Complete mitochondrial genome sequence of Labriocimbex sinicus, a new genus and new species of Cimbicidae (Hymenoptera) from China

Yuchen Yan 1, Gengyun Niu ${ }^{2}$, Yaoyao Zhang ${ }^{3}$, Qianying Ren ${ }^{1}$, Shiyu Du ${ }^{1}$, Bocheng Lan ${ }^{1}$ and Meicai Wei ${ }^{2}$
${ }^{1}$ Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees; Lab of Insect Systematics and Evolutionary Biology, Central South University of Forestry and Technology, Changsha, China
${ }^{2}$ Jiangxi Normal University, Nanchang, Jiangxi, China
${ }^{3}$ College of Life Sciences, Nankai University, Tianjin, China

Submitted 13 February 2019
Accepted 8 September 2019
Published 7 October 2019
Corresponding author
Meicai Wei, weim@jxnu.edu.cn
Academic editor
Jia-Yong Zhang
Additional Information and Declarations can be found on page 32

DOI 10.7717/peerj. 7853
cc) Copyright

2019 Yan et al.
Distributed under Creative Commons CC-BY 4.0

Abstract

Labriocimbex sinicus Yan \& Wei gen. et sp. nov. of Cimbicidae is described. The new genus is similar to Praia Andre and Trichiosoma Leach. A key to extant Holarctic genera of Cimbicinae is provided. To identify the phylogenetic placement of Cimbicidae, the mitochondrial genome of L. sinicus was annotated and characterized using highthroughput sequencing data. The complete mitochondrial genome of L. sinicus was obtained with a length of $15,405 \mathrm{bp}$ (GenBank: MH136623; SRA: SRR8270383) and a typical set of 37 genes (22 tRNAs, 13 PCGs, and two rRNAs). The results demonstrated that all PCGs were initiated by ATN codon, and ended with TAA or T stop codons. The study reveals that all tRNA genes have a typical clover-leaf secondary structure, except for $t r n S 1$. Remarkably, the secondary structures of the $r r n S$ and $r r n L$ of L. sinicus were much different from those of Corynis lateralis. Phylogenetic analyses verified the monophyly and positions of the three Cimbicidae species within the superfamily Tenthredinoidea and demonstrated a relationship as (Tenthredinidae + Cimbicidae) + (Argidae + Pergidae) with strong nodal supports. Furthermore, we found that the generic relationships of Cimbicidae revealed by the phylogenetic analyses based on COI genes agree quite closely with the systematic arrangement of the genera based on the morphological characters. Phylogenetic tree based on two methods shows that L. sinicus is the sister group of Praia with high support values. We suggest that Labriocimbex belongs to the tribe Trichiosomini of Cimbicinae based on adult morphology and molecular data. Besides, we suggest to promote the subgenus Asitrichiosoma to be a valid genus.

Subjects Entomology, Evolutionary Studies, Molecular Biology, Taxonomy
Keywords Taxonomy, Mitochondrial genome, Next generation sequencing, Phylogeny, Hymenoptera

INTRODUCTION

Hymenoptera is one of the largest insect order including more than 153,000 species which possess very diverse life strategies (Peters et al., 2017). Currently, complete or nearly complete mitochondrial genomes have been reported for 269 hymenopteran species (NCBI,

May 2019). The Cimbicidae is a small family of the superfamily Tenthredinoidea from the phytophagous Symphyta, with about 197 valid species and 26 genera around the world. Within China, 63 species representing 13 genera have already been recorded (Taeger, Blank \& Liston, 2010; Yan \& Wei, 2010; Blank et al., 2012; Yan \& Wei, 2013; Yan, Xiao \& Wei, 2014; Yan \& Wei, 2016; Yan et al., 2018). The monophyly of Tenthredinoidea is supported by both morphological (Wei \& Nie, 1997) and molecular data (Malm \& Nyman, 2015) as well as both combined (Ronquist et al., 2012; Sharkey et al., 2012; Klopfstein et al., 2013). However, the relationships among core tenthredinoids are unclear. Cimbicidae was inferred as the sister to Argidae + Pergidae proposed by morphological analyses (Wei \Leftarrow Nie, 1997; Vilhelmsen, 2001; Vilhelmsen, 2015; Vilhelmsen, 2019). The disaccord with several recent studies may be caused by the limited dataset of Cimbicidae, by molecular or combined analyses, which have placed Cimbicidae as sister to Diprionidae (Schulmeister, 2003; Schmidt \& Walter, 2014; Isaka \& Sato, 2015; Malm \& Nyman, 2015) or a clade including Diprionidae form a monophylum as sister to the remaining tenthredinoids (Heraty et al., 2011; Ronquist et al., 2012; Klopfstein et al., 2013). The monophyly of Cimbicidae has never been contested and not comprehensively tested until Vilhelmsen (2019). Adult Cimbicidae are primarily characterized by their clubbed antennae, one or more of the apical antennomeres being expanded. They vary in size from small (six mm) to very large insects (30 mm), making them the largest true sawflies known (Vilhelmsen, 2019). Some of the species are economically important pests causing serious defoliation of woody plants such as elm (Ulmus, Ulmaceae), willow (Salix, Salicaceae), honeysuckle (Lonicera, Caprifoliaceae) and cherry (Prunus, Rosaceae) (Gauld \& Bolton, 1988). Malaise (1934) established the classification of Cimbicidae: subfamily, tribe, subtribe and genus. Benson (1938) carried out a comprehensive study of sawflies, especially the members of Cimbicidae, which was further determined by the classification status of Cimbicidae. It included four subfamilies: Abiinae, Cimbicinae, Pachylostictinae and Corynidinae. The Cimbicinae is the most diverse subfamily, it was divided into Cimbicini and Trichiosomini (Abe \& Smith, 1991). The monophyly of Cimbicini was not supported by a following cladistic analyses with sufficient representation of cimbicid taxa of China (Deng, 2000) and a cladistic analyses with most representatives of cimbicid taxa of world (Vilhelmsen, 2019). The monophyly of Trichiosomini was supported by a cladistic analyses with sufficient representation of cimbicid taxa of China (Deng, 2000). The clade Abiinae + Cimbicinae received strong support in Vilhelmsen (2019).

Vilhelmsen (2019) placed Labriocimbex into Cimbicinae but the name is a nomina nudum. So far, mitochondrial genome of two species in the family, Trichiosoma anthracinum (KT921411) and Corynis lateralis (KY063728) have been reported (Song et al., 2016; Doğan \& Korkmaz, 2017). Here, we reported one complete mitochondrial genome of Labriocimbex sinicus. We also compared it with the previously reported mitochondrial genomes of T. anthracinum and C. lateralis for better understanding of the mitochondrial genome characteristics of the Cimbicidae. Finally, we have performed phylogenetic analyses to confirm the sister group relation of Labriocimbex and to clarify the systematic position of Cimbicidae within Symphyta.

MATERIALS \& METHODS

Description of new species

Specimens were examined with a Leica S8APO dissection microscope. Adult images were taken with a Nikon D700 digital camera and a series of images edited using Helicon Focus (HeliconSoft), while detailed images were taken with Leica Z16 APO/DFC550. A cylinder of semitransparent plastic was placed around the specimen to disperse the light, that methods follows Vilhelmsen (2019). The specimen must be sufficiently relaxed in a moist chamber before dissection. Dissected ovipositor valves, gonoforcep and penis valves were permanently mounted on slides in gum Arabic and images produced and composited automatically with a Nikon Ci-L/DS-Fi3. We used Adobe Photoshop CS 6.0 for further image processing. The terminology of sawfly genitalia follows Ross (1945), and that of general morphology follows Viitasaari (2002). For a few terms (e.g., middle fovea and lateral fovea), we followed Takeuchi (1952). Abbreviations used were: OOL = distance between the eye and outer edge of lateral ocelli; $\mathrm{POL}=$ distance between the mesal edges of the lateral ocelli; OCL = distance between a lateral ocellus and the occipital carina or hind margin of the head.

The holotype and some paratypes of the new species are deposited in the Asian Sawfly Collection, Nanchang, China (ASCN). The most remaining paratypes are deposited in the Insect Collection of Central South University of Forestry and Technology, Changsha, Hunan, China (CSCS). A few paratypes are kept in Lishui Academy of Forestry (LSAF).

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn: lsid: zoobank.org: pub: EE7F5193-78B2-42CE-87C1-B3FE947CB70F. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.

DNA library construction and sequencing

Total DNA was extracted from L. sinicus using an E.Z.N.A. ${ }^{\circledR}$ Tissue DNA Kit (Omega, Norcross, GA) and was stored at $-20^{\circ} \mathrm{C}$, in accordance with the manufacturer's instructions. Sequencing libraries with approximately 250 -bp insertions were constructed using a NEXT flex ${ }^{\text {TM }}$ Rapid DNA-Seq Kit (Illumina, San Diego, CA, USA) in accordance with the manufacturer's protocol. Each library was sequenced using an Illumina Hiseq 4,000 to generate $150-\mathrm{bp}$ paired end reads at BGI-Shenzhen, China. The sequencing reads have been deposited in NCBI SRA database under accession number: PRJNA507477.

Mitochondrial genome assembly

Next generation sequencing and bioinformatic analyses were performed by Shanghai Majorbio Bio-pharm Technology Co., Ltd. Reconstruction of the mitochondrial genome from Illumina reads was carried out using three different approaches to ensure the accuracy of the assemblies: SOAPdenovo v2.0 (Luo et al., 2012), MITObim v1.8 (Hahn, Bachmann \& Chevreux, 2013) and NOVOPlasty v2.7.1 (Dierckxsens, Mardulyn \& Smits, 2017). The assembled mitochondrial fragments were identified using BlastX and T. anthracinum (NC029733) mitochondrial genes as queries. Prediction and annotation of protein-coding, tRNA and rRNA genes were performed using DOGMA (http://dogma.ccbb.utexas.edu/) or MITOS (http://mitos.bioinf.uni-leipzig.de/index.py) with annotation from a reference mitochondrial genome. Queries were then corrected manually.

Mitochondrial genome annotation and secondary structure prediction

All RNA genes were identified by employing the online MITOS tool (http://mitos.bioinf. uni-leipzig.de/index.py) (Bernt et al., 2013) with the invertebrate mitochondrial genetic code. The initiation and termination codons of PCGs were determined using Geneious v11.0.3 (http://www.geneious.com) with reference sequences from other symphytan species with subsequent manual adjustment. The $\mathrm{A}+\mathrm{T}$ content of nucleotide sequences and relative synonymous codon usage (RSCU) were calculated using MEGA v7.0 (Kumar, Stecher \& Tamura, 2016). Strand asymmetry was calculated using the formulae (Perna \& Kocher, 1995): GC-skew $=(\mathrm{G}-\mathrm{C}) /(\mathrm{G}+\mathrm{C})$ and AT-skew $=(\mathrm{A}-\mathrm{T}) /(\mathrm{A}+\mathrm{T})$, for the strand encoding the majority of the PCGs.

The secondary structures of the $r r n S$ and $r r n L$ were partitioned into four areas and six areas, respectively. The secondary structures of rRNAs were inferred using alignment to models predicted for T. anthracinum. First, the primary sequence and the secondary structure of this species were aligned in MARNA (Siebert \& Backofen, 2005) to identify a consensus sequence as well as a consensus structure in the output files. Secondly, the secondary structures of the $r r n S$ and $r r n L$ in L. sinicus were predicted by specific structure models in SSU-ALIGN (Nawrocki, 2009). Finally, the structures were artificially transformed to their relative secondary structure with micro changes.

The predicted secondary structures of RNAs were drawn using VARNA v3-93 (Darty, Denise \& Ponty, 2009) and RNAviz 2.0.3 (De Rijk, Wuyts \& De Wachter, 2003). Helix numbering was performed following the Apis mellifera rRNA secondary structure (Gillespie et al., 2006) including minor modifications.

