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ABSTRACT
Wepreviously reported thatmicroRNA-205-5p (miR-205-5p) is significantly decreased
in the ErbB2-overexpressing breast epithelial cell line MCF10A-ErbB2 compared with
control cells. In this study, we identified a direct target of miR-205-5p, chloride voltage-
gated channel 3 (CLCN3). CLCN3 expression was induced by ErbB2 overexpression;
this induced expression was then reduced to control levels by the transfection of the
miR-205-5p precursor. In RNA-binding protein immunoprecipitation with Ago1/2/3
antibody, CLCN3 was significantly enriched in 293T embryonic kidney cells with miR-
205-5p mimic transfection compared with negative control mimic transfection. In
luciferase reporter assays using CLCN3 3′-UTR constructs, the miR-205-5p mimic
significantly decreased reporter activity of both wild-type and partial mutant constructs
in MCF10A-ErbB2 cells. In contrast, no inhibitory effects of the miR-205-5p mimic
were detected using the complete mutant constructs. Since miR-205-5p expression in
exosomes derived from MCF10A-neo cells was substantially higher than in exosomes
derived fromMCF10A-ErbB2 cells, we next investigated whether an exosome-mediated
miR-205-5p transfer could control CLCN3 expression. To this end, exosomalmiR-205-
5p derived from MCF10A-neo cells was functionally transferred to MCF10A-ErbB2
cells, which served to decrease the expression of CLCN3. To assess the roles of CLCN3
in breast cancer, we next performed three-dimensional (3D) spheroid proliferation
analyses using MCF10A-ErbB2 cells treated with MCF10A-neo-derived exosomes or
CLCN3 shRNA stably expressing SKBR3 and MDA-MB-453 breast cancer cells. Our
results showed that both treatment with MCF10A-neo-derived exosome and CLCN3
shRNA expression suppressed 3D spheroid proliferation. Collectively, these novel
findings suggest that CLCN3 may be a novel direct target of miR-205-5p and this
CLCN3/miR-205-5p interaction may serve a pivotal role in regulating breast cancer
cellular proliferation under physiological conditions.
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INTRODUCTION
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression
post-transcriptionally through binding to the 3′-untranslated regions (3′-UTRs) of target
mRNAs. Via this process, miRNAs regulate various cellular activities, including cellular
growth, differentiation, development, and apoptosis.Dysregulation ofmiRNAs is associated
with various human diseases, such as cancer (Jiang et al., 2009). Therefore, miRNAs have
emerged as promising prognostic and therapeutic tools for cancer management.

A large number of miRNAs have been identified that are differentially expressed
during breast cancer progression, and several have been reported to serve as diagnostic
and curative targets (Bertoli, Cava & Castiglioni, 2015; Khordadmehr et al., 2019). Among
them, microRNA-205-5p (miR-205-5p) is one potential target that negatively correlates
with breast cancer invasion, metastasis, and poor prognosis (Markou et al., 2014; Wang et
al., 2019a; Xiao et al., 2018). The suspected tumor-suppressive functions of miR-205-5p
in breast cancer appear to be due to the direct targeting of several oncogenes, including
ERBB3, VEGFA, PKC ε, E2F1, E2F5, ZEB1 and ZEB2 (Greene, Herschkowitz & Rosen, 2010;
Gregory et al., 2008; Hashiguchi et al., 2018). Moreover, HMGB3, KLF12, FGF2 and ITGA5
have recently been reported to be direct targets of miR-205-5p in breast cancer (Elgamal et
al., 2013; Guan et al., 2016; Hu et al., 2016; Xiao et al., 2018).

Exosomes are secreted extracellular vesicles that carry various intracellular biomolecules,
such as proteins, lipids, DNAs, mRNAs, long non-coding RNAs and miRNAs (EL-
Andaloussi et al., 2013; Wu et al., 2017). Recent studies have demonstrated that exosomes
mediate intercellular communication by transferring the above biomolecules and are
involved in the pathogenesis of diseases including cancer (De Toro et al., 2015;Kalluri, 2016;
Kucharzewska & Belting, 2013; Valadi et al., 2007). Cancer-derived exosomal miRNAs are
becoming of interest for cancer diagnosis and therapy, and exosomal miR-205-5p has
been investigated as a potential biomarker in different types of cancer (Aushev et al., 2013;
Crentsil, Liu & Sellitti, 2018; Kitdumrongthum et al., 2018; Taylor & Gercel-Taylor, 2008;
Wang et al., 2019b).

