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ABSTRACT
Background. In developing countries, maternal undernutrition is the major intrauter-
ine environmental factor contributing to fetal development and adverse pregnancy
outcomes. Maternal nutrition restriction (MNR) in gestation has proven to impact
overall growth, bone development, and proliferation and metabolism of mesenchymal
stem cells in offspring. However, the efficient method for elucidation of fetal bone
development performance through maternal bone metabolic biochemical markers
remains elusive.
Methods. We adapted goats to elucidate fetal bone development state with maternal
serum bone metabolic proteins under malnutrition conditions in mid- and late-
gestation stages.We used the experimental data to create 72 datasets bymixing different
input features such as one-hot encoding of experimental conditions, metabolic original
data, experimental-centered features and experimental condition probabilities. Seven
Machine Learningmethods have been used to predict six fetal bone parameters (weight,
length, and diameter of femur/humerus).
Results. The results indicated that MNR influences fetal bone development (femur and
humerus) and fetal bone metabolic protein levels (C-terminal telopeptides of collagen
I, CTx, in middle-gestation and N-terminal telopeptides of collagen I, NTx, in late-
gestation), and maternal bone metabolites (low bone alkaline phosphatase, BALP, in
middle-gestation and high BALP in late-gestation). The results show the importance
of experimental conditions (ECs) encoding by mixing the information with the serum
metabolic data. The best classification models obtained for femur weight (Fw) and
length (FI), and humerus weight (Hw) are Support Vector Machines classifiers with
the leave-one-out cross-validation accuracy of 1. The rest of the accuracies are 0.98,
0.946 and 0.696 for the diameter of femur (Fd), diameter and length of humerus (Hd,
Hl), respectively. With the feature importance analysis, the moving averages mixed
ECs are generally more important for the majority of the models. The moving average
of parathyroid hormone (PTH) within nutritional conditions (MA-PTH-experim) is
important for Fd, Hd andHl predictionmodels but its removal for enhancing the Fw, Fl
and Hw model performance. Further, using one feature models, it is possible to obtain
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even more accurate models compared with the feature importance analysis models. In
conclusion, the machine learning is an efficient method to confirm the important role
of PTH and BALPmixed with nutritional conditions for fetal bone growth performance
of goats. All the Python scripts including results and comments are available into an
open repository at https://gitlab.com/muntisa/goat-bones-machine-learning.

Subjects Computational Biology, Data Mining and Machine Learning
Keywords Fetal bone metabolism, Maternal malnutrition, Intrauterine growth retardation,
Computational analysis, Machine learning

INTRODUCTION
In the early stages of embryonic development of mammals, the fetal skeleton development
is composed of fibrous membranes and hyaline cartilage. The bone is usually formed
through endochondral ossification and intramembranous ossification regulated by
intra- or extra-factors in the middle or late gestation. Chondroblasts play an extremely
important role in chondrogenesis by forming chondrocytes and extracellular matrix (EM).
Moreover, the mineral metabolism of fetus skeletal development is essentially dependent
on parathyroid hormone (PTH), and PTH-related proteins (PTHrP) (Mendes et al., 2019),
but not calcitonin, vitamin D/calcitriol, fibroblast growth factor (FGF-23) or sex steroids
(Kovacs, 2015). For PTH, it is critical to regulate calcium and skeletal homeostasis, and fetal-
placental mineral homeostasis (Simmonds et al., 2010), via calciotropic and phosphotropic
hormones (Kovacs, 2014).

For bone formation, the new bone is formed by osteoblasts, and some biomarkers reflect
the activity of osteoblasts. The homeostasis of bone formation and bone resorption is
achieved and regulated through the local mediators and systemic hormones. In general, the
most commonly measured bone formation biomarkers are the bone alkaline phosphatase
(BALP) and its isoforms, osteocalcin (OC) (Lee et al., 2007), and the procollagen-
breakdown products (procollagen type 1 N-terminal and C-terminal propeptides, PICP
and PINP). The BALP is a bone-specific isoform of liver alkaline phosphatase (ALP) on the
surface of osteoblasts, reflects the biosynthetic activity of bone-forming cells, secreted by
the liver, bone, placenta or intestines (Shipman, Holt & Gama, 2013; Tanaka et al., 1997).
Osteocalcin is a bone-derived hormone which affects glucose metabolism by regulating
insulin secretion and sensitivity (Ferron & Lacombe, 2014). The quality of bone strength is
characterized by the EM, turnover rate, and mineral homeostasis. EM contains hyaluronic
acid, proteoglycans, glycoproteins and collagen (type I collagen, the most abundant protein
secreted by osteoblasts in the procollagen form of PICP and PINP) (Wallace et al., 2010).

For bone resorption, the most commonly used biomarkers are divided into collagen-
related or non-collagenous markers, including the hydroxylysine-glycosides, pyridinoline,
deoxypyridinoline, N-terminal and C-terminal cross-linked telopeptide of type I collagen
(NTX-I and CTX-I, respectively) for collagen-related proteins, and cathepsins, tartrate-
resistant acid phosphatase (TRAcP), and bone sialoprotein for non-collagenous proteins
in the serum (Seibel, 2005). Normally, the bone formation and bone resorption are tightly
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coupled to each other in the fetal development (Naylor & Eastell, 2012), therefore, the
biomarkers of bone formation and resorption are useful for reflecting the properties of
fetal bone development.

Maternal malnutrition is a major factor contributing to the adverse pregnancy outcomes
for human beings and livestock. Some previous researches had reported that maternal
malnutritional intake during middle- or late-gestation can also negatively impact fetal
growth trajectory, and result in intrauterine growth retardation (IUGR) (Sharma, Shastri
& Sharma, 2016), fetal growth restriction (Malhotra et al., 2019), low birth weight (Colón-
Ramos et al., 2015), high cardiovascular disease (Zohdi et al., 2014), and fetal kidney
development issue (Wood-Bradley et al., 2015). MNR affects fetal development by first
to support the brain, heart and liver development by limiting bone development, further
results in long-term consequences on postnatal health of offspring (Zhu et al., 2006). For
adults, the influences of dietary nutrients on mesenchymal stem cells, including osteoblasts
and osteoclasts, are complex, some nutrients, like calcium, magnesium, silicon, vitamin
D/K/A/C/B, protein, iodine, docosahexaenoic acid, phosphorus, potassium and boron, can
promote bone formation, whereas others (excessive zinc, manganese, copper) may have
adverse effects on bone formation (Price, Langford & Liporace, 2012).

