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ABSTRACT
Coastal regions worldwide face increasing management concerns due to natural and
anthropogenic forces that have the potential to significantly degrade nearshore marine
resources. The goal of our study was to develop and test a monitoring strategy
for nearshore marine ecosystems in remote areas that are not readily accessible for
sampling. Mussel species have been used extensively to assess ecosystem vulnerability
to multiple, interacting stressors. We sampled bay mussels (Mytilus trossulus) in 2015
and 2016 from six intertidal sites in Lake Clark and Katmai National Parks and
Preserves, in south-central Alaska. Reference ranges for physiological assays and gene
transcription were determined for use in future assessment efforts. Both techniques
identified differences among sites, suggesting influences of both large-scale and local
environmental factors and underscoring the value of this combined approach to
ecosystem health monitoring.

Subjects Conservation Biology, Ecosystem Science, Marine Biology
Keywords Mytilus trossulus, Gene transcription, Biomarker, Nearshore marine ecosystem, Alaska,
Ecosystem management, Monitoring

INTRODUCTION
As a result of rapid changes to the global climate and increases in anthropogenic stressors,
challenges are mounting along coastal regions around the world. These pressures have the
potential to significantly degrade nearshore marine resources and are a threat not only in
developed areas, but also in remote regions, including coastal areas of Alaska (Breitburg
& Riedel, 2005). Alaska has tens of thousands of miles of coastline that are only accessible
by boat or plane and during short periods of the summer due to remoteness and weather
conditions. Recognizing that change is inevitable, technologies for monitoring the status of
nearshore marine ecosystems in remote areas are necessary for managing and maintaining
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healthy coastal communities. One approach for assessing ecosystem status is the use of
indicator species, including intertidal bivalves (Beyer et al., 2017).

Intertidal bivalve communities are spatially and temporally variable (Bodkin et al., 2017)
and are vulnerable to a wide range of influences and disturbances (Denny & Wethey, 2001;
Menge & Branch, 2001). Species composition, abundance, and physiology are influenced
by a complex variety of stressors, the cumulative effects of which are generally not well
understood (Gunderson, Armstrong & Stillman, 2016). In Alaska, nearshore communities
have been affected by earthquakes, including the major 1964 Alaska earthquake (Baxter,
1971), volcanic eruptions (DeGange et al., 2010; Walker et al., 2013; Jewett & Drew, 2014;
Zimmermann et al., 2018), and hydrocarbon contamination from the 1989 Exxon Valdez
oil spill (Armstrong et al., 1995; Driskell et al., 1996; Lees, Houghton & Driskell, 1996;
Fukuyama, Shigenaka & Hoff, 2000). Further stressors will be forthcoming with increases
in ocean temperature, decreases in pH (Lesser et al., 2010; Hoegh-Guldberg & Bruno, 2010;
Gaylord et al., 2011; Bijma et al., 2013), contaminants (Franzellitti et al., 2010), and human
harvest of marine species (Jamieson, 1993).

Intertidal invertebrates are important members of nearshore communities, and in the
Gulf of Alaska are a primary food source for a variety of marine and terrestrial vertebrate
and invertebrate predators including brown bears (Smith & Partridge, 2004), sea stars (Paul
& Feder, 1975; Fukuyama & Oliver, 1985), shorebirds (Gill Jr & Handel, 1990), sea ducks
(Lewis, Esler & Boyd, 2007), sea otters (Calkins, 1978; Doroff & DeGange, 1994; Coletti et
al., 2016) and human subsistence users (Fall & Field, 1996). Bay mussels (Mytilus trossulus)
are ubiquitous throughout nearshore communities in the Gulf of Alaska and northeast
Pacific. Changes in bay mussel populations due to abiotic or biotic factors may result in
alterations of the entire intertidal community structure (Harley, 2011; Navarrete, Menge &
Daley, 2000). For example, a reduction in mussel abundance due to predation or thermal
stress decreased overall species diversity in rocky intertidal communities (Harley, 2011).

Nearshore species can serve as a focal point for understanding variables that influence the
nearshore ecosystem, as they integrate marine and terrestrial stressors into their behavior
and condition and reflect these drivers in their abundance and population trends over
time. In our work, bay mussels were selected as an indicator species because they are
abundant, an important component of the nearshore food web and, as prodigious filter
feeders, will consume and sequester contaminants. Studies using mussels have included
assessment of contaminants and changing climate conditions (Akaishi et al., 2007; Beyer
et al., 2017; Coray, St.Jean & Bard, 2007; Gagné et al., 2007; Halldórsson, Svavarsson &
Granmo, 2005; Halldórsson et al., 2008; Shaw et al., 2011), which are frequent goals of
long-term monitoring.

In recent years, there have been major advances in assays to evaluate the physiological
condition of mussels using biomarkers (biological metrics that quantify a physiological
response including detection of proteins or their activity) and gene transcription
(measurement of alterations in transcription of specific genes) to elucidate changes at
the molecular level in response to environmental changes and contaminant exposure
(Livingstone et al., 2000; Evans & Hofmann, 2012; Hüning et al., 2013; Bolognesi & Cirillo,
2014). Gene transcription is the process by which information from the DNA template of a
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particular gene is transcribed into messenger RNA (mRNA) and eventually translated into
a functional protein. The amount of a particular gene that is expressed is physiologically
dictated by a number of intrinsic and extrinsic factors, and analysis of mRNA and protein
levels can provide information about dynamic changes in the functional state of an
organism. A holistic approach that combines biomarker and gene transcription is gaining
momentum in other regions, with researchers evaluating and applying these methods to
mussels and other invertebrates for environmental monitoring to improve sensitivity and
efficiency (Banni et al., 2017; Beyer et al., 2017; Carella et al., 2018; Sforzini et al., 2018).
An advantage of measuring gene transcription is that mRNA production is the earliest
observable sign an organism is responding to a stressor, but mRNA is generally not
as stable as proteins (De Sousa Abreu et al., 2009; McLoughlin et al., 2006). While protein
levels respondmore slowly thanmRNA, their often greater stability makes assessing protein
biomarkers advantageous. Thus, combining the two approaches can be complementary
as increases in gene transcripts and proteins are often detected concurrently, but they can
also provide information that may be missed when using one method alone.