Taxon sampling

We sampled all known mitochondrial genomes representatives from the symphytan of Hymenoptera (34 species of Symphyta and two representatives of Apocrita) and four Non-hymenopteran outgroups (Mecoptera, Diptera, Megaloptera, Coleoptera) including some mitochondrial genomes downloaded from GenBank which had previously been sequenced, and the newly sequenced mitochondrial genome in this study (Table 1).

To investigate the phylogenetic relationship of Labriocimbex within Cimbicidae, we used 40 species (43 samples) of seven genera belonging to three subfamilies according the

Table 1 Summary information of symphytan mitochondrial genomes used in phylogenetic analyses.

	Species	Family	Accesion number
Ingroup	Labriocimbex sinicus	Cimbicidae	MH136623

classification system of Abe \& Smith (1991), by using partial cytochrome oxidase subunit I (COI) gene of mitochondrial genome. Composite of ingroup and outgroup taxon, as indicated in Table 2, were developed by sequences from different taxon either from our own sequences or those deposited in GenBank.

DNA extraction, polymerase chain reaction (PCR) and sequencing of COI gene

Total genomic DNA was extracted from muscles or single leg of adult specimens stored in ethanol at $-20^{\circ} \mathrm{C}$ using the DNeasy Blood \& Tissue Kit (Qiagen, Hilden, Germany). PCRs ($50 \mu \mathrm{l}$) contained $25 \mu \mathrm{l}$ Taq MasterMix (CW0682M) reaction buffer, $2 \mu \mathrm{l}$ of each primer, 2 $\mu \mathrm{l}$ DNA template and $19 \mu \mathrm{l}$ PCR grade H2O. The PCR programme consisted of an initial denaturing step at $95^{\circ} \mathrm{C}$ for one min, followed by 42 cycles of 20 s denaturing at $95^{\circ} \mathrm{C}$, 30 s annealing at $55^{\circ} \mathrm{C}$ and 80 s extension at $68^{\circ} \mathrm{C}$; the last cycle was followed by a final 7 min extension step at $68^{\circ} \mathrm{C}$. The primers of COI referenced Nyman et al. (2006). Purified PCR products were sequenced in both directions with the BigDye v3.1 Mix Sequencing Kit (Applied Biosystems) and an ABI 3730 XL automated sequencer (Applied Biosystems). Sequence trace files were read and edited using Sequencher v4.8 (BGI-Shenzhen cop, China).

COI gene sequences were checked and assembled in Geneious v11.0.3 (http: //www.geneious.com), prior to submission to GenBank (accession numbers MN076590MN076605).

Phylogenetic analysis

We used the Maximum Likelihood (ML) and Bayesian Inference (BI) methods to construct phylogenetic trees. A total of 13 PCGs were aligned by MUSCLE in MEGA v7.0 individually, two rRNAs and COI gene were aligned by MAFFT (https: //www.ebi.ac.uk/Tools/msa/mafft/) (Katoh \& Standley, 2013). Then, these (13 PCGs and two rRNAs) aligned nucleotide sequences were concatenated using SequenceMatrix v1.7.8 (Vaidya, Lohman \& Meier, 2011) and partitioned into several data blocks.

The partitioned data block file was used to infer both partition schemes and substitution models in PartitionFinder v1.1.1 (Lanfear et al., 2012), with "unlinked" branch lengths under the "greedy" search algorithm. The standard partitioning schemes "bic" and "aicc" were selected for BI and ML analyses, respectively. BI analyses were conducted with the GTR $+\mathrm{I}+\mathrm{G}$ model and HKY+G model using MrBayes v3.2.2 (Ronquist et al., 2012). Four simultaneous Markov chains (three cold, one heated) were run for five million generations in two independent runs, with sampling every 1,000 generations and the first 25% of generations were discarded as burn-in.

The best partitioning scheme were chosen for 13 PCGs (Table 3). The best-fit model of nucleotide substitution and phylogenetic construction based on ML were created using the IQ-TREE web server (http://iqtree.cibiv.univie.ac.at/). The previous data block file was used as well as the original parameters. In addition, 0.1 was employed as the disturbance intensity and 1,000 as the IQ-TREE stopping rule.

The COI gene phylogenetic construction also based on ML and BI analyses. All related files have been uploaded to Figshare (https://doi.org/10.6084/m9.figshare.7339334.v1).

Table 2 Specimens information of Cimbicidae and accession numbers of the GenBank sequences used in phylogenetic analyses.

Famil	Subfamily	Genus ${ }^{*}$ Species	Accesion number	References
Cimbicidae (ingroup)	Cimbicinae	Labriocimbex sinicus	MH136623	This study
		Labriocimbex sinicus	MN076590	This study
		Labriocimbex sinicus	MN076591	This study
		Praia taczanowskii	KF936545	Malm \& Nyman (2015)
		Praia taczanowskii	KC976900	Schmidt et al. (2017)
		Cimbex americana	EF032218	Schulmeister, Wheeler \& Carpenter (2002)
		Cimbex fagi	KC972801	Schmidt et al. (2017)
		Cimbex luteus	KC973384	Schmidt et al. (2017)
		Cimbex femoratus	KC976129	Schmidt et al. (2017)
		Cimbex sp.	KF936524	Malm \& Nyman (2015)
		Trichiosoma anthracinum	KT921411	Song et al. (2016)
		Trichiosoma aenescens	JX090784	Leppänen et al. (2012)
		Trichiosoma triangulum	KR895520	Hebert et al. (2016)
		Trichiosoma sp.	KR878237	Hebert et al. (2016)
		Trichiosoma lucorum	KF936518	Malm \& Nyman (2015)
		Trichiosoma tibiale	KC976817	Schmidt et al. (2017)
		Trichiosoma sorbi	KJ402312	Liston et al. (2014)
		Leptocimbex sp.	KC976797	Schmidt et al. (2017)
		Leptocimbex sp.	KC976130	Schmidt et al. (2017)
		Leptocimbex sp.	KC975295	Schmidt et al. (2017)
		Leptocimbex_potanini	MN076592	This study
		Leptocimbex_linealis	MN076593	This study
		Leptocimbex_afoveata	MN076594	This study
		Leptocimbex_lii sp.	MN076595	This study
		Leptocimbex sp.	MN076596	This study
		Leptocimbex_tuberculatus	MN076597	This study
		Leptocimbex sp.	MN076598	This study
		Leptocimbex grahami	MN076599	This study
	Abiinae	Abia niui	MN076604	This study
		Abia berezowski	MN076605	This study
		Abia candens	DQ302235	Nyman et al. (2006)
	Corynidinae	Corynis lateralis	KY063728	Doğan \& Korkmaz (2017)
		Corynis andrei	KF642787	Schmidt et al. (2017)
		Corynis crassicornis	KF936612	Malm \& Nyman (2015)
		Corynis mutabilis	KF642872	Schmidt et al. (2017)
		Corynis krueperi	KF642852	Schmidt et al. (2017)
		Corynis sanguinea	KF642775	Schmidt et al. (2017)
		Corynis hispanica	KF642727	Schmidt et al. (2017)
		Corynis enslini	KF642703	Schmidt et al. (2017)
		Corynis caucasica	KF642648	Schmidt et al. (2017)
		Corynis obscura	KC976955	Schmidt et al. (2017)
		Corynis atricapilla	KC976741	Schmidt et al. (2017)
		Corynis italica	KC975057	Schmidt et al. (2017)
Argidae	Arginae	Arge similis	MG923484	Tang et al. (2019)
(outgroup)		Arge bella	MF287761	Du et al. (2018)

Partitions	Best Models	Sites	Genes
P1	GTR + I + G	1,568	$r r n S$
P2	GTR $+\mathrm{I}+\mathrm{G}$	2,032	$r r n L$
P3	GTR $+\mathrm{I}+\mathrm{G}$	751	ND3_1st, ATP6_1st, CYTB_1st
P4	GTR $+\mathrm{I}+\mathrm{G}$	1,784	ND3_2nd, ATP6_2nd, COX3_2nd, CYTB_2nd, COX2_2nd, COX1_2nd
P5	$\mathrm{GTR}+\mathrm{I}+\mathrm{G}$	1,849	ND3_3rd, COX2_3rd, ATP8_3rd, ATP6_3rd, COX1_3rd, COX3_3rd, CYTB_3rd
P6	F81 +G	130	ATP8_1st, ATP8_2nd
P7	GTR $+\mathrm{I}+\mathrm{G}$	522	COX1_1st
P8	GTR $+\mathrm{I}+\mathrm{G}$	511	COX3_1st, COX2_1st
P9	GTR $+\mathrm{I}+\mathrm{G}$	906	ND4L_1st, ND4_1st, ND1_1st
P10	GTR $+\mathrm{I}+\mathrm{G}$	906	ND4_2nd, ND1_2nd, ND4L_2nd
P11	GTR +G	906	ND1_3rd, ND4_3rd, ND4L_3rd
P12	GTR $+\mathrm{I}+\mathrm{G}$	599	ND6_1st, ND2_1st
P13	$\mathrm{GTR}+\mathrm{I}+\mathrm{G}$	599	ND6_2nd, ND2_2nd
P14	GTR + G	599	ND6_3rd, ND2_3rd
P15	GTR +G	604	ND5_1st
P16	GTR + G	604	ND5_2nd
P17	HKY +G	603	ND5_3rd

RESULTS AND DISCUSSION

Description

Labriocimbex Yan \& Wei, gen. nov.

urn: lsid: zoobank. org: act: 29EB6C0E-881D-46E2-AEF0-3BDF5992EC37

Type species: Labriocimbex sinicus Yan \& Wei, sp. nov.
Description. Body middle to large-sized; black, without metallic luster (Fig. 1); head and thorax with dense and long yellowish brown hairs; clypeus distinctly broader than distance between lower margin of eyes, anterior margin with arcuate notch, furrow between clypeus and supraclypeal area deep (Fig. 2A); base of labrum much broader than apex, lateral margin of labrum distinctly narrowed upward (Fig. 2A); mandibles elongate, with three teeth in total, basal one truncate at apex (Figs. 3A, 3B); maxillary palp with 6 palpomeres, apex 1-2 combined distinctly shorter than palpomere 4 ; labial palp with 4 palpomeres, short (Fig. 2G); malar space 2.3 times the diameter of lateral ocellus, about as long as scape and pedicel combined; eyes moderately large, inner margins parallel, distance between eyes slightly longer than longest axis of eye (Figs. 2A, 2B); lateral part of head distinctly dilated behind eyes in lateral view (Fig. 2B) and dorsal view (Fig. 2D); postocellar area with median and lateral furrows distinct, frontal carina indistinct (Fig. 2D). Antenna longer than breadth of head, club of antenna strongly enlarged with obscure annular suture, with 5 antennomeres before club, antennomere 3 slender and distinctly longer

Figure 1 Labriocimbex sinicus Yan \& Wei sp. nov. (A) Adult female (holotype), dorsal view; (B) Adult male (paratype), dorsal view. Scale bar $=2 \mathrm{~mm}$.
than antennomeres 4 and 5 combined (Fig. 2H). Propleuron and sternum merged; median suture of mesonotum shallow, notaulus distinct; mesoscutellum flat, anterior margin subtruncate, posterior margin roundly triangular (Fig. 2E); distance between inner margin of cenchri 3.3 times the longest axis of a cenchrus, distance between outer margin of cenchri longer than breadth of mesoscutellum (Fig. 2E). Coxae and femur of leg with long hairs; ventral side of middle and hind femur without tooth near apex (Figs. 2F, 3C), hind coxae close to each other; inner spur of hind tibia as long as apical breadth of tibia, apex blunt and membranous (Fig. 3J), about 0.4 times length of metabasitarsus; metabasitarsus slightly shorter than tarsomeres 2 and 3 combined, base of hind tibia narrower than apex (Fig. 2F); 1st and 2nd tarsal pulvilli long, nearly contiguous (Fig. 2F); claw simple, roundly bent (Fig. 3K).Fore wing with crossvein 2 r present, base of vein Rs absent (Fig. 1A); vein 2r-m and $2 \mathrm{~m}-\mathrm{cu}$ almost interstitial, pterostigma long and narrow; anal cell strongly narrowed
in basal $1 / 3$ with a short anal crossvein, apical anal cell about 2 times the length of basal anal cell; cell Rs and M closed in hind wing, apex of anal cell quadrate, petiole of anal cell longer than length of vein cu-a, jugum region only with 1 longitudinal vein, without crossvein (Fig. 1A). Sternites and basal abdominal terga with long hairs, posterior margin of abdominal tergum 1 shallowly incised, without middle carina and lateral carina (Figs. 2E, 2F). Genital plate of female developed with wide incision and arcuate in middle (Fig. 3L); apical ovipositor sheath short and roundish in lateral view (Fig. 3D), tapering toward apes in dorsal view (Fig. 3F); apex of lancet and lance curved upwards (Figs. 3M, 3N), each annulus with 1 pore, serrulae sub-truncate at apex, lateral teeth sharp (Fig. 3G). Each sternite of male incised in middle, both sides roundish (Fig. 3E); penis valve broad, with apical lobe bulge, ventral hook small, lateral ridge distinct (Fig. 3H); harpe small, longer than broad (Fig. 3I).
Etymology. The generic name is composed of "labrio-" and "-cimbex", emphasizing the shape of labrum differs from other genera of the family. Gender masculine.
Distribution. China.
Host plant: Prunus pseudocerasus of Rosaceae (Female adult were observed laying eggs on it).