Bone is identified as an endocrine organ regulating glucose and energy metabolism
(Lee et al., 2007). The lacking of osteoblast-secreted osteocalcin in mice decreases β-cell
proliferation, glucose intolerance and insulin resistance, further proving that skeleton has
been accompanying with an endocrine regulation in sugar homeostasis (Lee et al., 2007).
The maternal nutrition status is the key factor for fetal bone development. For instance,
the insufficiency of maternal vitamin D is associated with fetal health issue in later life,
childhood rickets, schizophrenia and type 1 diabetes (Mahon et al., 2010). Vitamin D
insufficiency can also influence the fetal femoral development (Wheeler et al., 2018).

Meanwhile, it has been demonstrated that a short-term maternal energy restriction
in late-gestation of beef calves influences gene expression related to energy metabolism,
immunity, stress response and muscle contraction (Sanglard et al., 2018). Impacts of
prenatal nutrition on ruminant production and performance have also been investigated: a
focus on growth and metabolic and endocrine function in sheep (Khanal & Nielsen, 2017).
Therefore, it would be essential to depict the fetal bone development profiles with the
maternal bone metabolic markers, to monitor fetal bone development performances with
maternal bone metabolic proteins.

Machine learning (ML) is a kind of artificial intelligence with the statistical methods
for clinical medicine data classification. Until right now, several ML techniques have been
widely applied in clinical bone metabolism disease or bone researches with higher accuracy
performance for diagnosis of osteopathy. In here, we briefly summarize a few successful
applications of machine learning on osteopathy, such as the osteoporosis risk assessment
for postmenopausal women (Yoo et al., 2013), pediatric bone age assessment (Halabi et
al., 2019), the occurrence of bisphosphonate-related osteonecrosis (Kim et al., 2018), bone
surface modifications (Dominguez-Rodrigo, 2019), trabecular bone mechanics (Sohail et
al., 2019), or bone marrow associated with relapsed acute leukemia (Li et al., 2019a; Li et
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al., 2019b). However, none of them reported the association of fetal bone development
with maternal bone metabolites by machine learning techniques.

Herein, we searched for the best classification models that will be able to predict the
bone parameters (femur and humerus weight, diameter and length) of the fetus by using
Machine Learning methods with goat serum metabolic data and experimental conditions
as inputs. Previous works demonstrated the efficiency of mixing original inputs with the
experimental conditions into experiment-centered features (Moving Averages, MAs) (Liu
et al., 2017a; Liu et al., 2017b; Ran et al., 2016). We compared this methodology with the
classical machine learning (ML) where the experimental condition information is included
as input features using one-hot representation (Pedregosa et al., 2011). The power of ML
algorithms had been successfully demonstrated in many biomedical applications (Le & Ou,
2016; Le, 2019; Le et al., 2019).

MATERIALS & METHODS
Experimental design and animal management
All the protocols for use of animal and experimental procedure in present study were
approved by the Animal Care Committee according to the Animal Care and the Use
Guidelines of the Institute of Subtropical Agriculture, Chinese Academy of Sciences
(ISA-CAS), Changsha, China (No. KYNEAAM-2015-0009).

The experiment was conducted to discover the influence of MNR on the fetal bone
growth performance in the middle (from days 45 to 100) and late gestation (from days
96 to 135) periods. Forty healthy female goats (Liuyang black goat, a Chinese local
meat-production goat breed), in 2nd parity with the similar initial body weight and genetic
background were collected and assigned to four groups (10 maternal goats for each) in
a completely equally randomized design. These groups included the control (C) group
in middle gestation (C-M), maternal nutrition restriction (R) group in middle gestation
(R-M), C group in late gestation (C-L) and R group in late gestation (R-L), respectively.

The goats in control group were fed with 100% maintenance requirements of meat-
producing goats of China (MpGC-2004), where, R group with 60% maintenance
requirements of MpGC-2004 (Zhou et al., 2019). All experimental goats were provided by
Liuyang BlackGoatsNutritionalMetabolism InnovationBreeding Base of ISA-CAS, natural
crossing with breeding male goats after synchronization. The mating day was recorded
to calculate the gestation day. All maternal goats used were free-range grazing before the
experiments of maternal nutritional restriction. In the trial period, each pregnancy goat
was kept in a well-ventilated individual cage with the proper temperature and humidity
with free access to clean drinking water in an adaption of 3 days.

The average daily intake was measured and recorded for each pregnant goat. The ratio
of concentrate to roughage (fresh crushed Miscanthus spp.) fed was set as 4:6 for middle
gestation, and 6:4 for late gestation. The ingredients of feed concentrate on a dry matter
(DM) basis are shown in Table 1. In general, the amount of intake increased gradually
with increasing gestational days. The initial daily intake of pregnancy goats was around
0.85–0.95 kg, 1.15–1.25 kg for middle and late gestation periods, respectively. The feed
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Table 1 Ingredients and compositions of the experimental concentrate. Premix of Mineral and Vita-
min used was the same with one of our previous work.

Ingredients DM
basis, %

Chemical compositions DM
basis, %

Corn 67.00 Dry matter, DM 89.7
Soybean meal 20.65 Crude protein, CP 21.94
Fat powder 8.00 Acid detergent fiber, ADF 54.00
Calcium bicarbonate 0.93 Neutral detergent fiber, NDF 35.00
Calcium carbonate 0.97 Calcium, Ca 0.68
Sodium carbonate 0.45
Premix of Mineral and Vitamin1 2.00

amount of R group was adjusted weekly to 60% average daily intake of C group in the
previous week. Each goat was fed twice daily at 08:30 h and 17:00 h. Daily intake of
concentrate and forage was recorded.

In the gestation days 100 and 135, maternal goats were slaughtered and used to collect
bone and blood samples. During the experimental period, some pregnancy goats aborted
for some uncontrolled reasons. In total, twenty-four maternal goats (nine goats for C-M
group, six goats for R-M group; four goats for C-L and five goats for R-L) were slaughtered
to collect bone and blood samples. In addition, 34 fetal goats were collected for sampling
in different treatments and gestation periods, including 10 fetuses in C-M, 10 fetuses in
R-M, six fetuses in C-L and eight fetuses in R-L, respectively.