Often, large scale investigations into populations and ecosystems have been driven by
catastrophic changes such as oil spills (Wells, Butler & Hughes, 1995; Peterson et al., 2003),
mortality events (Lessios, 1988) and ecological extinction (Jackson et al., 2001). However,
investigations ‘after the fact’ may be constrained by a lack of baseline data, limiting insight
into ecological pathways and causes of change and recovery (Breitburg & Riedel, 2005). The
goal of this study was to work toward an approach that combines biomarker and genetic
methods to assess the condition of nearshore ecosystems, including those in areas that
are remote and logistically difficult to access. The specific objectives to accomplish this
goal included: (1) acquire baseline physiological and gene transcription data for the bay
mussel across sites in the Gulf of Alaska, (2) assess the relationship between physiological
and gene transcription assays for validation and support of both techniques, and (3)
determine if site-level differences were present. Mussels were sampled in 2015 and 2016
from six intertidal sites in two national parks. The sites were expected to reflect a range
of representative habitat types to generate reference baseline data applicable to mussels in
this region. We hypothesized that we would be able to establish baseline data for the sites
that were sampled and that the biomarker and gene transcription assays would provide
complementary results. Further, we hypothesized that biomarker and gene transcription
results would not be significantly different among sites.

MATERIALS & METHODS
Study organisms and area
Mussels (Mytilus trossulus) were collected during late morning on the rising tide in July of
2015 and 2016 at three sites within each of two national parks in southcentral Alaska: Lake
Clark National Park and Preserve (LACL; sites: Fossil Point, Silver Salmon, and Chinitna
Bay) and Katmai National Park and Preserve (KATM; sites: Kukak, Kaflia, & Takli) (Fig. 1)
(Alaska Department of Fish and Game permit # CF-15-088 for KATM and LACL, 2015,
and # CF-16-089 for KATM and LACL, 2016). Due to the remote nature of these parks, all
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Figure 1 Mussel sampling sites in Lake Clark National Park and Preserve (NPP) and Katmai National
Park and Preserve (NPP). Sites were sampled during June of 2015 and 2016.

Full-size DOI: 10.7717/peerj.7800/fig-1

sites are only accessible by boat or plane during the summer months. Twenty mussels were
collected from each site in both 2015 and 2016 (total of 120 each year), with 10 designated
for physiological assays and 10 for gene transcription; we therefore collected a total of 240
mussels, and used 120 of them for eachmethodology.Mussels collected inKATMwere from
sites that were randomly selected as part of a long-term nearshore monitoring program
(Dean, Bodkin & Coletti, 2014). These sites were established on mixed-sediment beaches
in protected to semi-protected areas (Weitzman et al., 2017). Currently, no long-term
monitoring of coastal bivalve resources exists along the LACL coastline, so sampling
locations in LACL were selected based on the presence of mussels. Mussels were present
on and collected from bedrock outcroppings. Overall, our intent was to capture the range
of natural variation across a set of sites that are representative of coastline habitats in lower
Cook Inlet and the Gulf of Alaska.

Themussels were kept submerged in seawater and processed as soon as possible following
collection, generally within 1–4 h. For biomarker assays, hemolymph was extracted from
the posterior adductor muscle with a tuberculin needle. The hemolymph and mussel were
frozen in liquid nitrogen for transport to the lab where they were transferred to a −80 ◦C
freezer until processing.

For gene transcription assays, gill tissue was removed, placed in cryovials with
RNAlater R©, and frozen at −20 ◦C until analyses.
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Table 1 Biomarkers selected for this study and their primary functions and interactions.

Biomarker Biological Process Environmental Interaction References

Condition factor Growth Ocean acidification
Nutrient availability
Contaminants
Temperature

Carmichael, Shriver & Valiela (2004); Gagné et al. (2007)

Shell Thickness Growth Ocean acidification
Nutrient availability
Predation
Density

Blanchard & Feder (2000); Freeman (2007); Gaylord et al.
(2011); Xavier, Branch & Wieters (2007)

Hemocyte Count Immune function Contaminants
Pathogens

Galloway & Depledge (2001)

Hydrogen Peroxide Immune function Contaminants
Pathogens

Galloway & Depledge (2001)

RNA:DNA Metabolic condition Nutrient availability Caldarone et al. (2001), Lesser et al. (2010)
Cytochrome P450 Detoxification Contaminants Rewitz et al. (2006)
Heat Shock Protein 40 Thermal stress Temperature

Stress
Cruz-Rodriguez & Chu (2002)

Invertebrate physiology
Seven biomarkers were used to assess the physiological status of the mussels and are
summarized in Table 1.

Morphometrics, condition factor and age
The length, width, height, and total wet weight ofmussels weremeasured prior to dissection.
The posterior adductor muscle and digestive gland were excised for assays. The condition
factor was calculated by dividing the total mussel weight by the shell length. Age was
determined by counting shell growth rings. The median and range of morphometrics and
ages by site are summarized in Table 2.

Shell thickness
A micrometer was used to measure the shell thickness at 5 regularly spaced points around
the shell approximately one mm from the edge (Versteegh & Hansson, 2012).

Hemocyte count
A 0.01 ml sample of hemolymph was diluted 1:1 with tris-buffered saline (TBS) and
the number of cells were counted using a hemocytometer in three replicates (Akaishi
et al., 2007).

Hydrogen peroxide production
Hemolymph samples were diluted 1:1 with tris-buffered saline (TBS). Samples were tested
in triplicate by pipetting 0.05 ml of the 1:1 hemolymph:TBS solution into a 96-well plate.
After incubating the plate in the dark for 1 h, 0.05 ml of phenol red solution (phosphate
buffered saline pH 7.4, 5.5 mM dextrose, 0.56 mM phenol red, 8.5 U ml−1 horseradish
peroxidase, type II) was added to each well and incubated for another 30 min in the dark.
The reaction was stopped by adding 0.01 ml of 1 N NaOH, and the plate was read on a
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Table 2 Medians and ranges of morphometrics and ages of mussels collected at six sites in Lake Clark and Katmai National Parks and Preserves during 2015 and
2016 (n= 10 mussels per site per year).

Length (mm) Width (mm) Height (mm) Weight (g) Age (years)

Park Site Year Median Range Median Range Median Range Median Range Median Range

2015 41.81 22.27-56.28 21.63 19.98–25.81 16.93 15.05–20.74 6.15 4.48–11.34 6 5–10
Takli

2016 41.72 33.36–44.92 19.29 17.09–22.83 16.01 13.47–18.70 5.91 3.99–9.19 7 5–9
2015 38.73 29.91–48.79 19.75 15.90–24.03 15.51 12.03–18.74 4.08 1.68–7.78 6.5 4–8

Kukak
2016 34.69 30.76–44.22 18.06 16.18–21.01 13.56 11.32–16.26 4.05 2.24–7.36 7 6–11
2015 48.94 44.20–57.96 23.39 21.17–26.36 19.47 17.09–22.82 8.11 6.56–13.91 9 7–12

Katmai

Kaflia
2016 37.24 30.67–45.80 17.12 15.97–19.87 14.11 12.16–17.45 4.28 2.11–7.65 7 5–10
2015 60.26 41.14–78.55 25.94 20.23–32.73 25.06 16.03–30.06 16.18 4.57–24.19 8 5–11Fossil

Point 2016 54.73 42.11–63.74 24.99 23.13–29.44 22.51 18.66–25.90 10.53 5.90–19.12 9 6–12
2015 48.02 37.14–53.83 22.54 19.16–25.74 22.36 15.94–23.80 9.06 4.16–12.72 7 5–12Silver

Salmon 2016 45.88 41.96–55.39 21.46 20.02–26.19 18.55 14.51–24.95 6.12 4.73–14.89 8 5–12
2015 42.76 37.73–57.16 20.48 17.06–23.85 20.44 16.34–25.45 9.02 5.32–14.68 7 5–8

Lake
Clark

Chinitna
Bay 2016 41.69 33.61–46.19 20.07 15.43–22.45 20.23 14.87–24.31 9.43 4.65–14.05 7.5 6–12
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Molecular Devices SpectraMax Plus microplate reader (Sunnyvale, CA, USA) at 620 nm
(Akaishi et al., 2007).