Remarks.

The name Labriocimbex was mentioned in two papers before (Li \& Wu, 2010; Vilhelmsen, 2019). The name is a nomina nuda in these papers as it was not accompanied by a proper description and type designation. The name was originally proposed by the senior author of this paper (MW) for the genus hear described as new to science. The present paper constitutes the proper establishment of the name.

This new genus is similar to Praia Andre and Trichiosoma Leach. It is similar to Praia having the head and thorax with dense and long hairs; the antenna with 5 antennomeres before the club; the coxae and femur of leg with long hairs; the ventral side of hind femur without a denticle near apex; the base of hind tibia narrower than apex; the 1st and 2nd tarsal pulvilli long. It differs from Praia by having the triangular labrum, the base of labrum much wider than its apex and the basal breadth about half the breadth of clypeus; the inner margins of eyes parallel; the anal cell strongly narrowed in basal $1 / 3$ with a short crossvein and apical anal cell about 2 times the length of basal anal cell; the abdomen all black, without transverse band. It differs from Trichiosoma by the ventral side of the hind femur without a subapical denticle; the 1st and 2nd tarsal pulvilli in the male very long and nearly contacting to each other, and the different pattern of the male genitalia.

Trichiosomini includes 3 genera: Trichiosoma, Pseudoclavellaria and Leptocimbex (Abe \& Smith, 1991; Deng, 2000). Most of the characteristics of the new genus suggest placing it in the tribe Trichiosomini. The most important characteristics include: the labrum large with the basal breadth about half the breadth of clypeus, the jugum region in hind wing without crossvein, the clypeus very short and much broader than lower distance between eyes and not merging with supraclypeal area. See the key below for the relationship of the new genus and other genera of the family.

Figure 2 Labriocimbex sinicus Yan \& Wei, gen. et sp. nov. (A) Head of female, front view; (B) Head of female, lateral view; (C) Mesopleuron of female, lateral view; (D) Head of female, dorsal view; (E) Metanotum and base of abdomen; (F) Abdomen, lateral view; (G) Palpus; (H) Antenna of female.

Figure 3 Labriocimbex sinicus Yan \& Wei, gen. et sp. nov. (A) Left mandible; (B) Right mandible; (C) Femur of hind leg; (D) Ovipositor sheath of female, lateral view; (E) Genital plate of male, ventral view; (F) Ovipositor sheath of female, dorsal view, (G) Middle serrulae, Scale bar = 50 um; (H) Penis valve; (I) Gonoforcep; (J) Spur of hind tibia; (K) Claw; (L) Apex of abdomen, ventral view; (M) Lance; (N) Lancet (H, I, M and N, Scale bar $=200 \mu \mathrm{~m})$.

[^0]
Key to extant Holarctic genera of Cimbicinae

1 Anal cell of fore wing divided into two by a long medial constriction; clypeus not enlarged, distinctly narrower than distance between lower corners of eyes, or antennae with 5 antennomeres and nearly as long as head breadth; inner margins of eyes strongly convergent or strongly divergent downward
.. 2

- Anal cell of fore wing divided into two near the middle by a straight vein or at least touching in the middle (rarely); clypeus distinctly broader than distance between lower corners of eyes; antennae at least with 6 antennomeres (except for Pseudoclavellaria) and distinctly longer than head breadth; inner margin of eyes subparallel or slightly convergent downward Cimbicinae.

2 Inner margins of eyes strongly convergent downward; distance between antennal toruli about 2 times as long as breadth of clypeus, clypeus not separated from supraclypeal area by epistomal sulcus; anterior tentorial small and shallow; head narrowed behind eyes in dorsal view, POL longer than OCL; hind orbit with distinct occipital carina; mesonotum with notauli between mesoscutal lateral lobe and middle lobe almost obsolete; hind coxae separated, apex of tibial spur acute and sclerotized. Corynidinae Corynis Thunberg

- Inner margins of eyes strongly divergent downward; distance between antennal toruli about as long as breadth of clypeus, clypeus separated from supraclypeal area by a distinct transversal furrow; anterior tentorial large and deep; head enlarged behind eyes in dorsal view, POL much shorter than OCL; hind orbit round, without occipital carina; mesonotum with notauli between mesoscutal lateral lobe and middle lobe deep; hind coxae contiguous, apex of tibial spur blunt and membranous.

Abiinae
3 Labrum small, clearly narrower than 1/4 breadth of clypeus; clypeus narrower than lower distance between eyes, or clypeus triangularly convex and merging with supraclypeal area. \qquad

- Labrum large, not narrower than $1 / 3$ breadth of clypeus; jugum region in hind wing without crossvein; clypeus very short and much broader than lower distance between eyes, not merging with supraclypeal area

4 Jugum region in hind wing without crossvein; ventral side of middle and hind femora with 1-2 rows of denticles, or anal cell in fore wing with a punctiform middle petiole, or head narrowed behind eyes in dorsal view. .. 5

- Jugum region in hind wing with a crossvein; middle and hind femora without denticle ventrally; anal cell of fore wing with a middle crossvein; head not narrowed behind eyes in dorsal view; Clypeus and supraclypeal area not entirely merging together and with a shallow depression between them; distance between antennal toruli and posterior margin of head about as long as distance between toruli and anterior margin of clypeus; postocellar area about as long as broad.

Cimbex Olivier.
5 Outer side of middle and hind coxae with a large denticle; ventral side of hind femur with 1-2 rows of denticles; mandibles simple, without inner tooth; malar space very long, clearly longer than antennomere 4 ; antennae with 8-9 antennomeres [claw simple]...Odontocimbex Malaise

- Outer side of coxae without denticle; ventral side of femora without 1-2 rows of denticles; mandibles with distinct inner tooth; malar space short, at most as long as antennomere 1 , much shorter than antennomere 4 ; antennae with 6-7 antennomeres \qquad .. 6

6 Clypeus clearly narrower than shortest distance between eyes and separated from supraclypeal area by a shallow but distinct furrow; anal cell in fore wing with a short petiole at basal third; claw simple; tibial spur stout, much shorter than apical breadth of tibia, apex obtuse; head enlarged behind eyes in dorsal view

Praia Andre

- Clypeus clearly broader than shortest distance between eyes and merging with supraclypeal area, furrow between them absent; anal cell in fore wing with a distinct crossvein at basal fourth; claw bifurcate; tibial spur slender, clearly longer than apical breadth of tibia, tapering toward apex; head narrowed behind eyes in dorsal view. \qquad Agenocimbex Rohwer

7 Ventral side of middle and hind femur with distinct denticle near apex [clypeus and labrum black; labrum narrowed toward base Trichiosoma Leach

- Ventral side of femur without denticle. .. 8

8 Head and thorax with dense and long hairs; club of antennae not segmented; abdominal tergum 1 without lateral carina; tarsal pulvilli large, 1st and 2nd pulvilli nearly touching to each other, first pulvillus longer than $1 / 2$ length of basitarsus; apical anal cell of forewing 1 to 2 times length of basal anal cell. .9

- Head and thorax without dense and long hairs; club of antennae distinctly segmented; abdominal tergum 1 at least with distinct lateral carina at basal $1 / 2$; tarsal pulvilli short and small, separated each other, distance between basal 2 pulvilli not shorter than length of a pulvillus, first pulvillus much shorter than half length of basitarsus; fore wing with apical anal cell about 3 times length of basal anal cell.

9 Labrum broadened toward base and distinctly narrowed toward apex; antennae with 6 antennomeres; inner spur of hind tibia as long as apical breadth of tibia; abdominal terga with long hairs; fore wing with apical anal cell 2 times as long as basal anal cell, vein 2 m -cu almost interstitial to vein $2 \mathrm{r}-\mathrm{m}$; clypeus and labrum black..........Labriocimbex Yan and Wei, gen. nov.

- Labrum clearly narrowed toward base and distinctly broadened toward apex; antennae with 5 antennomeres; inner spur of hind tibia clearly shorter than apical breadth of tibia; abdominal terga without long hairs; forewing with apical anal cell as long as basal anal cell, vein 2 m -cu remote from vein $2 \mathrm{r}-\mathrm{m}$; clypeus and labrum white. \qquad Pseudoclavellaria Schulz

Labriocimbex sinicus Yan \& Wei sp. nov. (Figs. 1-3)

urn: lsid:zoobank.org:act:E1454ED2-5321-4D39-97C2-EC8957D034C1

Female. (Holotype) Body length 21 mm (Fig. 1A). Black; apical $1 / 2$ of mandible reddish brown (Figs. 3A, 3B); inner and ventral side of club of antennae largely brown, outer side dark brown (Fig. 2H); cenchri pale yellowish white; posterior half of mesepimeron, metapleuron largely, metanotum except for a small macula behind cenchri and most of metapostnotum, median triangular macula and narrow posterior margin of abdominal tergum 1 (Fig. 2E) yellowish white; apex of each tibia, tarsus and claw reddish brown,
tarsal pulvillus grayish white (Fig. 2F). Wings brownish hyaline, stigma black, basal 3/5 of vein C in fore wing, basal $3 / 7$ of vein $\mathrm{Sc}+\mathrm{R}$ and entire vein $\mathrm{M}+\mathrm{Cu}$ pale yellow, vein A pale brown, other veins largely black, vein J and basal parts of all other veins in hind wing pale yellow (Fig. 1A). Hairs on face and gena black at base and yellowish white at apex (Fig. 2A); hairs on vertex of head and mesonotum black (Fig. 2D); hairs on pronotum and scutellum yellowish white largely except for black basal 0.2 ; hairs on mesopleuron, coxae and femora yellowish brown largely with less than basal 0.3 black (Figs. 2C, 2E, 2F); inner hairs of fore tibia reddish yellow; abdominal terga 1-2 and posterior margins of terga 3-4 with yellowish white hairs; hairs on ventral side of terga and sternites 1-3 black in basal 0.4 and reddish yellow in apical 0.6.

Body densely microsculptured, matt; lower margin of orbit, small fovea lateral to lateral ocellus, apical half of mandible, narrow lateral side of mesoscutal lateral lobe, ventral part of trochanters and of femora distinctly shiny, ventral half of mesepisternum feebly microsculptured mixed with some minute punctures, shiny; venter of abdomen feebly shiny.