Sample collecting and analysis
The vein blood and umbilical cord blood samples were collected with normal vacuum
blood collection tubes from jugular vein and umbilical cord before slaughter, respectively.
All blood samples were allowed to stand for 2 h, centrifuged at 3,000 g/min for 15 min
at 4 ◦C, and separated into 1.5 ml centrifugation tubes, stored at −80 ◦C refrigerator
until further analysis. After slaughtered, the left femur and left humerus of the young and
maternal goats were collected entirely and peeled off the associated soft tissue completely.
The bone samples were washed with normal saline, dried with filter paper, and recorded
the bone weights. The length and diameter of the middle spine of bone were measured
with a Vernier Caliper and recorded all the parameters.

We used ELISA kits to determine the dynamic profiles of some skeleton ossification-
associated parameters in the serum, like parathyroid hormone (PTH), bone alkaline
phosphatase (BALP), osteocalcin (also known as bone gamma-carboxyglutamic acid
containing protein, BGLAP), tartrate-resistant phosphatase (TRAP), type I collagen amino
terminal peptide (INTP), and type I collagen carboxy terminal peptide (CTX-I) with the
specific ELISA kits. Among, the PTH kit (catalog: CSB-E13082G; lot: C0351620332), BALP
kit (catalog: CSB-E13080G; lot: G13035060), BGLAP kit (catalog: CSB-EL002682GO; lot:
F30035061) were purchased from CUSABIO Biotech. Co., Ltd. The TRAP kit (catalog:
MBS014917; lot: #0812015), INTP kit (catalog: MBS028250; lot: #0812015), and CTX-I
kit (catalog: MBS267426; lot: #36271309) were made in USA, and purchased from Well
Biological Science Co., Ltd.
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Figure 1 Methodology flow for bone parameters–serummetabolism study.
Full-size DOI: 10.7717/peerj.7840/fig-1

Database construction and modelling
Original experimental data resources
In present work, the fetus and maternal femur and humerus bone weights were collected
and measured in the conditions of maintenance nutrient requirements (MNR) and
nutrition restriction (60% MNR) for goats in the middle and late gestation periods. We
also determined the serum bonemetabolic proteins of young andmaternal goats, including
PTH, BALP, BGLAP, INTP, TRAP, and CTX-I. In total, there were 61 fetus instances for
the bone parameters and 58 instances for the goat serum bone metabolic proteins. As
bone parameters there are femur weight (Fw, g), femur length (Fl, mm), femur diameter
(Fd, mm), humerus weight (Hw, g), humerus length (Hl, mm), and humerus diameter
(Hd, mm). The values were measured in three types of experimental conditions (ECs):
animal type (Animal), gestation periods (Period), and nutrient restriction (Treat). Animal
included 34 foetuses and 24 maternal goats, gestation periods were about middle and late
gestations, and nutrient restriction parameters were 100% or 60% nutrient requirements
for pregnancy maternal goats.

Dataset construction and predictive modelling
The entire project was structured in two principal parts: (1) dataset pre-processing before
ML and (2) building of ML classifiers that are able to predict the bone parameters using
serum metabolic data and experimental conditions information. Each part had several
sections presented below (see Fig. 1).

The entire project calculations were included into two open repositories, GitHub
and GitLab (Munteanu & Liu, 2019a; Munteanu & Liu, 2019b). At first, two scripts
(Bones_1_CreateMA.ipynb, Bones_2_CreateMAi.ipynb) were integrating the data,
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transforming the output variables into classes, and calculated new features such as Moving
Averages (MAs, experimental-center transformations = difference between original values
and the average of values in specific ECs) of six bone metabolic features using 3 ECs (see
Eq. (1)), and added probabilities of the separated and mixed ECs.

MAij =Avgi(Featureij)−Featureij (1)

Featureij is the bone metabolic input feature j measured in experimental condition EC i.
Avgi (Featureij) represents the mean of all metabolic features j in EC i. These are the script
transformations of the initial data:

• Bone parameters and metabolic data were integrated using the data from serum ID and
ECs: SerNum, Animal, Treat, and Period. A dataset with 56 instances was created.
• The output variables were transformed using Robust scaler (manage better the outliers)
for each type of Animal. The continuous values of the output variables were converted
into classes using a cutoff = 0 as the median of the values because of the Robust
transformation. Six output variables would be used for the classifiers: Fw_Class, Fl_Class,
Fd_Class, Hw_Class, Hl_Class, Hd_Class. The reason for separated transformation is
that the values of the Fetus and Mon are already very different and a general scaling +
cutoff will separate the values by animal type. In consequence, the models would predict
if an output is from Fetus or Mon, but not if it is low or high values. Our models would
be predictable that a specific output variable had low and high values.
• Feature engineering for inputs using experimental conditions and bone metabolic
proteins: MAs for 6 metabolic variables (Metab: PTH, BALP, BGLAP, INTP, TRAP,
CTX-I) using 3 ECs (Animal, Treat, Period). The results were MAmix = MA for a set
of ECs (6 features = 6 metabolic variables * 1 set of ECs): MA-PTH-experim, MA-
BALP-experim, MA-BGLAP-experim, MA-INTP-experim, MA-TRAP-experim, MA-
CTX-I-experim. In addition, MAs for each type pf EC were calculated (18 new features
= 6 metabolic variables * 3 ECs): MA-PTH-Animal, MA-BALP-Animal, MA-BGLAP-
Animal, MA-INTP-Animal, MA-TRAP-Animal, MA-CTX-I-Animal, MA-PTH-Treat,
MA-BALP-Treat, MA-BGLAP-Treat, MA-INTP-Treat, MA-TRAP-Treat, MA-CTX-
I-Treat, MA-PTH-Period, MA-BALP-Period, MA-BGLAP-Period, MA-INTP-Period,
MA-TRAP-Period, and MA-CTX-I-Period.
• One-hot encoding of ECs to be used as inputs in classical ML: one column for each
value of the ECs (6 new features = 3 ECs * 2 values): Animal_Fetus, Animal_Mon,
Treat_Con, Treat_Res, Period_Late, Period_Mid;
• Added probabilities for each ECs in the dataset (Pi = 3 new features for each of 3 ECs):
Prob_Animal, Prob_Treat, Prob_Period;
• Added probability for mixed ECs in the dataset (1 new feature for 1 set of ECs):
Prob_Mix (Pmix).

