cytokine, which could activate macrophages to secrete inflammatory
cytokines and chemokines (Yan et al., 2012), and responsible for Mhp clearance in lungs
(Wu et al., 2008). IFNG had been detected in the lungs of pathogen-infected pigs and be
postulated to be a necessary component for host control of pathogen (Zhang et al., 2011).
Therefore, IL6 and IFNG were also important cytokines involved in the regulation of
immune response to Mhp infection.

Apoptosis is a mechanism of programmed cell death and is essential for the regulation
of immune responses (Rantong & Gunawardena, 2015). Our results further revealed that
the apoptosis-related gene (FAS) was specifically activated in Duroc pigs. The FAS gene
has been reported to play a central role in the physiological regulation of programmed cell
death and has been implicated in the pathogenesis of various diseases of the immune system
(Strasser, Jost & Nagata, 2009). Previous studies have shown that the FAS gene involved
in the regulation of inflammatory response in pulmonary (Liu et al., 2017). Therefore, the
FAS gene activation can induce apoptosis and regulate the immune response in response to
the Mhp infection. In addition, in the Duroc-specific DEGs involved in GO enrichments
(cilium assembly, cilium-dependent cell motility), we found intraflagellar transport (IFT )
genes, which can modulate primary cilia formation and function (Pedersen & Rosenbaum,
2008), such as IFT172 and IFT81. Primary cilia are found on the cell surface of almost every
cell type, which play an important role in signaling and development (Singla & Reiter,
2006) and influence immune cell migration (Finetti, Onnis & Baldari, 2015). Therefore,
intraflagellar transport genes may play an important role in the immune response to Mhp
infection. Further elucidating the function remains to be a near future goal.

CONCLUSIONS
This is the first study to describe the transcriptional profiles of lung tissue from different
pig breeds following Mhp infection. RNA-seq analysis identified 966 up-regulated and
1,284 down-regulated genes in Jiangquhai pigs compared to 1,326 up-regulated and 2,200
down-regulated genes in Duroc pigs. Both breeds shared some KEGG pathways, including
cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, and chemokine
signaling pathway. All of these may play important roles in Mhp infection resistance.
In Duroc pigs, 1857 specific DEGs were identified, KEGG pathway analysis revealed 18
immune-related pathways. I Jiangquhai pigs, 581 specific DEGs were identified and eight
immune-related pathways were identified. Compared to Jiangquhai pigs, chemokines,
interferon response factors, interleukins, complement components, apoptosis-related
molecule and other immune-related molecules were specifically activated in Duroc pigs,
and they may help host enhance immune response and reduce Mhp susceptibility. The
results of our analysis reveal an important role of genetics in the immune response to Mhp
infection, and this should be investigated further to improve pig health during breeding.
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