RNA:DNA ratio
Half of the posterior adductor muscle was homogenized and 0.15 ml of 1% sarcosyl
tris-EDTA (STEB) was added to the homogenate. The mixture was vortexed for 60 min
and then 1.35 ml of tris-EDTA (TE) buffer was added. The sample was centrifuged 15 min
at 14,000 x g at room temperature and the supernatant saved for testing. The samples
were diluted 1:20 and 0.075 ml of each sample was added to a 96-well plate in duplicate.
Genomic, unsheared DNA from calf thymus (Sigma-Aldrich, St. Louis, MO) was used to
prepare a DNA standard curve (0.1 µg ml−1, 0.2 µg ml−1, 0.4 µg ml−1, 0.8 µg ml−1, 1.6 µg
ml−1, 3.2µgml−1, 6.4µgml−1, 10.0µgml−1). RNA from bovine pancreas (Sigma-Aldrich)
was used for a RNA standard curve (0.4 µg ml−1, 0.8 µg ml−1, 1.6 µg ml−1, 3.0 µg ml−1,
6.0 µg ml−1, 8.0 µg ml−1, 12.0 µg ml−1, 16.0 µg ml−1). The wells had 0.075 ml of ethidium
bromide solution (2 µg ml−1) added to them and the microplate was shaken for 15 min.
The plate was read in a SpectraMax Gemini EM fluorescent microplate reader (Molecular
Devices) with 525 nm excitation, 600 nm emission to determine the total nucleic acid
reading. Each well had 0.0075 ml of RNase solution (20 U ml−1) added to it and the plate
was shaken for 20 min and read on the microplate reader again with the same settings.
The second reading was the DNA only reading. The RNA content was determined by
subtracting the second reading from the first (Caldarone et al., 2001).

Cytochrome P450 activity
The digestive gland was homogenized in buffer (25 mM Hepes, 125 mM NaCl, 0.1 mM
EDTA, 0.1 mM dithiothreitol) at a 1:5 weight:volume ratio. The mixture was centrifuged at
1,500× g for 10min at 2 ◦Cand the supernatant transferred to a clean tube. The supernatant
was centrifuged at 10,000 × g for 20 min at 2 ◦C. The supernatant was discarded and the
pellet resuspended in 0.15 ml of microsome buffer (25 mM Hepes, 140 mM NaCl, 1
mM KH2PO4). A 96-well plate was inoculated with 0.05 ml of each microsome sample
in triplicate. Each well had 0.05 ml of 50 µM BFC solution (7-benzyl-4(trifluoromethyl)
coumarin in phenol red-free Dulbecco’s Modified Eagle Medium) added and the plate
was incubated for 4 h at room temperature. The plate had 0.04 ml of stop solution (80%
CH3CN, 20% 0.5 M Tris base) added to each well and it was read on a SpectraMax Gemini
EM fluorescent microplate reader (Molecular Devices) at 410 excitation, 530 emission
(Mensah-Osman et al., 2007).

Heat shock protein
Half of the posterior adductor muscle was homogenized and lysed in buffer (150mMNaCl,
1% Triton-X 100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulphate, 50 mM Tris,
1 mM phenylmethylsulfonyl fluoride). The homogenate was centrifuged at 12,000 rpm for
20 min at 4 ◦C and the supernatant collected. The protein concentration was determined
using a Bradford assay. The sample was mixed 1:1 with 2×Laemmli buffer, boiled at 100 ◦C
for 5 min and loaded on a SDS-PAGE gel. Each gel was run with a positive heat shock
protein control and a molecular weight marker. The gel was electrophoretically transferred
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Table 3 Genes selected for the transcription panel and their primary functions and interactions.

Gene Biological process Environmental
interaction

References

Calmodulin (CaM) Metabolism, shell formation Ocean acidification
Temperature
Dissolved oxygen

Chen et al. (2012);
Li et al. (2004)

Caspase 8 (Casp 8) Apoptosis, necrosis, inflammation Pathogens
Contaminants

Romero et al. (2011)

Macrophage migration
inhibitory factor (MIF)

Innate immunity Pathogens Parisi et al. (2012),
Philipp et al. (2012)

Calponin (CNN) Hypoxia Ocean acidification
Dissolved oxygen

Hüning et al. (2013),
Li et al. (2016)

Chitinase (CHI) Metabolism, hypoxia Ocean acidification
Dissolved oxygen

Banni et al. (2011),
Hüning et al. (2013)

Cytochrome C Oxidase IV (CCOIV) Hypoxia Dissolved oxygen Fukuda et al. (2007)
Heat shock protein 70 (HSP70) Thermal stress, molecular chaperone Temperature

Pathogens
Contaminants
Hypoxia

De Maio (1999),
Iwama et al. (1999),
Tsan & Gao (2004)

Heat hock protein 90 (HSP90) Thermal stress, molecular chaperone Temperature
Pathogens
Contaminants
Hypoxia

De Maio (1999),
Iwama et al. (1999),
Tsan & Gao (2004)

Hypoxia-inducible factor alpha (HIFa) Hypoxia Dissolved oxygen Wu (2002)
Myticin B (MytB) Innate immunity Pathogens Balseiro et al. (2011)
Mytilin (Myt) Innate immunity Pathogens

Ocean acidification
Balseiro et al. (2011),
Mitta et al. (2000)

Metallothionein 20 (MT20) Detoxification Contaminants—metals Banni et al. (2007)
Cytochrome P450, family 3 (Cyp3) Detoxification Contaminants Giuliani et al. (2013)
Tumor protein 53 (p53) Apoptosis Contaminants—PAHs Goodson et al. (2006),

Banni et al. (2009)

onto a polyvinyl difluoride (PVDF) membrane. Total protein was visualized by staining
the gel with Pierce reversible protein stain (Thermo Scientific, Pittsburgh, PA USA).
The stain was removed and the membrane was probed with a mouse anti-HSP 40 primary
antibody (Abcam, Cambridge, MAUSA). The membrane was washed and incubated with a
secondary alkaline phosphatase labeled anti-mouse antibody (Abcam). The membrane was
washed again and alkaline phosphatase substrate added. The membrane was photographed
to document bands and analyzed with Image Studio Lite software, version 5.2.5 (Li-Core,
Lincoln, NE, USA).