In the next script (Bones_3_CreateDatasets.ipynb), different types of data were used to
generate 72 datasets in order to check what data were needed for the best classification
model that can predict bone parameters using metabolic data: six output variable classes,
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six one-hot encoding of ECs, six metabolism, six mixed MAs of metabolic data, 18 MAs of
metabolic data for each ECs, one mixed probability, and three EC probabilities.

With these 72 datasets we tested seven ML classifiers with default parameters from
sklearn/python (504 prediction models): KNN (KNeighborsClassifier), SVM linear
(Support Vector Classifier, SVC, with linear kernels, SVM, Support Vector Machines),
SVM (SVC with RBF kernels), LR (LogisticRegression), DT (DecisionTreeClassifier),
RF (RandomForestClassifier, RF, Random Forest), and XGB (XGBClassifier, XGB,
XGBoost). The used pipelines consisted in (1) scaling input features with RobustScaler
and the classifier. Two types of cross-validation were tested: n-fold CV (n= 2, 3, 5, and
10) and LOOCV (Leave-one-out cross-validation). The best CV for a small dataset is
always LOOCV. The results for n-fold CV are presented only in the project repository.
Balanced accuracy was used as optimization score for ML methods in the case of n-fold CV
(Bones_4_OuterCV-Pipelines-ACC.ipynb) and LOOCV (Bones_4_OuterCV-Pipelines-
LOOCV.ipynb). The scripts tested both the MA datasets and the classical ML datasets
using one-hot encoding of ECs (Bones_4_OuterCV-Pipelines-LOOCV-OneHot.ipynb).
Therefore, we tested if MAs inputs were better than the original metabolic inputs with
one-hot encoding ECs. In other words, we tested what methodology was better for our task:
the encoding of ECs into MAs (mixed information of metabolism and ECs) or the one-hot
representation of ECs as input binary variables (1/0 values). In ML, the categorical features
cannot be handled by all the MLmethods. Therefore, there is a need for the transformation
of the categorical values into numerical ones. The one-hot encoding is used when there is
no natural order between the categories. If we use the simple integer encoding (an integer
for any category), we will allow the model to assume a natural ordering between categories.
This could produce poor performance or unexpected results.

In addition, we evaluated the feature importance by feature removal method for each
of the best models. Thus, for each linear or nonlinear SVM model, we removed each input
variable and calculated the new ACC values (LOOCV). (see Bones_5_FeatureI-mportance-
Pipelines-LOOCV.ipynb). The differences between the ACC with pool dataset (all features)
and the new ACC for each dataset without one feature were presented. If the removal of a
feature will determine the decrease of the ACC, this feature is considered important. If the
removal of a feature will not change the ACC, the feature is not important for the model.
If the removal of one feature will increase the ACC, this feature represents a noise for the
model and it should be eliminated. For the best models for each output, a different feature
selection was tested: create models with the same ML method and dataset but using only
one feature (Bones_6-OneFeature-Models-LOOCV-ACC.ipynb).

RESULTS
Fetal bone developmental profiles
The effects of MNR on gestation goats for fetal bone growth profiles (including weight,
length and diameter of femur and humerus) are presented in Table 2. In the middle
gestation, MNR improved the fetal bone weight, but decreased the length and diameter of
bone (femur and humerus). In the late gestation, MNR enhanced the weight and diameter
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Table 2 Effect of intake restriction on fetal bone properties in middle- and late- gestations of goats.

Item Index Middle gestation (100 d) Late gestation (135 d)

C R SEm P value C R SEm P value

weights (g) 9.97 10.84 0.625 0.33 79.93 86.02 6.102 0.50
Length (mm) 54.9 53.1 1.50 0.39 139.6 124.8 26.70 0.70Femur

Diameter (mm) 1.5 1.3 0.06 0.02 16.8 17.2 0.84 0.77
weights (g) 9.87 10.45 0.584 0.49 78.85 79.76 9.796 0.95
Length (mm) 54.1 53.6 1.62 0.85 126.3 130.5 5.72 0.62Humerus

Diameter (mm) 132.2 133.9 4.04 0.76 16.3 16.8 1.22 0.77

Notes.
C represents the control group feeding with 100% feeds; R represents restriction group feed with 40% of feeds, BMD, Bone mineral density (g/cm3), SEm, standard error of mea-
surement.

Table 3 Effects of maternal intake restriction on bone turnover metabolic proteins of maternal peripheral blood in middle- and late- gestations
of goats.

Item Middle gestation (100d) Late gestation (135d)

C R SEm P value C R SEm P value

PTH 55.67 45.51 8.23 0.354 68.50 67.80 5.240 0.924
BALP 226.11 123.99 55.84 0.19 69.20 119.50 33.160 0.343
BGLAP 22.84 16.39 9.510 0.605 11.60 10.60 0.990 0.537
TRAP 63.25 61.17 6.700 0.814 30.00 29.50 2.800 0.918
INTP 2.24 1.34 0.714 0.358 0.22 0.72 0.121 0.025
CTX-I 7.21 6.52 0.355 0.206 1.10 1.15 0.054 0.532

Notes.
C represents Control group, R represents 40% maternal nutrition restriction group; SEm = standard error of measure, in addition, Parathyroid hormone (PTH, ng/mL), Bone
Alkaline Phosphatase (BALP, mU/mL), Osteocalcin also known as bone gamma-carboxyglutamic acid-containing protein (BGLAP, ng/mL), Tartrate-resistant Phosphatase
(TRAP, U/L), Cross-linked N-terminal telopeptides of type 1 collagen or named Intact N- terminal propeptide of Type 1 procollagen (NTx, INTP, ng/mL), Cross-linked C-
terminal telopeptides of type I collagen (CTx, CTX-I, ng/mL), respectively.

of humerus and femur, and humerus length, but decreased the femur length. However, for
the local goat nutritional research, except the nutritional status providing the nutritional
requirements of fetal skeletal development, the genetic factors of each individual might
also play an important role in fetal skeletal development.