We previously reported that miR-205-5p is reduced by ErbB2 overexpression and
that the ErbB2 tumorigenic capability to proliferate in soft agar is reduced by exogenous
transfection of the miR-205-5p precursor (Adachi et al., 2011). In addition, we previously
reported that ErbB2 signaling epigenetically suppresses miR-205-5p transcription via the
Ras/Raf/MEK/ERK pathway in breast cancer (Hasegawa et al., 2017). Therefore in this
study, we further attempted to identify an additional novel target of miR-205-5p in order
to understand the comprehensive role of miR-205-5p in breast cancer. To this end, we
focused on chloride voltage-gated channel 3 (CLCN3), a member of the voltage-gated
chloride channel family. The volume-regulated anion channel (VRAC) contributes to cell
volume regulation (Osei-Owusu et al., 2018). Dysfunction of cell volume regulation is one
of the characteristics of cancer cells, leading to aberrant cell proliferation and apoptosis
(Pedersen, Hoffmann & Novak, 2013). CLCN3 has been reported to play a key role in
native VRAC in a variety of cancer cells (Duan, 2011; Habela, Olsen & Sontheimer, 2008;
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Lemonnier et al., 2004;Mao et al., 2008). Hence, CLCN3may regulate cell proliferation and
apoptosis via a VRAC-related mechanism.

Our findings in this study demonstrated that CLCN3 is a potential direct target of
miR-205-5p and regulates 3D spheroid proliferation in ErbB2-overexpressing breast
epithelial cells and breast cancer cells.

MATERIALS & METHODS
Cells
MCF10A-ErbB2 and MCF10A-neo cells were previously generated in our laboratory
(Adachi et al., 2011) and cultured in DMEM/F12 with the addition of 5% horse serum,
20 ng/mL EGF, 10µg/mL insulin, and 500 ng/mL hydrocortisone. The human breast cancer
cell lines MDA-MB-453 and SKBR3 cells, as well as the human embryonic kidney cell line
293T, were cultured in DMEM with the addition of 10% fetal bovine serum. DMEM/F12,
DMEM, and fetal bovine serum were purchased from Thermo Fisher Scientific (Waltham,
MA, USA). EGF, insulin, and hydrocortisone were purchased from Sigma (St. Louis, MO,
USA).

miRNA precursor transfection
The transfection of miRNA Precursors (Pre-miRTM hsa-miR-205-5p miRNA Precursor
or Pre-miRTM miRNA Precursor-Negative Control #1, both purchased from Thermo
Fisher Scientific) were performed using the RNAiMAX reagent (Thermo Fisher Scientific,
Waltham, MA, USA) following the manufacturer’s instruction. Briefly, the cells were
seeded in 12-well plates 1 day before transfection, and 15 pmol/well miRNA Precursor
was transfected using Lipofectamine RNAiMAX into 30%–50% confluent cells. At 48 h
post-transfection, the cells were harvested for RNA extraction. At 72 h post-transfection,
the cells were harvested for protein extraction.

RNA isolation and real-time RT-PCR of CLCN3
Total RNA was purified by RNAiso Plus (Takara Bio, Kusatsu, Shiga, Japan) according
to the manufacturer’s instructions and then treated with RNase-free DNase I (Takara
Bio). Subsequently, the RNA was cleaned up using an RNeasy Mini kit (Qiagen). Briefly,
2 µg of total RNA was reverse transcribed into cDNA using the High Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific). Quantitative real-time PCR was then
carried out on an MJ-Mini thermal cycler in conjunction with a MiniOpticon Real-Time
PCR system (Bio-Rad, Hercules, CA, USA) under the following conditions: an initial
denaturation step at 95 ◦C for 10 s, followed by 40 cycles at 95 ◦C for 10 s and 60 ◦C
for 30 s. Dissociation curve analysis was performed for each reaction to guarantee the
specificity of amplification. The final concentrations of the PCR reaction components were
as follows: 1X SYBR Premix Ex Taq II (Perfect Real Time) (Takara Bio), 0.4 µM forward
and reverse primers and 5 µL template cDNA for 20 µL reaction. The primer sequences
were as follows: CLCN3 (forward: 5′-ACATGCACCACAACAAAGGC-3′; reverse: 5′-
TTTCGGTTTTGAGCCACACG -3′), ZEB2 (forward: 5′-TGTTTCTGCAAGTGCCATCC-
3′; reverse: 5′-ACACTGAAGCTGGTGCAAAG-3′) and β-actin (forward:
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5′-ATTGCCGACAGGATGCAGA-3′; reverse: 5′-GAGTAC TTGCGCTCAGGAGGA-3′).
Expression level of CLCN3 was normalized to β-actin using a standard curve method.

Real-time RT-PCR of miR-205-5p and miR-200 family members
Ten ng total RNA was reverse transcribed into cDNA using the TaqMan MicroRNA
Reverse Transcription Kit (Thermo Fisher Scientific) with the specific primers for hsa-
miR-205-5p (Assay ID: 000509), hsa-miR-200a-3p (Assay ID: 000502), hsa-miR-200b-3p
(Assay ID: 002251), hsa-miR-200c-3p (Assay ID: 002300), hsa-miR-141-3p (Assay ID:
000463), hsa-miR-429 (Assay ID: 001024), or RNU48 (Assay ID: 001006) included in
the TaqMan MicroRNA assay (Thermo Fisher Scientific). Quantitative real-time PCR
was then carried out on the same thermal cycler and real-time PCR system as described
above under the following conditions: a hot start step at 95 ◦C for 10 min, followed by 40
cycles at 95 ◦C for 15 s and 60 ◦C for 1 min. The final concentrations of the PCR reaction
components were as follows: 1X TaqMan Universal PCR Master Mix, No AmpErase UNG
(Thermo Fisher Scientific), 1X specific primers for hsa-miR-205-5p, hsa-miR-200a-3p,
hsa-miR-200b-3p, hsa-miR-200c-3p, hsa-miR-141-3p, hsa-miR-429 or RNU48 included
in TaqMan MicroRNA Assay mix (Thermo Fisher scientific) and 1.33 µL template cDNA
for 20 µL reaction. Bio-Rad CFX Manager software was used for data analysis. The relative
expression levels of miR-205-5p, hsa-miR-200a-3p, hsa-miR-200b-3p, hsa-miR-200c-3p,
hsa-miR-141-3p and hsa-miR-429 were normalized to the endogenous control RNU 48
according to the delta-delta CT method.