Invertebrate gene transcription
Transcription of 14 genes was used to assess the physiologic status of the mussels; genes
used are summarized in Table 3.

Stability of the proposed reference gene (18S) was determined using the web-based
analysis tool RefFinder (http://www.leonxie.com/referencegene.php) (Xie et al., 2012).
Sufficient stability was found, thus cycle threshold crossing values (CT) for the genes
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of interest were normalized to 18S. Although sex can potentially have impacts on gene
transcription, most studies investigating gene transcription in the specific genes identified
in our panel do not differentiate between sexes (Zeng et al., 2012; Woo et al., 2011; Lacroix
et al., 2014; Balseiro et al., 2011; Hüning et al., 2013; Woo et al., 2013; Cellura et al., 2007;
Châtel et al., 2015; Franzellitti et al., 2010; Place, O’Donnell & Hofmann, 2008; Li et al.,
2010; Giannetto et al., 2015; Dondero et al., 2006; Sureda et al., 2011; Zanette et al., 2013;
Giuliani et al., 2013; Di et al., 2011), and we did not differentiate by sex in this study.

Tissue collection and RNA extraction
Gill tissue was collected from each mussel and placed immediately into RNAlater R©

(Ambion/Life Technologies, Grand Island, New York). All tissue samples were stored at
−20 ◦C. Total RNA was extracted from pulverized gill tissue using the RNeasy Lipid Tissue
Mini Kit (Qiagen; http://www.qiagen.com). To remove contaminating genomic (g)DNA,
the spin columns were treated with 10 U µl −1 of RNase-free DNase I (DNase, Amersham
Pharmacia Biotech Inc.; http://www.apbiotech.com) at 20 ◦C for 15 min. RNA was then
stored at −80 ◦C pending further analyses.

cDNA synthesis
A standard cDNA synthesis was performed on 2 µg of RNA template from each mussel.
Reaction conditions included 4 units reverse transcriptase (Omniscript, Qiagen, Valencia,
CA, USA), 1 µM random hexamers, 0.5 mM each dNTP, and 10 units RNase inhibitor,
in RT buffer (Qiagen, Valencia, CA, USA). Reactions were incubated for 60 min at 37 ◦C,
followed by an enzyme inactivation step of 5 min at 93 ◦C, and then stored at−30 ◦C until
further analysis.

Primer design
Degenerate primers were designed based upon multi-species alignments (GenBank).
Briefly, degenerate primer pairs developed for the mussel were used on cDNA from three
randomly selected mussel samples. Degenerate primer pairs were designed to amplify 14
genes of interest and one ribosomal housekeeping gene (Table 4). The PCR amplifications
using these primers were performed on 20 ng of each cDNA sample in 50 µl volumes
containing 20–60 pmol of each primer, 40 mM Tris-KOH (pH 8.3), 15 mM KOAc, 3.5
mM Mg (OAc)2, 3.75 µg/ml bovine serum albumin (BSA), 0.005% Tween-20, 0.005%
Nonidet-P40, 200 µM each dNTP, and 5U of Advantage R© 2 Taq polymerase (Clontech,
Palo Alto, CA, USA). The PCR was performed on an MJ Research PTC-200 thermal cycler
(MJ Research, Watertown, MA, USA) and consisted of 1 cycle at 94 ◦C for 3 min, and then
40 cycles at 94 ◦C for 30 s, at 60 ◦ C for 30 s, and 72 ◦C for 2 min, with a final extension
step of 72 ◦C for 10 min. The products of these reactions were electrophoresed on 1.5%
agarose gels and resulting bands visualized by ethidium bromide staining. Definitive bands
representing PCR products of a predicted base pair size of the targeted gene were excised
from the gel, and extracted and purified using a commercially available nucleic acid-binding
resin (Qiaex II Gel extraction kit; Qiagen, Valencia, CA, USA).

Counihan et al. (2019), PeerJ, DOI 10.7717/peerj.7800 9/33

https://peerj.com
http://www.qiagen.com
http://www.apbiotech.com
http://dx.doi.org/10.7717/peerj.7800


Table 4 Mytilus trossulus-specific quantitative real-time polymerase chain reaction primers used in
the analysis of mussels.

Gene Forward primer sequence (5′–>3′) Reverse primer sequence (5′–>3′)

CaM TCTGTTCGACAAAGATGGCG GCATCTACTTCGTTAATCATGT
Casp 8 CCCAACCAGTAGTAACACCAGAC GTATGAACCATGCCCCTATATCA
MIF TACACCCAGACCAAATGATG TTCTCCTAATGCTCCAATACTG
CNN ATACTCCGGCGGAGACAGT TCTTCTTCGGGAATCTCTTGT
CHI ATATCATCTACTCATTCGCCA AGTGATAGTTTCAAGGCTG
CCOIV GATGTAGTGGCTCTCAAGGAT AGATCTGTTTCCATTCACCTGT
HSP70 GGTGGTGAAGACTTTGACAACAG CTAGTTTGGCATCACGTAGAGC
HSP90 GATCTCCAACTCATCTGATGC GTGTGTTGTTATCCTTGTCTG
HIFa ATACCTTGGCATCTCACAGAT GACTTCTTCTTGTTGGTGGTC
MytB AATGTCTTCGTTGTTCCAG AATGCCAGTTTCACCTTG
Myt GTTATTCTGGCTATCGCTCTTG GTATAATGTCAAACAGAACGGGTC
MT20 GATCTACTAAGCAGACCAGC TACATCCGGAACATCCACAG
Cyp3 AGTTACAGTACTTGGACAGATTCGT TGCCTCAAGTAATGCCAGCCTCA
P53
18s

TGTGTAGACTGAGGGATTCATTGG
GTGCTCTTGACTGAGTGTCTCG

TCACCTTCTTCATCAGTTTGTTTTT
CGAGGTCCTATTCCATTATTCC

Real-time PCR
Real-time PCR reactions for the individual genes of interest and the housekeeping gene
(18S) were run in separate wells (Bowen et al., 2018). Briefly, 1 µl of cDNA was added to
a mix containing 12.5 µl of QuantiTect Fast SYBR Green R© Master Mix (5 mM Mg 2+)
(Qiagen, Valencia, CA, USA), 0.5 µl each of forward and reverse sequence specific primers
(Invitrogen, Carlsbad, CA, USA), and 10.5 µl of RNase-free water; total reaction mixture
was 25 µl. The reaction mixture cDNA samples for each gene of interest and 18S were
loaded into Fast 96 well plates in duplicate and sealed with optical sealing tape (Applied
Biosystems, Foster City, CA, USA). Reaction mixtures that contained water but no cDNA
were used as negative controls.