Nutritional restriction on goat bone metabolic indexes
Except the nutritional supplementation, the regulators or biomarkers of bone metabolism
were also taken into consideration for fetal bone development. Here, we measured the goat
bone metabolic proteins (PTH, BALP, BGLAP, TRAP, INTP and CTX-1) for maternal
jugular venous serum and fetal umbilical cord serum (showed in Table 3 and Table 4,
respectively). For maternal goats, the nutritional factor, MNR, reduced the levels of PTH,
BALP, BGLAP, TRAP, INTP and CTX-1 in peripheral serum.

Under the malnutritional condition, low maternal BGLAP level represents low efficient
maternal bone turnover rate. However, our results showed that the other biochemical
markers of bone turnover, TRAcP, had no difference in malnutrition condition. Compared
with significant differences in bone metabolic proteins for maternal individual, fetal bone
metabolic proteins showed a minor variation in the control and malnutrition groups. The
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Table 4 Effects of maternal intake restriction on fetal bone metabolic proteins of placental blood in middle- and late- gestations of goats.

Item Middle restriction Late restriction

C R SEm P value C R SEm P value

PTH 900.13 1000.47 78.81 0.39 768.20 647.80 121.740 0.44
BALP 3.215 3.441 0.425 0.67 3.14 3.24 0.715 0.90
BGLAP 4.27 4.38 0.102 0.37 4.43 4.06 0.249 0.26
TRAP 58.30 61.97 6.56 0.67 38.80 39.60 1.880 0.75
NTx 0.59 0.57 0.040 0.64 0.83 0.46 0.091 <0.01
CTx 1.23 0.94 0.092 0.03 4.29 3.74 0.33 0.23

Notes.
C represents Control group, R represents 40% maternal nutrition restriction group; SEm = standard error of measure, in addition, Parathyroid hormone (PTH, ng/mL), Bone
Alkaline Phosphatase (BALP, mU/mL), Osteocalcin also known as bone gamma-carboxyglutamic acid-containing protein (BGLAP, ng/mL), Tartrate-resistant Phosphatase
(TRAP, U/L), Cross-linked N-terminal telopeptides of type 1

NTx and CTx were reduced in response to maternal malnutrition, CTx was obviously
lower in the middle-gestation, while NTx significantly lower in late-gestation. The PTH
for maternal malnutrition was higher or lower in middle- and late- gestations, respectively.
Whereas, the fetal BALP, BGLAP, and TRAP showed no statistical difference between the
control and malnutritional groups.

Machine learning predictive models
Seventy-two datasets were used to find the bestMLmodel to predict six bone parameters by
using sevenMLmethods such as KNN, SVM linear (linear kernels), SVM (RBF kernels), LR,
DT, RF and XGB. The input features came from 6 one-hot encoding of ECs, six metabolic
original data, six mixed MAs of metabolic data, 18 MAs of metabolic data for each ECs, 1
mixed probability, and three EC probabilities. The Python script was used Robust scaler for
data scaling, cross-validation (n-fold CV, where n= 2, 3, 5, 10 and LOOCV), and balanced
accuracy as performance score.

Table 5 presents the best accuracy (ACC) values obtained for all outputs using only
LOOCV. For 5-, 10-fold CV results or other details, see the repository in GitLab (Munteanu
& Liu, 2019a) or GitHub (Munteanu & Liu, 2019b).

The best CV method for a small dataset was the LOOCV one. The results based on this
CV showed models with all ACC >0.70, with classifiers of five from six outputs with ACC
between 0.75 and 0.90, and one classifier with ACC >0.90. In this study, we observed the
performance of SVM method with bone dataset and LOOCV (all classifiers are SVM/SVM
linear). The most preferred inputs were MAmix, and Metab. MAi was used only for one
output and probabilities are missing. The best classifier with ACC of 0.911 was obtained
for prediction of Fw by using SVM with RBF non-linear kernels and three types of inputs
such as MAi, MAmix, and Metab. There were three outputs (Fl, Hw and Hl) where the
best models used only six MAmix features (MAs for the set of ECs: MA-PTH-experim,
MA-BALP-experim, MA-BGLAP-experim, MA-INTP-experim, MA-TRAP-experim, and
MA-CTX-I-experim). The model for Fl prediction could achieve an ACC of 0.875 with
only 6 input features (MAmix) and a SVMmodel with linear kernels (equivalent of a linear
model). Fd prediction model increased a little with the ACC of 0.893 by adding to MAmix
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the Metab features (6 original metabolic features) and by using SVM with RBF non-linear
kernels. Hw could be predicted with less ACC of 0.75, with only MAmix inputs and SVM
with linear kernels. The model for Hd prediction had a good ACC of 0.857 using SVM
with RBF kernels and MAmix + Metab inputs. An interesting pattern was observed for the
preference of input information for each type of bone parameter: MAmix was used of bone
length (Fl, Hl) prediction, and MAmix + Metab for bone diameter (Fd, Hd) prediction. In
the case of bone weight (Fw, Hw), the preference of inputs was different.

The last test was the comparison of the best ACC values obtained by different inclusion
of EC information into the model inputs: classical one-hot encoding of ECs as binary
inputs for each categorical value versus MA encoding as difference between the original
metabolic data and the average of this data in specific ECs. In Fig. 2, it could be observed
that the classical use of categorical EC values and original metabolic features was unable to
provide good results with the current small dataset for bone parameters prediction. Thus,
one-hot encoding of ECs was able to classify only Fd with ACC of 0.714 (versus 0.893
with MAs) and Fw with ACC of 0.82 (versus 0.911 with MAs). One-hot encoding models
were not able to predict Hd, Hl and Fl (ACC < 0.60). This test demonstrated the need
of MAs to be able to classify low and high values of bone parameters. Additional details
about the one-hot encoding results can be found in our repository notebooks (Munteanu
& Liu, 2019a).