Apex of labrum thickened with middle notch (Fig. 2A); median fovea round and deep, lateral foveae obscure (Fig. 2D); middle of frons concave, lateral furrow of frons shallow; postocellar furrow distinct, interocellar furrow long and deep; postocellar area quadrate, middle furrow very shallow, indistinct; lateral furrows shallow, weakly divergent backwards (Fig. 2D). Long hairs on gena clearly shorter than $1 / 3$ head width in dorsal view. Club of antennae as long as length of antennomeres 4 and 5 combined, with obscure annular suture (Fig. 2H). Mesopleuron without middle oblique ridge (Fig. 2C); cenchrus 2.1 times broader than long, reniform (Fig. 2E). Coxae and femora with dense hairs longer than breadth of femora (Fig. 2F); inner hairs of tibia dense and short (Fig. 2F). Vein 2 r in fore wing joining cell 2Rs at basal 0.4 ; cu-a joining cell 1 M close to vein 1 M (Fig. 1A). Abdominal terga 1-2 and posterior margin of terga 3-4 with dense and long hairs, other terga with sparse and short hairs. Sternites and ventral side of abdominal terga with spare and long hairs (Fig. 2F). Ovipositor sheath 0.8 times as long as metatarsomere 1 and 2 combined, apical margin roundish in lateral view (Fig. 3D), acute at apex in dorsal view (Fig. 3F). Lancet with 45 serrulae (Fig. 3N), middle serrulae as Fig. 3G, annular spine bands narrow, membranous area between serrulae roundly protruding, middle serrulae subtruncate at apex, with 5-6 proximal and 4-5 distal subbasal teeth (Fig. 3G).
Male: Body length 21.5 mm (Fig. 1B); body color and structure similar to female except for following parts: labrum broad and large; anterior margin of clypeus arc-shape, without incision; metathorax and abdominal tergum 1 entire black; subgenital plate slightly broader than long (Fig. 3E), apical margin round; apex of each sternite with clear middle incision, both sides roundly arcuate. Penis valve shown in Fig. 3H, gonoforcep shown in Fig. 3I. Holotype. Female (CSCS13010_Lab001). China: Hunan Province, Wugang County, Mt. Yun, Yunfengge alt. $1,380 \mathrm{~m}, 26^{\circ} 38.630^{\prime} \mathrm{N}, 110^{\circ} 37.299^{\prime} \mathrm{E}$, April 13, 2013, Zejian Li leg. Paratypes: 17 Females, 15 Males (CSCS13010_Lab002-033). Collecting information as the holotype. 18 Females, 10 Males (CSCS13015_Lab034-061), locality and collector as the holotype, April 15, 2013. 45 Females, 17 Males (CSCS13014_Lab062-123), locality and collecting time as the holotype, Liwei Qi, Biao Chu leg. 36 Females, 51 Males
(CSCS11009_Lab124-210), China: Hunan Province, Wugang County, Mt. Yun, Shengli Temple, alt. $1,145 \mathrm{~m}, 26^{\circ} 38.859^{\prime} \mathrm{N}, 110^{\circ} 37.026^{\prime} \mathrm{E}$, April 18-22, 2011, Zejian Li, Liwei Qi leg. 17 Females, 22 Males (CSCS05001_Lab211-249), China: Hunan Province, Wugang County, Mt. Yun, alt. 800-1,100 m, April 24-26, 2005, Meicai Wei, Shaobing Zhang, Wei Xiao leg. One Male (CSCS1999001_Lab250), China: Hunan Province, Wugang County, Mt. Yun, alt. 1,300 m, April 3, 1999, Wei Xiao leg. Two Females, six Males (LSAF18029_Lab251-258), China: Zhejiang Province, Lin'an City, Mt. Tianmu, alt. 1,506, $30.349^{\circ} \mathrm{N}, 119.424^{\circ} \mathrm{E}$, April 19, 2018, Zejian Li, Mengmeng Liu leg. One Females (LSAF17053_Lab259), locality and collector as the former, April 16, 2017. One Females, 26 males (LSAF17054_Lab259285), locality as the former, April 17, 2017, Tingting Ji leg. Four Females, two Males (CSCS18006_Lab286-291), China: Hunan Province, Wugang County, Mt. Yun, alt. 1,124 m, $26^{\circ} 38.059^{\prime} \mathrm{N}, 110^{\circ} 37.017^{\prime}$ E, April 03, 2018, Meicai Wei, Gengyun Niu, Hannan Wang leg. Seven Females, one Males (CSCS18007_Lab292-299), locality as the former, alt. 1,129 m, $26^{\circ} 39.003^{\prime} \mathrm{N}, 110^{\circ} 37.027^{\prime} \mathrm{E}$, April 04, 2018, Meicai Wei, Hannan Wang leg.
Variation. Body length $18-24 \mathrm{~mm}$ in female, $19-24 \mathrm{~mm}$ in male; club of antennae color brown to pale yellowish brown; hairs color on pronotum and scutellum yellowish white to yellowish brown.
Distribution. China (Hunan, Zhejiang).
Etymology: The specific name of the new species refers to the distribution area, China. Remarks.

Labriocimbex pilosus sp. nov. (Li W Wu, 2010) and Labriocimbex sinicus (Vilhelmsen, 2019) were two nomina nuda and have never been properly described before this paper. The two manuscript names were originally proposed by the senior author of this paper (MW) for the two undescribed species found in China. The former species represents only by a few specimens from different localities and so it is not described here, and specimen collection record: one female, China, Gansu Province, Mt. Xiaolong, Maiji forest farm, Sun hill; alt. $1,620,34^{\circ} 25^{\prime} 11.0^{\prime \prime} \mathrm{N}, 105^{\circ} 46^{\prime} 30.1^{\prime \prime} \mathrm{E}$, April 17, 2009, Wu XingYu leg.

Labriocimbex sinicus Yan \& Wei, sp. nov. is similar to L. zaraeoides (Malaise, 1939) comb. nov. (Fig. 4A), but differs from the latter in the following characters: the clypeal notch deep, depth about $1 / 2$ length of clypeus; between the clypeus and supraclypeal area with a distinct transverse furrow; the long hairs on gena 3.5 times as long as diameter of lateral ocellus, longer than the shortest axis of an eye; the long hairs on mesopleuron about 4.5 times as long as diameter of lateral ocellus; the abdominal tergum 1 largely black.

Labriocimbex zaraeoides (Malaise, 1939) comb. nov. (Fig. 4)
Trichiosoma zaraeoides Malaise, 1939: 16-17.

Distribution. Northern Myanmar.
Remarks. This species is similar to L. sinicus Yan \& Wei sp. nov., the majority of the characters place it in the new genus Labriocimbex. The most important of these characters are: the broadly emarginated clypeus, the triangular labrum (Fig. 4C), the form of the antennae (antennae with 5 antennomeres before the rigid club; joints of the club very

Figure 4 Labriocimbex zaraeoides Malaise, 1939) comb. nov. (A) Adult female (holotype), Scale bar $=2 \mathrm{~mm}$; (B) Mesopleuron of female, lateral view; (C) Head of female, front view; (D) Abdomen, lateral view; (E) Head of female, dorsal view; (F) Head of female, lateral view; (G) Metanotum and basal of abdominal terga, dorsal view; (H) Labels.

Full-size DOI: 10.7717/peerj.7853/fig-4
indistinct [sic!] Malaise, 1939); the slender hind legs (the coxae and femur of leg with long hairs; the ventral side of hind femur without a denticle near apex; the base of hind tibia narrower than apex; the 1st and 2nd tarsal pulvilli long, Fig. 4D) the venation (the anal crossvein punctiform and the anal cell strongly narrowed, Fig. 4A); the color of body (the posterior half of mesepimeron, metapleuron, metanotum and abdominal tergum 1 yellowish white, Figs. 4B, 4D and 4G). The characters that separate this species from all known Trichiosoma are the yellowish white color of the metanotum and the base of
the abdomen, and the ventral side of the hind femur without a large denticle near apex. L. zaraeoides differs from L. sinicus in the following characters: the clypeal notch shallow, depth about $1 / 4$ length of clypeus; the transverse furrow between clypeus and supraclypeal area absent (Fig. 4C); the long hairs on gena 2.5 times the diameter of lateral ocellus, shorter than the shortest axis of an eye (Fig. 4E); the long hairs on mesopleuron about 3.5 times as long as diameter of the lateral ocellus (Fig. 4B); the abdominal tergum1 largely yellow brown (Fig. 4G).

General features of the L. sinicus mitochondrial genome

We sequenced the complete mitochondrial genome of L. sinicus (GenBank accession no. MH136623), a typical set of 37 genes, including 13 PCGs, 22 tRNAs and two rRNAs. Most of the genes were located on the J- strand except for four PCGs, two rRNAs and seven tRNAs (Table 4).

A total of 14 pairs of genes were directly adjacent, without overlapping or intergenic nucleotides. The total length of the intergenic regions was 268 bp in 18 locations with a size ranging from 1 to 50 bp (Table 4). The longest was located between trnH and ND4, while the second longest was 45 bp located between $r r n S$ and trnM. In comparison with the mitochondrial genome of T. anthracinum and C. lateralis, there were differences in the length of intergenic spacers and locations. The longest (414 bp) was located at the start of the mitochondrial genome before $\operatorname{trn} Y$ in T. anthracinum. The longest length of the intergenic spacers was 345 bp located between the ND6 and CYTB genes in C. lateralis. We found that homologous searches on the longest intergenic region of L. sinicus revealed substantial differences from any identified Symphyta sequence.

There were in total 32 overlapping nucleotides between neighboring genes in six locations, and the range of length of the overlapping sequence is from 3 to 14 bp : trnM and $\operatorname{trn} Q$, ATP8 and ATP6, ND4 and ND4L, trnN and $t r n S 2$, and ATP6 and COIII; and the longest was 14 bp between ATP6 and COIII (Table 4). The common motifs such as: ATGATAA between ATP8 and ATP6, and ATGTTAA between ND4 and ND4L, which also exist in T. anthracinum, and are not found in C. lateralis, are common features of many other insect mitochondrial genomes (Song et al., 2016; Doğan \& Korkmaz, 2017).

Protein-coding genes and codon usage

The mitochondrial genome of L. sinicus contains 13 PCGs, and its length is $12,456 \mathrm{bp}$, accounting for 80.86% of the total length (Table 5). All PCGs were initiated by ATN codons. All PCGs were ended with TAA as stop codon except for ND5 which ended with T (Table 4).