Statistical analysis
Analysis of qPCR data was conducted using normalized C T values (housekeeping gene
threshold crossing subtracted from the gene of interest threshold crossing); the lower the
normalized value, the more transcripts are present. A change in normalized value of 2 is
approximately equivalent to a 4-fold change in the amount of the transcript. A normalized
value of 34 or higher indicated a quantity less than the detection limit for transcription
of that gene. Two samples contained values that were less than the detection limit for
transcription and were thus omitted from statistical analyses because they were influential
outliers that affected within and among site means.

For all data, gene transcription and biomarker assays, medians, 2.5% and 97.5%
percentiles, and ranges were calculated (NCSS, Statistical and Power Analysis Software).
As mussel age (based on ring counts) and size were not found to have significant effects
on biomarkers or gene transcription, they were omitted from further analyses. We used
generalized linear mixed effects models (GLMM) to estimate site means for each gene
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transcription factor and biomarker parameter. We included sampling year as a random
effect to account for variances introduced by collecting sample units over the course of 2
years. Input data were examined for normality prior to analysis; a log linear model was
used for hemocyte count, RNA:DNA ratio, P450, and HSP40 biomarkers to normalize
variances, and reported means were back-transformed into the original data scale. We
fit separate models for each gene and biomarker with maximum likelihood estimation
using the lme4 package in R 3.5.0 (R Development Core Team, 2012), which accounts for
the unbalanced data using Satterthwaite’s method. We conducted post-hoc Tukey tests
of site level differences. To obtain site means for each year, we fit a Gaussian generalized
linear model (GLM) with a site by year interaction. The resulting site means were used to
test for correlations between genes and biomarker parameters. Relationships between gene
transcript and biomarker data, as well as within gene transcript and biomarker data, were
assessed in R using Pearson correlations. We considered correlations that were >0.30 (or
<−0.30) to be of possible biological significance. To further evaluate relationships between
and within responses, we used R to conduct principal components analysis (PCA). As
for the Pearson correlations, we evaluated the relationships within gene transcript and
biomarker datasets using all available data records, and the relationships between gene
transcripts and biomarkers using site by year means obtained from the GLM interaction
model. We visualized multivariate interactions by plotting the contributions of each
variable to PC1 and PC2, and by plotting the quality of representation of each metric to all
principal components that could be fit. We showed data from all dimensions that could be
fit to better represent the exploratory nature of our analysis.

RESULTS
Biomarker and gene transcript medians, 2.5% and 97.5% percentiles, and ranges were
determined for use in future monitoring efforts (Table 5). Site-specific medians and ranges
for the biomarker and gene transcription assays for each year are provided as Files S1 and
S2.

The Principal Components Analysis for the biomarkers, gene transcripts, and mix of
biomarkers and gene transcripts revealed that three, five, and six principal components had
eigenvalues >1, respectively. The first three dimensions of the biomarker PCA explained
65% of the variance in the data, and 27% was attributed to the first principal component.
The first five dimensions of the gene transcript PCA explained 69% of the variation in the
data, with 31% going to the first component. Two-thirds of the variation was explained by
six dimensions for the combined PCA, with 33% explained by the first principal. Only 12
dimensions could be fit for the combined dataset because of the sample size restrictions
caused by using site means for each year.

Within the biomarker assays we found correlations between condition factor and shell
thickness (Rpearson = 0.48), and condition factor and HSP40 (Rpearson = 0.24, Fig. 2).
Condition factor, shell thickness and HSP40 also contributed the most to PC1 when the
physiological markers were analyzed by PCA (Fig. 3), with shell thickness having the highest
quality of representation on this axis (Fig. 4). Hydrogen peroxide production, P450 activity
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Table 5 Medians, 2.5 and 97.5 percentiles and ranges obtained from 120mussels collected at 6 sites in Lake Clark and Katmai National Parks
and Preserves for all variables across all sites and years. For gene transcription, higher numbers indicate less transcription, and a value of 34 indi-
cates a quantity less than detection limits.

Condition Factor Shell Thickness (mm) Hemocyte Count (cells mL−1)

Median 2.5–97.5% Range Median 2.5–97.5% Range Median 2.5–97.5% Range

0.16 0.07–0.31 0.06–0.35 0.67 0.27–1.69 0.24–2.22 241,667 13,333–1,540,000 3,333–1,740,000

Hydrogen Peroxide (OD620) RNA:DNA (ratio g−1) P450 (activity mg−1protein)
Median 2.5–97.5% Range Median 2.5–97.5% Range Median 2.5–97.5% Range
0.05 0.01–0.10 0.01–0.14 69.49 4.09–663.70 1.74–833.49 27.64 9.48–127.94 7.62–190.33

HSP40 (Arbitrary Units) CaM (CT) Casp8 (CT)
Median 2.5–97.5% Range Median 2.5–97.5% Range Median 2.5–97.5% Range
2.88 0.32–24.98 0.18–40.03 16.19 13.91–19.42 13.57–21.46 10.48 8.26–12.91 7.74–13.82

MIF (CT) CNN (CT) CHI (CT)
Median 2.5–97.5% Range Median 2.5–97.5% Range Median 2.5–97.5% Range
17.88 12.37–22.17 11.92–23.22 25.12 21.67–27.93 17.70–34 18.66 16.01–23.97 13.30–34

CCOIV (CT) HSP70 (CT) HSP90 (CT)
Median 2.5–97.5% Range Median 2.5–97.5% Range Median 2.5–97.5% Range
18.38 12.73–22.29 11.56–23.14 11.31 7.99–14.65 6.63–16.58 13.54 9.66–16.66 9.31–17.89

HIFa (CT) MytB (CT) Myt (CT)
Median 2.5–97.5% Range Median 2.5–97.5% Range Median 2.5–97.5% Range
14.13 12.24–16.43 11.86–17.02 12.6 5.80–18.69 4.67–19.72 15.91 12.02–19.24 10.69–22.11

MT20 (CT) Cyp3 (CT) P53 (CT)
Median 2.5–97.5% Range Median 2.5–97.5% Range Median 2.5–97.5% Range
10.14 5.48–15.22 4.43–20.73 14.67 12.01–17.18 11.11–18.10 12.79 10.31–15.77 9.39–34

and RNA:DNA contributed to PC2, with RNA:DNA representing an opposite effect from
the other two variables (Fig. 3). PC3 corresponded to hemocyte count. PC1-3 contributed
27.5%, 22.1% and 14.5%, respectively, to variation in the physiological data and 64.1% of
overall variation.