Feature importance
To evaluate the feature importance for the best model for each output, we presented a
feature selection method by individual feature removal (see Bones_5_Feature-Importance-
Pipelines-LOOCV.ipynb). The more an attribute is applied for making key decisions
with decision trees, the higher its relative importance (Tang, Alelyani & Liu, 2014). This
importance is calculated explicitly for each attribute in the dataset, allowing attributes
to be ranked and compared to each other. The ranking of features was based on the
difference between the ACC calculated without a feature (new-ACC) and original ACC
calculated with all features (see Table 6). If the difference is smaller (more negative), it
means that, if you remove that specific feature, the ACC of the model will suffer more
(feature is more important). If the ACC difference is positive, it means that, if you remove
that specific feature, you will obtain a better ACC (feature not important or even noise
for the model). All details are available in our GitLub repository (FeatImpbyRemoval-
LOOCV_SVMlinear_ACC.csv, FeatImpbyRemoval-LOOCV_ACC.csv).
In the case of Fw best model (SVM RBF, ACC = 0.911), the most important features

were MA-PTH-Animal andMA-BALP-experim with a decrease of ACC of 0.054 and 0.036.
In addition, MA-PTH-experim represents a noise for the model and its removal increased
the ACC of the model with 0.035. Thus, the best model for Fw could be considered the
one obtained without MA-PTH-experim, with test ACC of 0.946. Therefore, PTH moving
average for each type of animal was important for the model but not the PTH moving
average in mixed ECs. The feature importance for Fd best model (SVMRBF, ACC= 0.893)
was different. The impact of feature removal of moving averages for INTP, PTH, CTX-I,
and BALP in mixed ECs was very important, with differences in ACC between 0.125 and
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Table 5 Best bone parameters prediction accuracy for LOOCV.

Output MLmethod Input features ACC

Fw SVM MAi, MAmix, Metab 0.911
Fl SVM linear MAmix 0.875
Fd SVM MAmix, Metab 0.893
Hw SVM linear MAmix 0.750
Hl SVM MAmix 0.696
Hd SVM MAmix, Metab 0.857
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Figure 2 LOOCV accuracy of classification models for bone parameter prediction using one-hot vs.
MA encoding of experimental conditions into the input features (direct vs. mixed with metabolic data).

Full-size DOI: 10.7717/peerj.7840/fig-2

0.232. The original metabolic features were less important. Fl best model (SVM linear,
ACC = 0.875) preferred MA-CTX-I-experim and the ACC was improved with 0.036 by
removing MA-PTH-experim. Therefore, the best model for Fl became the one without
MA-PTH-experim, with a test ACC of 0.911.

The Hw best model (SVM linear, ACC = 0.750) showed preference for MA-CTX-
I-experim and considered MA-PTH-experim as noise. By removal of this feature the
model ACC was improved with 0.125. Thus, the new ACC of 0.875 represented the
best performance for Hw. In contrast, Hd best model (SVM, ACC = 0.857) preferred
MA-PTH-experim and MA-BALP-experim, the removal of MA-CTX-I-experim did not
change the ACC, but the elimination of TRAP could increase the model performance
with 0.018. Thus, the best model for Hd became the one without TRAP, with ACC of
0.875. Hl best model (SVM RBF, ACC = 0.696) preferred the same MA-PTH-experim
and MA-BALP-experim, but it could remove MA-BGLAP-experim without any change of
ACC.
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Table 6 Feature importance for the best models.

Output Removed feature New ACC
without
a feature

Difference
with Pool
ACC

Output Removed feature New ACC
without
a feature

Difference
with Pool
ACC

MA-PTH-Animal 0.857 −0.054 MA-CTX-I-experim 0.714 −0.036
MA-BALP-experim 0.875 −0.036 MA-BGLAP-experim 0.732 −0.018
MA-BALP-Animal,
MA-BGLAP-Animal,
MA-INTP-Animal,
MA-TRAP-Animal,
MA-PTH-Treat, MA-
BALP-Treat, MA-
BGLAP-Treat, MA-
TRAP-Treat, MA-
PTH-Period, MA-
BALP-Period, MA-
BGLAP-Period, MA-
BGLAP-experim, MA-
INTP-experim, MA-
CTX-I-experim, PTH,
BALP, BGLAP, INTP,
TRAP

0.893 −0.018 MA-INTP-experim 0.732 −0.018

Fw

MA-PTH-experim 0.946 0.035 MA-TRAP-experim 0.732 −0.018
MA-INTP-experim 0.661 −0.232 MA-BALP-experim 0.750 0.000
MA-PTH-experim 0.679 −0.214

Hw

MA-PTH-experim 0.875 0.125
MA-CTX-I-experim 0.714 −0.179 MA-PTH-experim 0.714 −0.143
MA-BALP-experim 0.768 −0.125 MA-BALP-experim 0.732 −0.125
PTH 0.804 −0.089 MA-BGLAP-experim,

MA-TRAP-experim
0.804 −0.053

MA-TRAP-experim,
BALP, BGLAP, INTP

0.821 −0.072 PTH, BALP, BGLAP 0.821 −0.036

MA-BGLAP-experim,
CTX-I

0.857 −0.036 MA-INTP-experim,
INTP, CTX-I

0.839 −0.018

Fd

TRAP 0.875 −0.018 MA-CTX-I-experim 0.857 0.000
MA-CTX-I-experim 0.696 −0.179

Hd

TRAP 0.875 0.018
MA-BALP-experim 0.821 −0.054 MA-PTH-experim,

MA-BALP-experim
0.643 −0.053

MA-INTP-experim 0.821 −0.054 MA-CTX-I-experim 0.661 −0.035
MA-TRAP-experim 0.839 −0.036 MA-INTP-experim,

MA-TRAP-experim
0.679 −0.017

MA-BGLAP-experim 0.857 −0.018

Hl

MA-BGLAP-experim 0.696 0.000

Fl

MA-PTH-experim 0.911 0.036

As a general view for the feature importance, it is noticeable that the moving averages
in mixed ECs were generally more important for the majority of the models. MA-PTH-
experim was important for Fd, Hd, and Hl but its removal for Fw, Fl and Hw improved the
model performance. In general, we observed the important role of PTH and BALP mixed
with ECs.
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With the best models and ML methods obtained Table 5, one feature models have been
tested for all outputs. Therefore, Table 7 presents the ACC values for these models and the
differences with the pool feature models. In the case of the ACC improvements, the text
has a bold style. First of all, it should be pointed out that the current study is interested
into models that include experimental conditions in order to use them to understand the
relations with the fetus bones.