The codon usage of L. sinicus also shows a significant bias towards A/T Leu, Ile, Phe and Ser, were found as the most frequently used amino acids. TTA-Leu showed the highest RSCU of 5.04 (Table 6). Comparisons of the RSCU with those of C. lateralis and T. anthracinum showed a similar pattern for codon usage bias and reflected a significant correlation between codon preference and nucleotide composition, that is similar to other symphytan species (Dowton et al., 2009a; Wei et al., 2010; Wei, Wu \& Liu, 2015; Korkmaz et al., 2015; Korkmaz et al., 2016; Korkmaz et al., 2017; Song et al., 2015; Song et al., 2016; Niu

Gene	Strand	Start	Stop	Length(bp)	Start codon	Stop codon	Anticodon	IGN
trnI	J	1	67	67			GAU	1
ND2	J	70	1113	1,044	ATG	TAA		2
trnW	J	1117	1181	65			UCA	3
COI	J	1182	2720	1,539	ATT	TAA		0
trnL2	J	2760	2825	66			UAA	39
COII	J	2827	3510	684	ATG	TAA		1
trnK	J	3532	3602	71			CUU	21
$t r n D$	J	3603	3672	70			GUC	0
ATP8	J	3673	3834	162	ATC	TAA		0
ATP6	J	3828	4517	690	ATG	TAA		-7
COIII	J	4504	5289	786	ATG	TAA		-14
$t r n G$	J	5310	5373	64			UCC	20
ND3	J	5374	5724	351	ATT	TAA		0
trnA	J	5732	5797	66		T	UGC	7
$t r n R$	J	5798	5,864	67			UCG	0
$t r n N$	J	5,866	5,934	69			GUU	1
trnS1	J	5,935	6,002	68			UGA	0
trnE	J	6,010	6,076	67			UUC	7
trnF	N	6,092	6158	67			AAG	15
ND5	N	6,159	7872	1,714	ATT	T		0
trnH	N	7873	7940	68			GUG	0
ND4	N	7991	9343	1,353	ATT	TAA		50
ND4L	N	9337	9618	282	ATT	TAA		-7
$t r n T$	N	9621	9865	65			UGU	2
$t r n P$	N	9686	9751	66			GGU	0
ND6	J	9753	10256	504	ATA	TAA		1
CYTB	J	10258	11391	1,134	ATA	TAA		1
trnS2	J	11435	11502	68			UCU	43
ND1	N	11512	12462	951	ATT	TAA		9
trnL1	N	12463	12530	68			GAU	0
$r r n L$	N	12531	13871	1,341				0
$t r n V$	N	13872	13941	70			CAU	0
$r r n S$	N	13941	14731	791				-1
$t r n M$	J	14777	14,845	69			CAU	45
$t r n Q$	N	14843	14,911	69			GUU	-3
AT-rich region	none	14912	15,261	350				0
$t r n Y$	J	15262	15331	70			GUA	0
$t r n C$	N	15333	15403	71			ACG	1

et al., 2019a; Niu et al., 2019b; Du et al., 2018; Ma et al., 2019; Tang et al., 2019). Codons rich in C and G, CGC-Arg and CTC-Leu was absent, CGG-Arg, GGC-Gly, AGC-Ser, ACG-Thr, CTG-Leu, GTC-Val, GTG-Val and TGC-Cys, were used once, AGG-Ser, TCG-Ser, TCC-Ser, CCG-Pro and GCG-Ala were rarely used, which is similar to both

Table 5 Nucleotide composition of L. sinicus mitochondrial genome.

Feature	Length(bp)	A\%	C\%	G\%	T\%	A+T\%	AT-skew	GC-skew
Whole genome	15,405	43.5	11.1	7.7	37.7	81.2	0.0714	-0.1809
Protein coding genes	12,456	34.4	9.7	10.4	45.5	79.9	-0.1389	0.0348
First codon position	4,152	36.9	9.5	15.1	38.5	75.4	-0.0212	0.2276
Second codon position	4,152	20.9	16.2	13	49.9	70.8	-0.4096	-0.1096
Third codon position	4,152	45.5	3.5	3	48	93.5	-0.0267	-0.0769
Protein coding genes-J	6,840	37.8	12	9.3	40.9	78.7	-0.0394	-0.1268
First codon position	2,280	40.4	11.9	14.6	33.1	73.5	0.0993	0.1019
Second codon position	2,280	23	18.7	12	46.3	69.3	-0.3362	-0.2182
Third codon position	2,280	50	5.3	1.4	43.3	93.3	0.0718	-0.5821
Protein coding genes-N	5,616	30.3	7	11.6	51.1	81.4	-0.2555	0.2473
First codon position	1,872	32.5	6.7	15.6	45.2	77.7	-0.1634	0.3991
Second codon position	1,872	18.4	13.1	14.3	54.3	72.7	-0.4938	0.0438
Third codon position	1,872	40.1	1.2	5	53.7	93.8	-0.1450	0.6129
ATP6	690	38.3	11.2	8	42.6	80.9	-0.0532	-0.1667
ATP8	162	45.1	9.3	2.5	43.2	88.3	0.0215	-0.5763
ND1	951	51.4	12.3	6.9	29.3	80.7	0.2739	-0.2813
ND2	1044	44.1	9.9	5.7	40.3	84.4	0.0450	-0.2692
ND3	351	35	10.5	9.7	44.7	79.7	-0.1217	-0.0396
ND4	1353	51.2	11.5	7.4	29.9	81.1	0.2626	-0.2169
ND4-BLASTP	1344	51.3	11.6	7.4	29.7	81	0.2667	-0.2211
ND4L	282	49.6	12.1	3.5	34.8	84.4	0.1754	-0.5513
ND5	1714	50.8	11.1	6.8	31.3	82.1	0.2375	-0.2402
ND6	504	42.1	8.7	5	44.2	86.3	-0.0243	-0.2701
COI	1539	35.1	13.5	12.8	38.7	73.8	-0.0488	-0.0266
COII	684	40.8	12.7	8	38.5	79.3	0.0290	-0.2271
COIII	786	33.5	13	12	41.6	75.1	-0.1079	-0.0400
CYTB	1134	35.4	13.1	10.4	41.2	76.6	-0.0757	-0.1149
12s	791	44	10.7	5.3	40.1	84.1	0.04637337	0.3375
16s	1341	46.8	11	4.9	37.4	84.2	0.111639	-0.383648

cimbicid mitochondrial genomes (Table 6). The ratio can be calculated by rate of $\mathrm{G}+$ C rich codons (Pro, Ala, Arg, and Gly) and A + T rich codons (Phe, Ile, Met, Tyr, Asn, and Lys), and it is 0.28 in L. sinicus, which is similar to those of other symphytan species (0.28-0.31) (Korkmaz et al., 2015). The translation, initiation, and termination signals as well as the codon usage of the L. sinicus mitochondrial genome do not display any unusual characteristics (Table 6).

Gene rearrangement and nucleotide composition

The mitochondrial genome of symphytan species appears to be more conserved than that of Apocrita (Song et al., 2016; Wei, Niu \& Du, 2014). However, compared with the putative ancestral mitochondrial genome of insects, we detected several rearrangement events in three tRNA gene clusters in L. sinicus (Fig. 5), The first rearrangement event is found in the clusters of $\operatorname{trnI}-\operatorname{trn} Q-\operatorname{trn} M$, where $\operatorname{trn} M$ and $\operatorname{trn} Q$ was founding swapped positions, in

Table 6 Codon usage of PCGs in mitochondrial genome of L. sinicus. No., frequency of each codon; RSCU, relative synonymous condon usage.

Amino acid	Codon	NO.	RSCU	Amino acid	Codon	NO.	RSCU
Phe	TTT	409	1.9	Tyr	TAT	159	1.78
	TTC	21	0.1		TAC	20	0.22
Leu	TTA	560	5.04	End	TAA	0	0
	TTG	35	0.31		TAG	0	0
Leu	CTT	37	0.33	His	CAT	68	1.79
	CTC	0	0		CAC	8	0.21
	CTA	34	0.31	Gln	CAA	61	1.85
	CTG	1	0.01		CAG	5	0.15
Ile	ATT	464	1.87	Asn	AAT	237	1.84
	ATC	31	0.13		AAC	20	0.16
Met	ATA	314	1.91	Lys	AAA	135	1.88
	ATG	15	0.09		AAG	9	0.13
Val	GTT	83	2.21	Asp	GAT	62	1.82
	GTC	1	0.03		GAC	6	0.18
	GTA	65	1.73	Glu	GAA	72	1.85
	GTG	1	0.03		GAG	6	0.15
Ser	TCT	134	2.67	Cys	TGT	37	1.95
	TCC	4	0.08		TGC	1	0.05
	TCA	116	2.31	Trp	TGA	92	1.8
	TCG	2	0.04		TGG	10	0.2
Pro	CCT	64	1.97	Arg	CGT	20	1.54
	CCC	15	0.46		CGC	0	0
	CCA	48	1.48		CGA	31	2.38
	CCG	3	0.09		CGG	1	0.08
Thr	ACT	70	1.74	Ser	AGT	23	0.46
	ACC	8	0.2		AGC	1	0.02
	ACA	82	2.04		AGA	119	2.37
	ACG	1	0.02		AGG	2	0.04
Ala	GCT	65	2.08	Gly	GGT	62	1.22
	GCC	7	0.22		GGC	1	0.02
	GCA	49	1.57		GGA	112	2.2
	GCG	4	0.13		GGG	29	0.57

addition, $\operatorname{trn} M-\operatorname{trn} Q$ was translocated from the $\operatorname{trnI}-\operatorname{trn} Q-\operatorname{trn} M$ cluster to a downstream position of $r r n S$; which have not been reported for any symphytan mitogenome to date. The second event is corresponding to the remote inversion of $\operatorname{trn} Y$ and the translocation of trnC from a location between $\operatorname{trn} W$ and COX1 to upstream of trnI, which has great similarity to the gene order and rearrangement events observed in T. anthracinum. The arrangement of cluster of $\operatorname{trn} W-\operatorname{trn} C-\operatorname{trn} Y$ appears to be mostly conserved in almost all known symphytan mitogenomes, except for representative cimbicid species. The last event is only found in the TP cluster of L. sinicus, and here $\operatorname{trn} T$ is inverted. The gene order from COI to $r r n S$ is conserved in all sequenced species of Cimbicidae.

Figure 5 Mitochondrial genome organization of three cimbicid species referenced with the ancestral insect mitochondrial genomes. Genes transcribed from the J and N strands are shown with green and orange color, respectively. Overlapping and intergenic regions are marked in yellow and blue circles. tRNA genes are denoted by a one-letter symbol according to the IPUC-IUB single-letter amino acid codes A + T-rich region is marked in blue and tRNA genes are labelled by the single-letter amino acid code. (A) Ancestral type of insect mitochondrial genomes; (B) Corynis laterlis mitochondrial genomes; (C) Trichiosoma anthracinum mitochondrial genomes; (D) Labriocimbex sinicus mitochondrial genomes.

Full-size DOI: 10.7717/peerj.7853/fig-5

Similar to previously reported symphytan mitochondrial genomes (Ma et al., 2019; Doğan \& Korkmaz, 2017; Song et al., 2016), the nucleotide compositions of L. sinicus (43.5% A, $37.7 \% \mathrm{~T}, 7.7 \% \mathrm{G}$ and $11.1 \% \mathrm{C}$) were biased towards A and T , with an average 81.2% $\mathrm{A}+\mathrm{T}$ content; a stronger AT bias was found in the N strand ($81.4 \% \mathrm{~A}+\mathrm{T}$ content) than in the J- strand (78.7\%) (Table 5).

Further analysis of the PCGs indicated that the third codon position demonstrates the highest $\mathrm{A}+\mathrm{T}$ content (93.5%), in agreement with symphytan mitochondrial genomes (Ma et al., 2019; Doğan \& Korkmaz, 2017; Song et al., 2016). The gene with the highest A + T content was ATP8 with 88.3% (Table 5). Here we observed that the AT-skew was slightly positive (0.0714), and the GC-skew was negative (-0.1809) when considering the whole genome (Table 5). This indicates that the occurrence of A is higher than that of T, and the occurrence of C is higher than that of G , which is a general phenomenon observed in all reported symphytan mitochondrial genomes, except for those of Tremex columba and Xiphydria sp. (Ma et al., 2019; Doğan \& Korkmaz, 2017; Song et al., 2016; Wei, Wu \& Liu, 2015; Castro \& Dowton, 2005; Dowton et al., 2009a). However, a deviation was found in the PCGs of L. sinicus, in terms of AT-skew (-0.1389) and GC-skew (0.0348), which also occurred in both C. lateralis and T. anthracinum. This deviation can exert influences on the selection forces acting on the PCG codon positions, in accordance with study by Korkmaz et al. (2015).