Strong correlations were noted between many of the gene transcripts (Fig. 5). No strong
negative correlations in levels of transcription were noted among the genes. Analysis of
gene transcription by PCA indicated no gene transcripts were anticorrelated, matching
the Pearson correlation results. PC1 corresponded to CaM, Casp8, CNN, HSP70, Myt,
Cyp3 and p53 (Fig. 3) with Casp8 providing the highest quality of representation on this
axis (Fig. 4). This was similar to the inference obtained by the Pearson correlations where
PC1 maps to variables that have strong correlations (>0.30) with both CaM and Casp8.
CHI, HSP70, HSP90 and HIFa contributed the most to PC2 (Fig. 3). MT20 contributed
most substantially to PC3. PC1-3 corresponded to 31.3%, 13.6% and 8.9%, respectively,
of variation in gene transcription data and 53.8% of variation overall.

Increased P450 activity was associated with increased transcription of 4 genes (most
notably CCOIV) and decreased transcription of MT20. A higher condition factor was
associated with increased gene transcription: nine of 14 genes had a negative correlation
with condition factor that was >0.30. In contrast, we observed an inverse relation between
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Figure 2 Pearson correlations between biomarkers obtained from 120mussels collected at six sites in
Lake Clark and Katmai National Parks and Preserves. The numbers are Pearson correlations between
biomarkers. Bold red numbers are statistically significant correlations (P < 0.05). The graphs depict actual
observations (black circles) and the best fit line (red) between paired biomarkers.

Full-size DOI: 10.7717/peerj.7800/fig-2

RNA:DNA and gene transcription, with nine of 14 genes having a correlation >−0.30
(Table 6).

PCA analysis showed that PC1 was comprised primarily of the gene transcripts: CaM,
Casp8, CNN, HSP70, MytB, Myt, Cyp3, p53, and the biomarkers RNA:DNA and condition
factor, with condition factor having an opposite relationship than the other measures
(Fig. 3). PC2 corresponded to MIF, MT20, hydrogen peroxide production, P450, shell
thickness and hemocyte count, with shell thickness and hemocyte count opposing the
other variables (Fig. 3). CHI, HSP70, HSP90 and HIFa, with Myt, hydrogen peroxide
production and P450 activity opposing those measures, contributed the most to PC3.
PC1-3 corresponded to 33.3%, 19.4% and 12.5%, respectively, of the variance in the
metrics and 65.3% of variance overall.

DISCUSSION
The overall goal of our research was to use biomarker and genetic methods to assess
the condition of nearshore species in remote areas of Alaska, as nearshore ecosystems,
particularly at higher latitudes, are vulnerable to changing environmental conditions
(Taylor et al., 2017). Our approach included establishment of reference ranges for
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Figure 3 Correlation plots based on Principle Components Analysis of variables measured from 120
mussels collected at six sites in Lake Clark and Katmai National Parks and Preserves. (A) Gene tran-
scripts, (B) biomarkers, (C) all metrics. The arrows correspond to each measured variable and maps the
contribution of that variable to the first and second principle components (Dim 1 and 2). Arrows that
are close together are correlated, and those that are opposite are anti-correlated. Those orthogonal to one
another are not correlated. Variables that contribute strongly to either the first or second axis are nearer
the axes than variables that do not contribute strongly. The length and color of the arrow illustrates the
strength of the contribution of each variable, with the longer arrows rendered in warm colors contributing
more than those that are shorter and rendered in cool colors.

Full-size DOI: 10.7717/peerj.7800/fig-3
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Figure 4 Quality of representation plots based on Principle Components Analyses of variables mea-
sured from 120mussels collected at six sites in Lake Clark and Katmai National Parks and Preserves.
(A) gene transcripts, (B) biomarkers, (C) all metrics. The charts depict all metrics and all Principle Com-
ponents that could be calculated for each analysis. The size and shade of the circle denotes how well the
variable is represented by each principle component. The large and dark circles denote good representa-
tion, while the small and light circles denote poor representation. This plot has the advantage of showing
potential variable correlations in multiple dimensions.

Full-size DOI: 10.7717/peerj.7800/fig-4
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Figure 5 Pearson correlations between gene transcripts obtained from 120mussels collected at six
sites in Lake Clark and Katmai National Parks and Preserves. The numbers are Pearson correlations be-
tween gene transcripts. Red numbers are statistically significant correlations (P < 0 : 05). The graphs de-
pict all observations (black circles) and the best fit line (red) between paired gene transcripts.

Full-size DOI: 10.7717/peerj.7800/fig-5

biomarker and gene transcription assays of mussels collected at sites in LACL and KATM
and identification of correlations between the assays. Due to the remote nature of the
parks and other logistical constraints, sampling opportunities were limited to a one week
window in July 2015 and again in July 2016. Other environmental monitoring studies
generally have been conducted in areas with known contamination concerns, allowing
for a clear contrast among experimental groups (Akaishi et al., 2007; Banni et al., 2017;
Carella et al., 2018; Gagné et al., 2007; Halldórsson et al., 2008; Sforzini et al., 2018; Shaw
et al., 2011). However, our goal was to develop a method to monitor sites for changes,
rather than assess sites already impacted. Therefore, our collection sites were not known
to be compromised by anthropogenic activity and were considered relatively pristine. Any
differences in biomarker or gene transcription results were expected to be due to natural
variation and to provide a range of representative values which could act as a reference for
continuing studies.
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Table 6 Results of the Pearson correlations between gene transcripts and biomarkers obtained from
120mussels collected at six sites in Lake Clark and Katmai National Parks and Preserves. Statistically
significant correlations (P < 0.05) are bolded. Values reflect the numerical correlation; however, the bio-
logical correlation will be the inverse, as lower CT values reflect higher levels of gene transcription.

Condition
factor

P450
activity

RNA:DNA

CaM −0.40 0.04 0.59
Casp8 −0.49 −0.18 0.83
MIF −0.33 0.26 0.11
CNN −0.21 0.04 0.45
CHI 0.22 0.06 −0.25
CCOIV −0.24 −0.71 0.39
HSP70 −0.47 −0.20 0.46
HSP90 −0.16 −0.34 0.18
HiFa −0.54 −0.05 0.16
Myt B −0.60 −0.34 0.57
Myt −0.49 0.10 0.65
MT20 −0.08 0.62 −0.09
Cyp3 −0.71 −0.12 0.52

In this light, although differences in physiological patterns among sites are of interest,
the more important goal is to identify the range of values that can be expected under what
we assume to be ‘‘normal’’ conditions. Biomarker and gene transcript levels may differ
between two sites, but both sites, nevertheless, may fall within a range considered to be
normal. Many factors can cause natural variation in biomarker and gene transcription
levels, including predators (Reimer & Tedengren, 1996), temperature, dissolved oxygen
(Abele & Puntarulo, 2004) and wave exposure (Dahlhoff & Menge, 1996). There may have
been differences in these and other physical (e.g., substrate type) or biological factors across
the sites that contributed to normal background variation.