Fwmodels based on only one feature can bemore accurate than the bestmodel presented
with the pool dataset. Thus, a better model with ACC values of 1.00 (LOOCV) could be
obtained with PTH and TRAP or the mixed feature MA-TRAP-experim. A number of 18
features could be use separately to improve the best models with pool features. INTP and
the mixed features with INTP are not able to generate any stable model. In consequence,
the best model for Fw (ACC = 1.00) become the one that uses SVM (radial kernel) and
MA-TRAP-experim.

In the case of Fd classifications, it can be observed that using simple features without
experimental conditions such as BGLAP and PTH can be used as unique feature of
prediction models with better ACC (maximum of 0.982). In contrast, other original
features such as CTX-I, TRAP, INTP and BALP or the mixed features are not able to create
better predictions. In the case of Fl, all the experimental features are improving the ACC to
a maximum value of 1.00 for MA-PTH-experim, MA-BALP-experim, MA-INTP-experim,
and MA-TRAP-experim.

Hd classifications could be improved if PTH, BGLAP, MA-BGLAP-experim, MA-
TRAP-experim and MA-BALP-experim are used as single feature with SVM. The best
improvements were obtained with PTH (ACC = 0.982) and MA-BGLAP-experim (ACC
= 0.946). Hl classifications cannot be improved be using one feature. Hw can be improved
to ACC = 1.00 by using only MA-INTP-experim. It implied that the maternal plasma
metabolite (INTP) can be used to perfectly match or predict the fetal humerus growth
performance (high or low weight) in the experimental conditions.

DISCUSSION
Nutritional restriction on bone metabolic profiles
Maternal limited nutrition intake during gestation impairs fetal growth and development
by exacerbating deleterious outcomes (Abu-Saad & Fraser, 2010; Wu et al., 2004; Wu,
Imhoff-Kunsch & Girard, 2012), such as intrauterine growth restriction (IUGR) (Sharma,
Shastri & Sharma, 2016), birth defects and low birth weight (Abu-Saad & Fraser, 2010),
bone development (Kueper et al., 2015), and low fetal immunity (Macpherson, De Aguero
& Ganal-Vonarburg, 2017). Generally speaking, maternal instinct is to mobilize the body
potential with the priority to meet the nutritional requirements of the fetal or placental
growth in malnutrition condition (Wu, Imhoff-Kunsch & Girard, 2012). In present work,
the biomarkers of bone resorption (BGLAP, TRAP, and CTX-1) or bone formation (BALP,
and INTP) in serum reduced in goat group under nutrient restriction, indicating maternal
malnutrition indeed influences the maternal or fetal bone metabolic turnover (Kovacs,
2001; Wu et al., 2004; Wu, Imhoff-Kunsch & Girard, 2012). According to the previous
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Table 7 Accuracies of the best models using only one feature.

Output Feature ACC Diff. with
Pool ACC

Output Feature ACC Diff. with
Pool ACC

CTX-I 0.411 −0.482 CTX-I 0.250 −0.607
MA-CTX-I-experim 0.429 −0.464 MA-CTX-I-experim 0.429 −0.428
MA-INTP-experim 0.554 −0.339 TRAP 0.607 −0.250
TRAP 0.589 −0.304 MA-PTH-experim 0.625 −0.232
MA-PTH-experim 0.607 −0.286 MA-INTP-experim 0.732 −0.125
MA-BALP-experim 0.714 −0.179 BALP 0.821 −0.036
INTP 0.768 −0.125 INTP 0.857 0.000
MA-BGLAP-experim 0.786 −0.107 BGLAP 0.875 0.018
MA-TRAP-experim 0.786 −0.107 MA-BGLAP-experim 0.911 0.054
BALP 0.839 −0.054 MA-TRAP-experim 0.929 0.072
BGLAP 0.946 0.053 MA-BALP-experim 0.946 0.089

Fd

PTH 0.982 0.089

Hd

PTH 0.982 0.125
MA-INTP-experim 0.714 −0.197 MA-PTH-experim 0.357 −0.339
MA-INTP-Animal 0.768 −0.143 MA-CTX-I-experim 0.411 −0.285
INTP 0.786 −0.125 MA-BALP-experim 0.464 −0.232
MA-PTH-Animal 0.821 −0.090 MA-BGLAP-experim 0.500 −0.196
CTX-I 0.821 −0.090 MA-INTP-experim 0.625 −0.071
MA-CTX-I-Animal 0.839 −0.072

Hl

MA-TRAP-experim 0.696 0.000
MA-CTX-I-Period 0.857 −0.054 MA-BGLAP-experim 0.911 0.036
MA-BGLAP-Animal 0.875 −0.036 MA-CTX-I-experim 0.982 0.107
MA-CTX-I-Treat 0.875 −0.036 MA-PTH-experim 1.000 0.125
MA-PTH-experim 0.893 −0.018 MA-BALP-experim 1.000 0.125
BALP 0.911 0.000 MA-INTP-experim 1.000 0.125
BGLAP 0.911 0.000

Fl

MA-TRAP-experim 1.000 0.125
MA-BALP-Period 0.929 0.018 MA-BGLAP-experim 0.464 −0.286
MA-BALP-Animal 0.946 0.035 MA-BALP-experim 0.589 −0.161
MA-BALP-Treat 0.946 0.035 MA-PTH-experim 0.946 0.196
MA-INTP-Treat 0.964 0.053 MA-TRAP-experim 0.946 0.196
MA-BGLAP-experim 0.964 0.053 MA-CTX-I-experim 0.982 0.232
MA-CTX-I-experim 0.964 0.053 MA-INTP-experim 1.000 0.250
MA-BALP-experim 0.982 0.071
MA-TRAP-Animal 1.000 0.089
MA-PTH-Treat 1.000 0.089
MA-BGLAP-Treat 1.000 0.089
MA-TRAP-Treat 1.000 0.089
MA-PTH-Period 1.000 0.089
MA-BGLAP-Period 1.000 0.089
MA-INTP-Period 1.000 0.089
MA-TRAP-Period 1.000 0.089
MA-TRAP-experim 1.000 0.089
PTH 1.000 0.089

Fw

TRAP 1.000 0.089

Hw

Notes.
ACC values corresponds to LOOCV for models the ML methods of the best models (see Table 5).
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report, fetal growth and development is most vulnerable in the early-gestation (Wu et al.,
2006). However, the influence of maternal nutrition intake also plays the vital role for fetal
bone development in middle- and late- gestations. Under the malnutritional condition,
low maternal osteocalcin (BGLAP) level represents low efficient maternal bone turnover,
which may be decreased during pregnancy (Charles et al., 1985; Naylor et al., 2000).