Transfer RNA genes

In the mitochondrial genome of L. sinicus 15 tRNAs were encoded by the J- strand, while the remaining tRNAs were encoded by the opposite N -strand. All tRNAs folded into a common clover-leaf structure, except trns1-AGN, where the dihydrouridine (DHU) arm was missing (Fig. 6). The size of the tRNAs ranged from $64 \mathrm{bp}(\operatorname{trn} G)$ to $71 \mathrm{bp}(\operatorname{trnC}, \operatorname{trnK})$, and this usually depends on the length of the variable loop, T $\Psi \mathrm{C}$ loop and D-loops (Clary \& Wolstenholme, 1985). The DHU arm was $3-4 \mathrm{bp}$, the AC arm was $4-5 \mathrm{bp}$, and the T $\Psi \mathrm{C}$ arm varied from 4-5 bp, while the amino acid acceptor (AA) stem and anticodon (AC) loops were conserved at 7 bp in all of the tRNA genes.

In the mitochondrial tRNA secondary structures, mismatches mainly occur in the DHU arm, AA arm and AC arm, and sometimes in the T $\Psi \mathrm{C}$ arm. A total of 16 unmatched base pairs were scattered among the following tRNA genes, including $12 \mathrm{G}-\mathrm{U}$ mismatched pairs occurring in $\operatorname{trn} A, \operatorname{trn} D, \operatorname{trn} Q, \operatorname{trn} G, \operatorname{trn} H, \operatorname{trn} L 1, \operatorname{trn} P, \operatorname{trn} F$, and $\operatorname{trn} Y$, and four U-U mismatches occurring in $\operatorname{trnR}, \operatorname{trn} T$ and trnL1. The number of mismatches were 24 (12 G-U pairs, five U-U pairs, three A-A pairs, two A-C pairs, one A-G pair and one $\mathrm{C}-\mathrm{U}$ pair) in C. lateralis (Fig. 7), and 18 ($15 \mathrm{G}-\mathrm{U}$ pairs, two $\mathrm{U}-\mathrm{U}$ pairs and $1 \mathrm{~A}-\mathrm{C}$ pair) in T. anthracinum (Fig. 6), which is typical for Hymenoptera (Ma et al., 2019; Castro \& Dowton, 2005; Dowton et al., 2009b). The phenomenon of aberrant mismatches, loops, or extremely short arms for tRNAs has been shown to be common in metazoan mitochondrial genomes (Wolstenholme, 1992).

In addition, there were some tRNA structural differences between L. sinicus and T. anthracinum (Fig. 6). The identified anticodons were almost identical to those of the cimbicid species, with the exception of the anticodon of $\operatorname{trnS1}$ ($A G n$), which is UCU in L. sinicus and T. anthracinum, as well as this is true of all previously reported of Symphyta (Ma et al., 2019; Doğan \& Korkmaz, 2017; Song et al., 2016; Castro \& Dowton, 2005; Dowton et al., 2009b).

Ribosomal RNA genes

The $r r n L$ gene of L. sinicus was $1,341 \mathrm{bp}$ in length with an $84.2 \% \mathrm{~A}+\mathrm{T}$ content, while $r r n S$ was 791 bp in length with an 84.1% A+T content (Table 5). This was in a comparable range to homologous genes in T. anthracinum ($1,351 \mathrm{bp} ; 800 \mathrm{bp}$) and C. lateralis $(1,359$ bp; 493 bp rrnS partial gene), and also identical to all reported hymenopteran species (Gillespie et al., 2006; Wei et al., 2010; Doğan \& Korkmaz, 2017; Song et al., 2016; Korkmaz et al., 2015). Both genes were encoded on the N -strand (Table 4).

Similar to the known symphytan mitochondrial genomes, the $r r n L$ gene is positioned between trnL1 and $\operatorname{trn} V$ in three species of Cimbicidae (Fig. 5). The predicted structure of $r r n L$ in L. sinicus is consistent with the observed pattern in C. lateralis and T. anthracinum, whereby 45 helices belonging to five domains were identified in those species (Figs. 8, 9). Domain III is absent as in other arthropods (Korkmaz et al., 2015), and domain II is variable in base composition, forming a long stem with a big loop structure in the area II terminal. Domains IV and V are more conserved within the Tenthredinidae than domains I, II and VI. Eight helices (H563, H579, H777, H822, H2023, H2043, H2455 and H2547) of rrnL are highly conserved. The H183, H991, H1057, H1196 and H2077 helices display

Figure 6 Predicted secondary structures for the 22 typical tRNA genes of L. sinicus and T. anthracinum (adapted from Doğan \& Korkmaz, 2017) mitogenomes. Base-pairing is indicated as follows: Watson-Crick pairs by lines, wobble GU pairs by dots and other noncanonical pairs by circles. Variable regions are presented in boxes with red (L. sinicus) and blue (T. anthracinum) color . (A) trnA; (B) trnR; (C) trnN; (D) trnD; (E) trnC; (F) trnQ; (G) trnE; (H) trnG; (I) trnH; (J) trnI; (K) $\operatorname{trnL1}$; (L) $\operatorname{trnL2} ;(\mathrm{M}) \operatorname{trnK} ;(\mathrm{N}) \operatorname{trnM} ;(\mathrm{O}) \operatorname{trnF} ;(\mathrm{P}) \operatorname{trnP} ;(\mathrm{Q}) \operatorname{trnS1} ;(\mathrm{R}) \operatorname{trnS2} ;(\mathrm{S}) \operatorname{trnT} ;(\mathrm{T}) \operatorname{trnW} ;(\mathrm{U}) \operatorname{trn} \mathrm{F}$; (V) trnV.

Full-size DOI: 10.7717/peerj.7853/fig-6

Figure 7 Predicted secondary structures for the 22 tRNA genes of C. lateralis (adapted from Song et al., 2016)). Dashes indicate Watson-Crick base pairing and dots indicate G-U base pairing. (A) $\operatorname{trn} A$; (B) trnR; (C) trnN; (D) trnD; (E) trnC; (F) trnQ; (G) trnE; (H) trnG; (I) trnH; (J) trnI; (K) trnL1; (L) trnL2;

helical length and loop size/structure variability within three cimbicid $r r n L$ genes (Figs. $8,9)$.

The $r r n S$ secondary structure of L. sinicus is between $\operatorname{trn} V$ and an AT-rich region, and contains four domains and 26 helices. Compared with T. anthracinum, it is significantly

Figure 8 The predicted secondary structures of $\boldsymbol{r r n L}$ of L. sinicus and T. anthracinum.. Tertiary interactions and base triples are connected by continuous lines. The numbering of helix follows Gillespie et al. (2006). Roman numbers refer to domain names. Dashes indicate Watson-Crick base pairing and dots indicate G-U base pairing. The helical variation among cimbicid species are presented in boxes with red (L. sinicus) and blue (T. anthracinum) color.

Full-size DOI: 10.7717/peerj.7853/fig-8
different in terms of base composition in domain II (Fig. 10). Specifically, H 47 is variable among the different hymenopteran species, having a large loop. The loop size is variable and determined by overall $r r n S$ length, except for in the cephid species (Gillespie et al., 2006; Wei et al., 2010; Doğan \& Korkmaz, 2017; Song et al., 2016; Korkmaz et al., 2015). The structures of domains I and II of C. lateralis are missing, so they cannot be compared with those of L. sinicus, but the structures are similar in domains III and IV (Fig. 11). In $r r n S$, domain III and domain VI were more conserved within Tenthredinidae than domains I and II (Figs. 10 and 11).

Phylogenetic relationships

Phylogenetic relationships within the "Symphyta" were reconstructed using both BI and ML analyses. The topologies of the two phylogenetic trees were almost identical, thus we combined the two phylogenetic trees (Fig. 12). The clade consisting of (Tenthredinidae + Cimbicidae $)+($ Argidae + Pergidae $)$, was very stable with the highest nodal supports.

Figure 9 Corynis lateralis rrnL. Predicted rrnL secondary structure in C. lateralis. The numbering of helix follows Gillespie et al. (2006).Roman numbers refer to domain names.

Full-size
DOI: 10.7717/peerj.7853/fig-9

The recovered trees supported a relationship consisting of Xyelidae + (Tenthredinoidea $+($ Pamphiliidae $+(($ Megalodontesidae + Xiphydriidae $)+($ Cephidae $+($ Orussidae + $($ Siricidae + Apocrita)))))) in Hymenoptera. It seems unusual that Siricidae is the sister group to Apocrita, although, the sister relation of Tremex columba (MH422968) and Tremex columba (AY206795) according to the phylogenetic inference based on IV and V areas of $r r n L$ (YY Zhang, 2019, unpublished data), suggests the former is valid. It showed that more mitochondrial genomes should be involved to evaluate the correctness of these unusual sister groups.

To investigate the phylogenetic relationships of Labriocimbex within Cimbicidae, we analyzed 43 cimbicid and two outgroups sequences, an approximately 850 -bp piece of the COI gene were obtained in this study, combined with the other species sequences from GenBank aligned by MAFFT. The phylogenetic trees were reconstructed using both BI and ML analyses (Fig. 13). We found that the generic relationships of Cimbicidae revealed by the phylogenetic analyses based on COI genes agree quite closely with the systematic arrangement of the genera based on the morphological characters.

The subfamily classification scheme suggested by Abe \& Smith (1991) is confirmed by the results of the present analyses. The monotypic Corynidinae are always retrieved with

Figure 10 The predicted secondary structures of r rnS of L. sinicus and T. anthracinum. Tertiary interactions and base triples are connected by continuous lines. The numbering of helix follows Gillespie et al. (2006). Roman numbers refer to domain names. Dashes indicate Watson-Crick base pairing and dots indicate G-U base pairing. The helical variation among cimbicid species are presented in boxes with red (L. sinicus) and blue (T. anthracinum) color.
strong support, and Abiinae + Cimbicinae is best-supported internal node in the present analyses of Cimbicidae, which was also supported by Vilhelmsen (2019).

The clade consisting of $(((($ Labriocimbex + Praia $)+$ T. anthracinum $)+$ Trichiosoma $)+$ Leptocimbex) + Cimbex, was highly supported in both trees (posterior probability >0.9511 and bootstrap support >87). Labriocimbex is always retrieved as monophyletic (two samples

Symbols Used In This Disagram:
A-U - Canonical base pair (A-U,C-G)
$\mathrm{G} \cdot \mathrm{U}-\mathrm{G}-\mathrm{U}$ base pair
G-A - G-A base pair
$\mathrm{U} \circ \mathrm{U}$ - Non-canonical base pair ($\mathrm{U}-\mathrm{U}, \mathrm{A}-\mathrm{A}, \mathrm{C}-\mathrm{A}, \mathrm{C}-\mathrm{U}$)
Every 10 th nucleotide is marked with a tick mark, and every 50 th nucleotide is numbered

Figure 11 Corynis lateralis rrnS.. Predicted rrnS secondary structure in C. lateralis. The numbering of helix follows Gillespie et al. (2006). Roman numbers refer to domain names.

Figure 12 Symphytan phylogenetic tree constructed with BI and ML approaches using a mitochondrial genome dataset including 15 individual genes (13 PCGs and two rRNAs). Both analyses produced the same tree topology. Support values lower than 100% in the ML analysis and 1.0 in the BI analysis were shown.

Full-size DOI: 10.7717/peerj.7853/fig-12

Figure 13 Cimbicidae phylogenetic tree constructed with BI and ML approaches using the COI gene data. Both analyses produced the same tree topology. Support values lower than 100% in the ML analysis and 1.0 in the BI analysis were shown.

> Full-size DOI: 10.7717/peerj.7853/fig-13
were collected in Hunan, one was collected in Zhejiang), and it is the sister group of Praia. Praia + Labriocimbex is the sister group of T. anthracinum. Malaise (1939) placed T. anthracinum and other two species, T. hymalayensis and T. sikkimensis, in the subgenus Asitrichiosoma within Trichiosoma. According to our analyses (Fig. 13), T. anthracinum renders the genus Trichiosoma paraphyletic, and it is necessary to reestablish the genus Asitrichiosoma.