Several considerations must be taken into account when interpreting gene transcription
data. First, within an individual, there are tradeoffs in the allocation of limited
resources among competing physiological functions (Vera-Massieu et al., 2015). Increased
physiological activity and gene transcription in response to stressors can present ametabolic
challenge for any species, including bivalves (Graham et al., 2010), and may result in
reduction of fitness evidenced by decreased reproductive capability, increased susceptibility
to disease, or disadvantageous behavioral changes (Graham et al., 2010;Martin et al., 2010).
Additionally, biological processes identified by our panel are influenced by multiple genes,
and each genemay contribute tomultiple functions. For example, although several genes on
our panel respond to ocean acidification, including calmodulin (CaM), calponin (CNN),
and chitinase (CHI), each plays a different role in the overall mechanism (Li et al., 2004;
Banni et al., 2011; Chen et al., 2012; Hüning et al., 2013; Li et al., 2016). Thus, transcript
levels of genes with similar endpoint functions may not necessarily correlate with each
other. Identifying patterns of variation for each gene measured (among and within sites) is
an important step in determining their value for monitoring studies.
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Significant differences were observed among sites for biomarker as well as gene
transcription parameters. For example, five out of seven biomarkers varied significantly
among sites (condition factor, shell thickness, RNA:DNA ratio, HSP40, hemocyte count)
(Fig. 6), and nine of 14 genes varied significantly among sites (CNN, CaM, CHI, Cyp3,
HIFa, HSP70, HSP90, MT20, and Myt) (Fig. 7). Given that we had no reason to expect
differences among sites due to obvious impairments, we might assume that the differences
we detected were part of the natural variation we would observe in these populations when
sites are compared across a large spatial scale.

Condition factor and shell thickness were higher at Chinitna Bay, Fossil Point, and
Silver Salmon (all in LACL) as compared to Kaflia, Kukak, and Takli (all in KATM).
Elevated mussel condition factor has been associated with the presence of higher quality
and/or quantity of nutrients (Carmichael, Shriver & Valiela, 2004), suggesting that nutrient
availability varied between parks. Water originating fromUpper Cook Inlet flows along the
LACL coastline, eventually merging with the Alaska Coastal Current (Nagorski et al., 2008).
The KATM coastline is dominated by the Alaska Coastal Current, which carries a high
amount of freshwater to the region (Nagorski et al., 2007). Differences in oceanographic
processes between LACL and KATM likely influence nutrient availability along the coast.

Shell thickness can be influenced by changes in predation pressure, mussel density or
abiotic factors. Studies conducted withM. galloprovincialis have demonstrated that mussels
living at higher densities are smaller with thicker shells (Xavier, Branch & Wieters, 2007).
Predation can induce mussels to thicken their shells as a defense mechanism (Freeman,
2007). Abiotic factors such as temperature, salinity and wave action can influence shell
thickness, as well (Akester & Martel, 2000;Blanchard & Feder, 2000). Based on observations,
Chinitna Bay is more exposed than the other sites and mussels at that location had the
thickest shells, potentially as a result of experiencing more wave action. However, mussel
density, predators and other abiotic factors were not quantified during this study.

Mussel hemocyte count was the most variable biomarker within sites, and other
studies have observed similar variability (Akaishi et al., 2007; Coray, St.Jean & Bard, 2007;
Duchemin et al., 2008). Mussels at Kaflia had a significantly lower hemocyte count than
mussels at the other sites. This result indicates that despite relatively high variability,
differences in hemocyte count can be identified. Wild mussels are constantly exposed
to antigens that may stimulate an immune response and elevate hemocyte count with
high variability between individuals (Galloway & Depledge, 2001). Less variability was
observed in the hydrogen peroxide assay suggesting it may be a more suitable biomarker
for monitoring immune activity than hemocyte count.

Variability among sites was also observed in RNA:DNA and HSP40. Mussels at Kaflia
and Kukak had significantly higher RNA:DNA compared to those from Silver Salmon,
indicating differences in protein production among sites. HSP40 levels were higher at
Kukak, Chinitna Bay and Fossil Point as compared to Kaflia suggesting an elevated
response to an unknown stressor at those three sites.

Relationships within the biomarker assays, within the gene transcription panel, and
between the biomarkers and genes were determined using Pearson correlations and PCA,
and the results of both analyses were complementary. A positive Pearson correlation was
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Figure 6 Boxplots of biomarker data obtained from 120mussels collected at six sites in Lake Clark
and Katmai National Parks and Preserves. Random effects model results are denoted by red diamonds
(mean) and red arrows (95% confidence intervals). Sites sharing a lowercase letter did not differ statisti-
cally based on post-hoc testing (P < 0.05). (A) condition factor, (B) shell thickness, (C) hemocyte count,
(D) hydrogen peroxide, (E) RNA:DNA, (F) P450 activity, (G) HSP40.

Full-size DOI: 10.7717/peerj.7800/fig-6
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Figure 7 Boxplots of gene transcription data (normalized CT values) obtained from 120mussels col-
lected at six sites in Lake Clark and Katmai National Parks and Preserves. Random effects model re-
sults are denoted by red diamonds (mean) and red arrows (95% confidence intervals). Sites sharing a low-
ercase letter did not differ statistically based on post-hoc Tukey testing (P < 0.05). (A) CaM, (B) Casp8,
(C) MIF, (D) CNN, (E) CHI, (F) CCOIV, (G) HSP70, (H) HSP90, (I) HIFa, (J) MytB, (K) Myt, (L) MT20,
(M) Cyp3, (N) p53.

Full-size DOI: 10.7717/peerj.7800/fig-7
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found between condition factor and shell thickness and between shell thickness andHSP40.
Additionally, in the PCA analysis, condition factor, shell thickness and HSP40 contributed
to PC1 with high quality of representation on that axis. Condition factor indicates the
nutritional status of the mussels, and it was not surprising that shell thickness would relate
to overall condition as mussels with more nutrients might be expected to allocate more
nutrients to shell formation. Mussels with nutrient deficits have been shown to metabolize
their shell (Masthanamma, Purushotham & Ramamurthi, 1984). Shell thickness influences
body temperature (Caddy-Retalic, Benkendorff & Fairweather, 2011), and possibly mussels
with thicker shells absorb more heat, resulting in HSP40 production. Additional research
is needed to understand the association between shell formation and HSP40 production.