The results also showed that fetal bone metabolites showed a minor discrepancy
compared to high difference of mother in malnutritional condition. The BALP, a bone-
specific isoform of ALP on the surface of osteoblasts, an important biomarker reflects
the biosynthetic activity of bone-forming cells (Shipman, Holt & Gama, 2013; Tanaka
et al., 1997). In addition, BGLAP level in the circulation system is also a symbol for
evaluating the bone formation (Booth et al., 2012; Mendes et al., 2019). The serum BALP
level decreased under the nutrition restriction, reflecting that malnutrition (protein
deficiency, zinc deficiency or malnutrition) negatively regulates the secretion of maternal
bone alkaline phosphatase (Sun et al., 2011). Maternal malnutrition might decrease the
glucose metabolic process by decreasing osteocalcin level in maternal peripheral blood by
regulating the insulin secretion and sensitivity (Ferron & Lacombe, 2014; Kanazawa et al.,
2009) in middle-gestation.

In adults, the increasing TRAcP expression might be associated with the osteoporosis
(Solberg et al., 2014), cortical bone mineral content and density (Gradin et al., 2012).
Interestingly, in present work, we found that the biomarkers of bone turnover, the
bone metabolic markers, including NTx, CTx, BALP, BGLAP and TRAP except PTH,
decreased along with gestation time (from middle-gestation to late-gestation). The BGLAP
concentration increased in maternal serum compared to that of fetus, reflecting enhanced
osteoblastic activity. The bone turnover metabolic proteins decreased in late-gestation
is due to maternal goats giving the priority to meet the nutritional requirements of fetal
skeletal development through decreasing the self- bone turnover or resorption. The mother
limits self–bone turnover/resorption rate or further to release more mineral contents of
maternal bones to sustain the fetal bone development while undernutrition issues.

Machine learning predictive models for bone metabolic profiles
Machine learning (ML) is a kind of artificial intelligence with the statistical methods for
clinical medicine data classification. Until right now, several ML techniques have been
widely applied in clinical bone metabolism disease or bone researches with higher accuracy
performance for diagnosis of osteopathy. In here, we briefly summarize a few successful
applications of machine learning on osteopathy, such as the osteoporosis risk assessment
for postmenopausal women (Yoo et al., 2013), pediatric bone age assessment (Halabi et
al., 2019), the occurrence of bisphosphonate-related osteonecrosis (Kim et al., 2018), bone
surface modifications (Dominguez-Rodrigo, 2019), trabecular bone mechanics (Sohail et
al., 2019), or bone marrow associated with relapsed acute leukemia (Li et al., 2019a; Li
et al., 2019b). For instance, the variability of sclerostin (a physiological inhibitor of bone
formation) varied with sex, 25-OH-D and phosphorus levels in haemodialysis (HD)
patients by multivariate regression analysis (Pietrzyk et al., 2019), low serum parathyroid
hormone associated with malnutrition-inflammation complex in chronic kidney disease by
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Chis-square test, linear regression and multivariate logistic regression analysis (Dukkipati
et al., 2010). In addition, the abnormalities of biochemical markers of bone turnover, ALP
and PTH, are associated with mortality of HD patient across age by Cox proportional
hazard models (Lertdumrongluk et al., 2013), and a decrease in intact parathyroid hormone
(iPTH) is associated with higher mortality (Villa-Bellosta et al., 2017). There are also some
previous works that combined with the machine learning algorithms with data processing
analysis of moving average and feature selection to biological phenomena (Deng et al.,
2017; Liu et al., 2016a; Liu et al., 2016b). However, none of them reported the association
of fetal bone development with maternal bonemetabolites by machine learning techniques.

In present work, seven ML methods, including KNN, SVM linear (linear kernels), SVM
(RBF kernels), LR, DT, RF and XGB, were used to find the best ML model to predict 6
bone parameters. Then, the feature selection method within individual feature removal
was used to evaluate the feature importance for each output (predictive parameter). To
some extent, we got some good performance predictive models for matching bone profiles
with serum bone metabolic biomarkers. Generally, it can be observed that isolated PTH
and its mixed features are able to improve the prediction of bone dimensions. The next
important features are BGLAP and its mixed features. Therefore, it could be concluded
that some original features such as PTH and BGLAP are the most important for fetal bone
development performance predictions and experimental-mixed features could be used to
predict bone features in specific experimental conditions. With other words, the original
features could predict bone properties but the experimental conditions could offer more
details.

CONCLUSIONS
The maternal and fetal bone metabolic proteins decrease from middle to late gestation.
Maternal nutrition restriction alters the bone development of offspring (boneweight, length
and diameters of femur and humerus) and the fetal bonemetabolic protein levels, including
CTx level in middle-gestation and NTx level in late-gestion. Maternal nutrition restriction
also influences the maternal bone metabolic protein compositions, resulting in lower
BALP level in middle-gestation and higher BALP level in late-gestation. Furthermore,
we constructed a machine learning model to elucidate the fetal bone performances
associated with maternal or placental serum bone metabolic proteins. This study built
the classifiers with accuracy greater than 0.70 for all bone parameters. In the view of
the feature importance, the moving averages in mixed with experimental conditions are
generally more important for the majority of the models. Particularly, the moving average
of PTHwithin experimental condition (MA-PTH-experim) is important for Fd, Hd, andHl
but its removal for Fw, Fl and Hw improves the model performance. In general, we observe
the important role of PTH and BALP mixed with experimental conditions. In addition,
using only one feature with the Machine Learning methods of the best models, five of the
six outputs can be improved: Fw with MA-TRAP-experim (ACC = 1.00), Fd with PTH
(ACC = 0.982), Fl with MA-PTH-experim (ACC = 1.00), Hw with MA-INTP-experim
(ACC= 1.00) and Hd withMA-BALP-experim (ACC= 0.946). Hl best model using mixed
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features has ACC of only 0.696. Thus, the best classification models with ACC = 1.00 were
obtained for the prediction of femur weight and length, and humerus weight using support
vector machines.
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