Additionally, we demonstrated that COI gene sequences can be used to solve phylogenetic relationships between genera of Cimbicidae. However, to reconstruct the generic phylogeny of Cimbicidae the further studies of the mitochondrial genomes and external morphology of more taxa of the family are needed.

CONCLUSIONS

Labriocimbex gen. nov. was regarded similar to the genera Trichiosoma Leach and Praia Andre. Most of the characteristics of the new genus suggest placing it in the tribe Trichiosomini. The most important characteristics include: the labrum large with the basal breadth about half the breadth of clypeus, the jugum region in hind wing without crossvein, the clypeus very short and much broader than lower distance between eyes and not merging with supraclypeal area. Following characters help to distinguish this new genus and new species: the clypeus and labrum black; the clypeus broadly and shallowly emarginated; the labrum triangular and tapering toward apex, basal breadth about half the breadth of clypeus; the apical anal cell about 2 times as long as basal anal cell; the hind femora close to each other and without ventral denticle; the very large tarsal pulvilli; malar space 2.3 times the diameter of lateral ocellus; the inner margins of eyes parallel; head distinctly dilated behind eyes; the inner spur of hind tibia as long as apical breadth of tibia, apex blunt and membranous; the long and dense hairs covering head, thorax, base of abdomen and legs.

The complete mitochondrial genome of L. sinicus was obtained and was found to have a length of $15,405 \mathrm{bp}$ and a typical set of 37 genes. The secondary structures of the 22 tRNAs and two rRNAs resemble those of Symphyta. In comparison with the structures of T. anthracinum and C. lateralis, some helices were highly variable in $r r n L$ and $r r n S$.

The same cladograms were obtained using two different analytical methods, and our findings partly disagreed with traditional morphological classification. The tree topology confirmed that Cimbicidae is a member of the superfamily Tenthredinoidea and Labriocimbex gen. nov. is a member of Cimbicidae.

Within Cimbicidae, we have made several interesting discoveries, including a proposal to place the Praia into tribe Trichiosomini, and to promote the subgenus Asitrichiosoma to be a valid genus. Based on COI data, the phylogenetic position of Labriocimbex showed that it is the sister group of Praia, Labriocimbex + Praia is the sister group of Asitrichiosoma anthracinum, and Labriocimbex + Praia + Asitrichiosoma is the sister group of Trichiosoma. The positions of Labriocimbex and its close relatives remain to be decided in future studies. Here we suggest that Labriocimbex belongs to the tribe Trichiosomini of Cimbicinae based on adult morphology and molecular data.

ACKNOWLEDGEMENTS

Thank Dr. Zejian Li of the Lishui Academy of Forestry, Zhejiang province, China, for collecting specimens from Mt. Tianmu. The members of Lab of Insect Systematics and Evolutionary Biology (LISEB) from Central South University of Forestry and Technology
are thanked for their contributions in laboratory work. We thank all the reviewers for their comments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Natural Science Foundations of China (No. 31672344; No. 31501885) and the Scientific Research Startup Funding for Talents Introduction, Jiangxi Normal University (2018-12019500). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
National Natural Science Foundations of China: 31672344, 31501885.
Scientific Research Startup Funding for Talents Introduction.
Jiangxi Normal University: 2018-12019500.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Yuchen Yan conceived and designed the experiments, prepared figures and/or tables, authored or reviewed drafts of the paper, drafted the work or revised it critically for important content, approved the final draft of the manuscript submitted for review and publication.
- Gengyun Niu conceived and designed the experiments, prepared figures and/or tables, approved the final draft of the manuscript submitted for review and publication.
- Yaoyao Zhang analyzed the data, performed the experiments, prepared figures and/or tables, approved the final draft of the manuscript submitted for review and publication.
- Qianying Ren performed the experiments, analyzed the data, prepared figures and/or tables, approved the final draft of the manuscript submitted for review and publication.
- Shiyu Du analyzed the data, prepared figures and/or tables, approved the final draft of the manuscript submitted for review and publication.
- Bocheng Lan prepared figures and/or tables.
- Meicai Wei conceived and designed the experiments, drafted the work or revised it critically for important content, approved the final draft of the manuscript submitted for review and publication.

DNA Deposition

The following information was supplied regarding the deposition of DNA sequences:
Labriocimbex sinica sequences are available at GenBank: MH136623 and SRA: SRR8270383.

Sequences and raw data are also available at Figshare: Yan, Yuchen; Niu, Gengyun; Zhang, Yaoyao; Ren, Qianying; Du, Shiyu; lan, Bocheng; et al. (2019): Complete mitochondrial genome sequence of Labriocimbex sinicus, a new genus and new species of Cimbicidae (Hymenoptera) from China. figshare. Dataset. https://doi.org/10.6084/m9.figshare. 7339334.v1.

Data Availability

The following information was supplied regarding data availability:
The raw data is available at Figshare: DOI 10.6084/m9.figshare.7339334.v1.
Data is also available at NCBI Genbank accession numbers MN076590-MN076605, MH136623 and NCBI SRA accession number SRR8270383.

The holotype and some paratypes of the new species are deposited in the Asian Sawfly Collection, Nanchang, China (ASCN). The most remaining paratypes are deposited in the Insect Collection of Central South University of Forestry and Technology, Changsha, Hunan, China (CSCS). A few paratypes are kept in Lishui Academy of Forestry (LSAF). Specimen voucher numbers: CSCSHymM00003, CSCSHymM02146, CSCSHymM02107, CSCSHymM02110, CSCSHymM02114, CSCSHymM02119, CSCSHymM02120, CSCSHymM02100, CSCSHymM02112, CSCSHymM02108, CSCSHymM02102, CSCSHymM02103, CSCSHymM02109, CSCSHymM02115, CSCSHymM02117, CSCSHymM00393, CSCSHymM00009, CSCS13010_Lab001, CSCS13010_Lab002033, CSCS13015_Lab034-061, CSCS13014_Lab062-123, CSCS11009_Lab124210, CSCS05001_Lab211-249, CSCS1999001_Lab250, LSAF18029_Lab251-258, LSAF17053_Lab259, LSAF17054_Lab259-285, CSCS18006_Lab286-291, CSCS18007_Lab292299, CSCS09019_Lab300.

New Species Registration

The following information was supplied regarding the registration of a newly described species:

Publication LSID: urn:lsid:zoobank.org:pub:EE7F5193-78B2-42CE-87C1-B3FE947CB70F
Labriocimbex Yan \& Wei, gen. nov. LSID: urn:lsid:zoobank.org:act:29EB6C0E-881D-46E2-AEF0-3BDF5992EC37

Labriocimbex sinicus Yan \& Wei sp. nov. LSID: urn:lsid:zoobank.org:act:E1454ED2-5321-4D39-97C2-EC8957D034C1.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.7853\#supplemental-information.

REFERENCES

Abe M, Smith DR. 1991. The genus-group names of Symphyta (Hymenoptera) and their type species. Esakia 31:1-115.
Beard CB, Hamm DM, Collins FH. 1993. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with
mitochondrial sequences of other insects. Insect Molecular Biology 2(2):103-124 DOI 10.1111/j.1365-2583.1993.tb00131.x.
Benson RB. 1938. On the classification of Sawflies (Hymenoptera, Symphyta). Transactions of the Entomological Society of London 87:353-384.
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69:313-319 DOI 10.1016/j.ympev.2012.08.023.
Blank SM, Groll EK, Liston A, Prous M, Taeger A. 2012. ECatSym—electronic world catalog of symphyta (Insecta, Hymenoptera). Program version 4.0 Beta. Data version 39. Müncheberg: Digital Entomological Information. Available at https:// sdei.de/ ecatsym/.
Castro LR, Dowton M. 2005. The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of Perga condei (Hymenoptera: Symphyta: Pergidae). Molecular Phylogenetics and Evolution 34(3):469-479 DOI 10.1016/j.ympev.2004.11.005.
Clary DO, Wolstenholme DR. 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution 22:252-271.

Darty K, Denise A, Ponty Y. 2009. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974-1975 DOI 10.1093/bioinformatics/btp250.
De Rijk P, Wuyts J, De Wachter R. 2003. RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics 19:299-300 DOI 10.1093/bioinformatics/19.2.299.
Deng TJ. 2000. A systematic study of Cimbicidae from China (Hymenoptera: Symphyta) (In Chinese, abstract in English). Thesis for Master degree, Central south forest university, Zhuzhou, Hunan province, China. Available at http:// www.wanfangdata. com.cn/details/detail.do?_type=degree\&id=Y366423.
Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45:e18 DOI 10.1093/nar/gkw955.
Doğan Ö, Korkmaz EM. 2017. Nearly complete mitogenome of hairy sawfly, Corynis lateralis (Brullé, 1832) (Hymenoptera: Cimbicidae): rearrangements in the IQM and ARNS1EF gene clusters. Genetica 145:341-350 DOI 10.1007/s10709-017-9969-7.
Dowton M, Cameron SL, Austin AD, Whiting MF. 2009a. Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera-a lineage with both rapidly and slowly evolving mitochondrial genomes. Molecular Phylogenetics \& Evolution 52:512-519 DOI 10.1016/j.ympev.2009.04.001.
Dowton M, Cameron SL, Dowavic JI, Austin AD, Whiting MF. 2009b. Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Molecular Biology Evolution 26(7):1607-1617 DOI 10.1093/molbev/msp072.

Du SY, Niu GY, Nyman T, Wei MC. 2018. Characterization of the mitochondrial genome of Arge bella Wei \& Du sp. nov. (Hymenoptera: Argidae). PeerJ 6:e6131 DOI 10.7717/peerj.6131.
Gauld I, Bolton B. 1988. The Hymenoptera. British Museum (Natural History). Oxford: Oxford University Press.
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. 2006. Characteristics of the nuclear ($18 \mathrm{~S}, 5.8 \mathrm{~S}, 28 \mathrm{~S}$ and 5 S) and mitochondrial (12 S and 16 S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Molecular Biology 15:657-686 DOI 10.1111/j.1365-2583.2006.00689.x.
Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing read-a baiting and iterative mapping approach. Nucleic Acids Research 41:129-129 DOI 10.1093/nar/gkt371.
Hebert PDN, Ratnasingham S, Zakharov EV, Telfer AC, Levesque-Beaudin V, Milton MA, Pedersen S, Jannetta P, DeWaard JR. 2016. Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society of London. Series B 371:1-10 DOI 10.1098/rstb.2015.0333.
Heraty J, Ronquist F, Carpenter JM, Hawks D, Schulmeister S, Dowling AP, Murray D, Munro J, Wheeler WC, Schiff N, Sharkey M. 2011. Evolution of the hymenopteran megaradiation. Molecular Phylogenetics and Evolution 60:73-88 DOI 10.1016/j.ympev.2011.04.003.
Hyde J, Cooper SJB, Munguia P, Humphreys WF, Austin AD. 2018. The first complete mitochondrial genomes of subterranean dytiscid diving beetles (Limbodessus and Paroster) from calcrete aquifers of Western Australia. Australian Journal of Zoology 65:283-291 DOI 10.1071/ZO17076.
Isaka Y, Sato T. 2015. Was species diversification in Tenthredinoidea (Hymenoptera: Symphyta) related to the origin and diversification of angiosperms? The Canadian Entomologist 147:443-458 DOI 10.4039/tce.2014.60.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772-780 DOI 10.1093/molbev/mst010.
Klopfstein S, Vilhelmsen L, Heraty JM, Sharkey M, Ronquist F. 2013. The Hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data). PLOS ONE 8(8):e69344 DOI 10.1371/journal.pone. 0069344.
Korkmaz EM, Aydemir HB, Temel B, Budak M, Başıbüyük HH. 2017. Mitogenome evolution in Cephini (Hymenoptera: Cephidae): evidence for parallel adaptive evolution. Biochemical Systematics and Ecology 71:137-146 DOI 10.1016/j.bse.2017.02.004.
Korkmaz EM, Budak M, Ördek MN, Başibüyük HH. 2016. The complete mitogenomes of Calameuta filiformis (Eversmann, 1847) and Calameuta idolon (Rossi, 1794) (Hymenoptera: Cephidae): The remarkable features of the elongated $\mathrm{A}+\mathrm{T}$ rich region in Cephini. Gene 576:404-411 DOI 10.1016/j.gene.2015.10.050.
Korkmaz EM, Doğan Ö, Budak M, Başibüyük HH. 2015. Two nearly complete mitogenomes of wheat stem borers, Cephus pygmeus (L.) and Cephus sareptanus