Given the multiple functions of many of the genes in our transcript panel, as well as
the interconnectedness of genes in general, we expected and found numerous correlations
among the genes (Fig. 5). For example, CaM, CNN, and CHI are all sensitive to changes in
ocean acidification, and Casp8, MIF, MytB, Myt, HSP70, and HSP90 can all be influenced
by pathogen exposure. Contaminant exposure can influence the transcription of Casp8,
HSP70, HSP90, MT20, Cyp3, and p53, and changes in dissolved oxygen can alter the
transcription of CaM, CNN, CHI, CCOIV, and HIFa. As expected, there was a Pearson
correlation between CNN and CaM, but not with CHI, as we would have anticipated. The
strong correlations observed among CNN, Casp8 and Myt suggest potential links among
processes associated with shell formation and pathogen presence. In addition, Casp8
was strongly correlated with Cyp3, MytB, and p53, suggesting a link between pathogen
and contaminant exposures. CaM, Casp8, CNN, HSP70, Myt, Cyp3 and p53 contributed
substantially to PC1 according to the PCA.

An objective of our study was the comparison of the two methodologies, gene
transcription and biomarker assays. Several of the biomarkers and genes were associated
with similar physiological functions, and we anticipated correlations would arise. Although
we did not expect complete agreement, we expected the methods to support one another.
Several correlations between the biomarker and gene transcription assays were identified.
CaM, Casp8, CNN, HSP70, MytB, Myt, Cyp3, p53, RNA:DNA and condition factor
contributed to PC1 in the PCA analysis of all metrics, with condition factor having an
opposing relationship to the other variables. A negative Pearson correlation between
condition factor and MytB, Cyp3 and p53 was identified, while a positive correlation
between RNA:DNA and CaM, Casp8, Myt and p53 was present. The statistical analysis
used the CT values for gene transcription, and high CT values indicate low gene expression.
Therefore, the relationship between high gene expression and high condition factor makes
biological sense, as a good condition factor implies ample resources, which translates into
an overall ability to increase transcription of genes needed to combat stressors. RNA:DNA
was associated with lower transcription of several genes, which was not an expected finding.
However, the small number of genes in this study (14)may not be representative of patterns
in the overall transcriptome, which numbers many thousands of genes.

Higher activity of P450 was strongly associated with lower MT20 transcription and
increased CCOIV transcription in Pearson correlations. In PCA analysis, MT20 and P450
contributed to PC2.MT20 and P450 are responsible for detoxifyingmetals and xenobiotics,
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respectively. Contaminants can contain complex chemical mixtures that induce different
detoxification pathways (Islam & Tanaka, 2004). CCOIV is transcribed during hypoxic
conditions, and contaminants can damage or interfere with gill function inhibiting
respiration and resulting in hypoxia (Sokolova & Lannig, 2008). We expected P450 activity
to correlate with Cyp3 transcription, but this was not observed. The cytochrome P450
family, which includes Cyp3, contains numerous proteins (Rewitz et al., 2006). The gene
transcription assay is specific for Cyp3, but the P450 assay detects the enzyme activity of
multiple cytochrome isoforms, not only Cyp3 (Kobayashi et al., 2002). Therefore, overall
P450 enzyme activity may be increased while Cyp3 transcription is not.

The results of this study examined the strength of using both gene transcription and
biomarker assays to evaluate coastal ecosystems. This approach has been implemented for
mussel biomonitoring in other coastal regions including the Mediterranean (Carella et al.,
2018; Sforzini et al., 2018). In both of these studies, site-level differences were detected using
genetic techniques and biomarker analyses. The results correlated with the presence of
known contamination (Carella et al., 2018; Sforzini et al., 2018). In our study, differences
between sites also were identified, but without known sources of contamination. A
limitation of our findings is that biomarker and gene transcription assays were not run on
the same individual mussels (i.e., ten mussels were collected for each set of assays at each
site in each year). Therefore, our correlations are computed on a site basis, and we are not
able to evaluate how metrics from the two sets of assays relate on an individual mussel
basis.

At the beginning of this study, we made assumptions about the pristine nature of
the intertidal sites (Weeks, 1999; Weeks, 2003). The sites are along Alaskan national
park coastlines, with very little direct anthropogenic stressors. However, variations in
biomarkers and genes suggest some differences exist among sites. Most notably, mussels
from LACL were in better condition with thicker shells, perhaps associated with quantity
and/or quality of nutrients in the vicinity of those sites. Developing reference biomarker
and gene transcription levels in mussels is important to properly differentiate among
changes due to climate or anthropogenic activity and natural variation. The capability to
discern local and large-scale changes is beneficial for monitoring remote locations where
sampling opportunities are limited. Effects of some environmental impacts, such as oil
spills, may be readily observed, but subtle changes in the marine environment can be
difficult to detect. The sensitivity of biomarker and gene transcription assays supports the
identification of subtle changes. Additionally, this approach enables the measurement of
cumulative effects of several stressors. However, further studies comparing the biomarker
and gene transcription assays, under controlled conditions and in the field, with both sets
of assays measured on the same individual mussels, are needed to provide a more thorough
understanding of how the various metrics respond and relate.

In addition to the need for controlled exposure studies, our results highlight an important
reality pertaining to ecosystemmonitoring: although combined technologies provide better
resolution of potential causative factors, an approach using longitudinal monitoring to
continually assess populations for subtle yet significant changes is necessary to provide
insight into ecosystem health. In the future, we will improve our understanding of
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ecosystems at risk if we take a proactive approach to monitoring prior to occurrence
of population level effects (Bennett, Thompson & Mortenson, 2006).

CONCLUSIONS
Intertidal communities are important in marine and terrestrial food webs and
understanding the condition of these intertidal resources will support management in the
maintenance of healthy coastal ecosystems. This study generated baseline gene transcription
and biomarker data that will be useful for monitoring these remote areas of the Alaskan
coastline for environmental change. The gene transcription and biomarker assays were
advantageous because they provided a significant amount of information regarding
physiological responses of mussels to environmental conditions from small amounts of
tissue, which is necessary for assessing remote intertidal communities where sampling
opportunities and environmental data are constrained by logistics. Additionally, the assays
were sensitive enough to detect differences between sites with no obvious impacts. Results
between the gene transcription and biomarker assays were often complementary, but some
differences were noted, likely due to variations in the rate of production and turnover of
mRNA and proteins. Integrating gene transcription and biomarker assays provided a more
comprehensive assessment of mussel condition than either approach alone. Additional
controlled experiments will strengthen our understanding of the value of this approach.
We anticipate implementing this holistic approach to evaluate stressors affecting intertidal
communities and changes occurring within those communities over time.
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