Dovnar-Zapolskij (Hymenoptera: Cephidae): an unusual elongation of $r r n S$ gene. Gene 558:254-264 DOI 10.1016/j.gene.2014.12.069.
Korkmaz EM, Doğan Ö, Durel BS, Temel Altun B, Budak M, Başıbüyük HH.
2018. Mitogenome organization and evolutionary history of the subfamily Cephinae (Hymenoptera: Cephidae). Systematic Entomology 43(3):606-618 DOI 10.1111/syen. 12290 .
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870-1874 DOI 10.1093/molbev/msw054.
Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. Partition finder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29:1695-1701 DOI 10.1093/molbev/mss020.
Leppänen SA, Altenhofer E, Liston AD, Nyman T. 2012. Phylogenetics and evolution of host-plant use in leaf-mining sawflies (Hymenoptera: Tenthredinidae: Heterarthrinae). Molecular Phylogenetics and Evolution 64:331-341 DOI 10.1016/j.ympev.2012.04.005.
Li YG, Wu XY. 2010. The investigation and taxonomical research of the sawflies species from Gansu Province III. A list of the genera and species (Hymenoptera: Cimbicidae). Journal of Gansu Forestry Science and Technology 35(1):12-14.
Liston AD, Savina H, Nagy ZT, Sonet G, Boeve JL. 2014. Taxonomy, phylogeny and host plants of some Abia sawflies (Hymenoptera, Cimbicidae). Zootaxa 3821(1):125-132 DOI 10.11646/zootaxa.3821.1.9.
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Qi P, Liu Y. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:1-18 DOI 10.1186/2047-217X-1-18.
Ma Y, Zheng BY, Zhu JC, Achterberg CV, Tang P, Chen XX. 2019. The first two mitochondrial genomes of wood wasps (Hymenoptera: Symphyta): novel gene rearrangements and higher-level phylogeny of the basal hymenopterans. International Journal of Biological Macromolecules 123:1189-1196 DOI 10.1016/j.ijbiomac.2018.11.017.
Malaise R. 1934. Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas unter Leitung von Dr. Sven Hedin und Prof. Sü Ping-Chang. In: Insekten gesammelt vom schwedischen Arzt der Expedition Dr. David Hummel 1927-1930. 23. Hymenoptera. 1. - Arkiv för Zoologi, Stockholm u. a. 27[1934-1935](2%5BA9%5D): 1-40.

Malaise R. 1939. The Genus Leptocimbex Sem. and some other Cimbicidae. Entomologisk Tidskrift 60:1-28.
Malm T, Nyman T. 2015. Phylogeny of the symphytan grade of Hymenoptera: new pieces into the old jigsaw (fly) puzzle. Cladistics 31:1-17 DOI 10.1111/cla.12069.
Nawrocki EP. 2009. Structural RNA homology search and alignment using covariance models. Washington: University in St. Louis.

Niu GY, Korkmaz EM, Doğan Ö, Zhang YY, Aydemir MN, Budak M, Du SY, Başıbüyük HH, Wei MC. 2019a. The first mitogenomes of the superfamily Pamphilioidea (Hymenoptera: Symphyta): mitogenome architecture and phylogenetic inference. International Journal of Biological Macromolecules 124:185-199 DOI 10.1016/j.ijbiomac.2018.11.129.
Niu GY, Zhang YY, Li ZY, Wei MC. 2019b. Characterization of the mitochondrial genome of Analcellicampa xanthosoma gen. et sp. nov. (Hymenoptera: Tenthredinidae). PeerJ 7:e6866 DOI 10.7717/peerj. 6866.
Nyman T, Zinovjev AG, Vikberg V, Farrell BD. 2006. Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae). Systematic Entomology 31(4):569-583 DOI 10.1111/j.1365-3113.2006.00336.x.
Peng Y, Chen B, Li TJ. 2017. Sequencing and analysis of the complete mitochondrial genome of Parapolybia crocea (Hymenoptera:Vespidae). Acta Entomologica Sinicus 60(4):464-474.
Perna NT, Kocher TD. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution 41:353-358 DOI 10.1007/BF01215182.
Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, Kozlov A, Podsiadlowski L, Petersen M, Lanfear R, Diez PA, Heraty J, Kjer KM, Klopfstein S, Meier R, Polidori C, Schmitt T, Liu S, Zhou X, Wappler T, Rust J, Misof B, Niehuis O. 2017. Evolutionary history of the Hymenoptera. Current Biology 27:1-6 DOI 10.1016/j.cub.2017.01.027.
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539-542 DOI 10.1093/sysbio/sys029.
Ross HH. 1945. Sawfly genitalia: terminology and study techniques. Entomological News 61(10):261-268.
Schmidt S, Taeger A, Morinière J, Liston A, Blank SM, Kramp K, Kraus M, Schmidt O, Heibo E, Prous M, Nyman T, Malm T, Stahlhut J. 2017. Identification of sawflies and horntails (Hymenoptera, 'Symphyta') through DNA barcodes: successes and caveats. Molecular Ecology Resources 17:670-685 DOI 10.1111/1755-0998.12614.
Schmidt S, Walter GH. 2014. Young clades in an old family: major evolutionary transitions and diversification of the eucalypt feeding pergid sawflies in Australia (Insecta, Hymenoptera, Pergidae). Molecular Phylogenetics and Evolution 74:111-121 DOI 10.1016/j.ympev.2014.02.002.
Schulmeister S. 2003. Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis. Biological Journal of the Linnean Society. Linnean Society of London 79:245-275 DOI 10.1046/j.1095-8312.2003.00233.x.
Schulmeister S, Wheeler WC, Carpenter JM. 2002. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18:455-484 DOI 10.1111/j.1096-0031.2002.tb00287.x.

Sharkey MJ, Carpenter JM, Vilhelmsen L, Heraty J, Dowling APG, Schulmeister S, Murray D, Andrew R, Ronquist F, Krogmann L, Wheeler WC. 2012. Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics 28:80-112 DOI 10.1111/j.1096-0031.2011.00366.x.
Siebert S, Backofen R. 2005. MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons. Bioinformatics 21:3352-3359 DOI 10.1093/bioinformatics/bti550.
Song SN, Tang P, Wei SJ, Chen XX. 2016. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Scientific Reports 6(1):20972-20972 DOI 10.1038/srep20972.
Song SN, Wang ZH, Li Y, Wei SJ, Chen XX. 2015. The mitochondrial genome of Tenthredo tienmushana (Takeuchi) and a related phylogenetic analysis of the sawflies (Insecta: Hymenoptera). Mitochondrial DNA 27(4):1-2 DOI 10.3109/19401736.2015.1053129.
Taeger A, Blank SM, Liston AD. 2010. World catalog of Symphyta (Hymenoptera). Zootaxa 2580:1-1064 DOI 10.11646/zootaxa.2580.1.1.
Takeuchi K. 1952. A generic classification of the Japanese Tenthredinidae (Hymenoptera: Symphyta). Kyoto, 1-90.
Tang P, Zhu JC, Zheng BY, Wei SJ, Sharkey MJ, Chen XX, Vogler AP. 2019. Mitochondrial phylogenomics of the Hymenoptera. Molecular Phylogenetics and Evolution 131:8-18 DOI 10.1016/j.ympev.2018.10.040.
Vaidya G, Lohman DJ, Meier R. 2011. Sequence Matrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171-180 DOI 10.1111/j.1096-0031.2010.00329.x.
Viitasaari M. 2002. Sawflies (Hymenoptera, Symphyta) I. A review of the suborder, the Western Palaearctic taxa of Xyeloidea and Pamphilioidea. Helsinki: Tremex Press Ltd.
Vilhelmsen L. 2001. Phylogeny and classification of the extant basal lineages of the Hymenoptera (Insecta). Zoological Journal of the Linnean Society 131:393-442 DOI 10.1111/j.1096-3642.2001.tb01320.x.
Vilhelmsen L. 2015. Morphological phylogenetics of the Tenthredinidae (Insecta: Hymenoptera). Invertebrate Systematics 29:164-190 DOI 10.1071/IS14056.
Vilhelmsen L. 2019. Giant sawflies and their kin: morphological phylogeny of Cimbicidae (Hymenoptera). Systematic Entomology 44:103-127 DOI 10.1111/syen.12314.
Wei SJ, Niu FF, Du BZ. 2014. Rearrangement of $\operatorname{trn} Q-\operatorname{trn} M$ in the mitochondrial genome of Allantus luctifer (Smith) (Hymenoptera: Tenthredinidae). Mitochondrial DNA Part A 27(2):856-858 DOI 10.3109/19401736.2014.919475.
Wei SJ, Shi M, Chen XX, Sharkey MJ, Achterberg CV, Ye GY, He JH. 2010. New views on strand asymmetry in insect mitochondrial genomes. PLOS ONE 5(9):e12708 DOI 10.1371/journal.pone. 0012708.
Wei SJ, Wu QL, Liu W. 2015. Sequencing and characterization of the Monocellicampa pruni (Hymenoptera: Tenthredinidae) mitochondrial genome. Mitochondrial DNA 26:157-158 DOI 10.3109/19401736.2013.819501.

Wei MC, Nie HY. 1997. Preliminary phylogeny of Symphyta (Hymenoptera). Journal of Central South Forestry University 17(1):36-41.
Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution. International Review of Cytology 141:173-216 DOI 10.1016/S0074-7696(08)62066-5.
Wu QL, Li Q, Gu Y, Shi BC, van Achterberg C, Wei SJ, Chen XX. 2014. The complete mitochondrial genome of Taeniogonalos taihorina (Bischoff) (Hymenoptera: Trigonalyidae) reveals a novel gene rearrangement pattern in the Hymenoptera. Gene 543:76-84 DOI 10.1016/j.gene.2014.04.003.
Yan YC, Niu GY, Lan BC, Wei MC. 2018. Review of Leptocimbex formosanus group (Hymenoptera: Cimbicidae) with two new Chinese species. Entomological Research 48(5):372-383 DOI 10.1111/1748-5967.12298.
Yan YC, Wei MC. 2010. The first record of Orientabia malaise from China with description of a new species (Hymenoptera, Cimbicidae). Acta Zootaxonomica Sinicus 35(3):627-630.
Yan YC, Wei MC. 2013. A new species of the genus Leptocimbex Semenov-Tian-Shanskij (Hymenoptera, Cimbicidae) from Hunan, China. Acta Zootaxonomica Sinicus 38:130-133.
Yan YC, Wei MC. 2016. A new species and a new record of Leptocimbex Semenov (Hymenoptera: Cimbicidae) from China. Entomotaxonomia 38:227-234.
Yan YC, Xiao W, Wei MC. 2014. Two new species of Leptocimbex Semenov (Hymenoptera: Cimbicidae) from China. Entomotaxonomia 36:311-320.
Zhao Y, Zhang H, Zhang Y. 2017. Complete mitochondrial genome of Neochauliodes parasparsus (Megaloptera: Corydalidae) with phylogenetic consideration. Biochemical Systematics \& Ecology 70:192-199 DOI 10.1016/j.bse.2016.12.002.

[^0]: Full-size DOI: 10.7717/peerj.7853/fig-3