Western blotting
Western blotting was performed as previously described (Adachi et al., 2011). Whole
cell lysates were subjected to SDS-PAGE, and separated proteins were transferred to a
0.2-µm PVDF membrane. Blocking was performed with 5% dry milk in 0.05% PBST. The
membrane was then blotted with the specific primary antibody. After washing in 0.05%
PBST, the membrane was probed with the corresponding secondary antibody conjugated
with horseradish peroxidase. After washing in 0.05%PBST, themembranewas visualized by
the SuperSignal R© West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific)
and analyzed using the ChemiDoc XRS-J image analysis system (Bio-Rad). The antibodies
used in this study are shown in the Supplementary Material and Methods.

RNA-binding protein immunoprecipitation
RNA-binding protein immunoprecipitation (RIP) was performed using the miRNA Target
IP kit (ActiveMotif, Carlsbad, CA, USA) following the manufacturer’s instructions. Briefly,
293T cells (2.5 × 106) were seeded in a 100-mm dish and transfected with 750 pmol of
miR-205-5p mimic or negative control mimic using Lipofectamine RNAiMAX. After 24 h,
cells were lysed and RIP assay was performed using anti-Ago1/2/3 antibody or negative
control IgG. The immunoprecipitated RNA was purified and subjected to real-time
RT-PCR analysis. The levels of CLCN3, ZEB2 or β-actin were detected and normalized to
the input levels.
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Reporter plasmid construction and site-directed mutagenesis
Template cDNA was synthesized by the RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific) from Human Mammary Gland total RNA (Takara
Bio) according to the manufacturer’s instructions. The 3′-UTR for CLCN3 was
PCR amplified from the template cDNA. The following primers were used:
CLCN3 3′-UTR (forward: 5′-GGACTAGTGGGTTTTTGCAACATGGTTT-3′; reverse:
5′-TTGAAGCTTGTCTTTGCAATGTTGGAGCA-3′). The PCR amplifications were
performed in reaction volumes of 50 µL containing 5 µL 10X Buffer for KOD-Plus
Ver.2, 0.3 µM forward and reverse primers, 5 µL 2 mM dNTPs, 3 µL 25 mM MgSO4,4%
DMSO, 0.02 U/µL KOD-Plus- (TOYOBO, Osaka, Japan), and 1 µL template cDNA
using MJ-Mini thermal cycler. The thermal cycling conditions were as follows: 40
cycles of denaturation at 98 ◦C for 10 s, annealing at 60 ◦C for 30 s, and extension
at 68 ◦C for 20 s. After digestion with HindIII and SpeI, the final PCR products
were inserted into the HindIII/SpeI sites of pMIR-REPORTTM Luciferase (Thermo
Fisher Scientific). This construct was named as CLCN3-3′-UTR-wt. Site-directed
mutagenesis was then performed using a PrimeSTAR

R©
Mutagenesis Basal Kit (Takara Bio)

according to the manufacturer’s instructions. The following primers were used: CLCN3-
mut1 (forward: 5′-TCCACCTTACGTCCTGTTGTTTGGGGAGGGAAA-3′; reverse:
5′-AGGACGTAAGGTGGAGCATTATTTGCAAACCAT-3′), CLCN3-mut2 (forward:
5′-GAATGGTCCTGTTGTTTGGGGAGGGAAA-3′; reverse: 5′- ACAACAGGACCATTCC
ACCGCATTAT-3′) and CLCN3-mut3 (forward: 5′- GCTCCACCTTACGAGGAG
TTGTTTGGGGAG-3′; reverse: 5′-CTCGTAAGGTGGAGCATTATTTGCAAACCA-3′).
The obtained constructs were named as CLCN3-3′-UTR-mut1, CLCN3-3′-UTR-mut2 and
CLCN3-3′-UTR-mut3, respectively.

Reporter assay
Cells were plated in 12-well plates 1 day before transfection and co-transfected with
400 ng/well CLCN3 3′-UTR, CLCN3-3′-UTR-mut1, CLCN3-3′-UTR-mut2 or CLCN3-3′-
UTR-mut3, 50 ng/well pGL4.70 Renilla luciferase plasmid (Promega), and 45 pmol/well
miR-205-5p mirVanaTM miRNA mimic or mirVanaTM miRNA mimic Negative Control
#1 (Thermo Fisher Scientific) by using Lipofectamine 3000 (Thermo Fisher Scientific).
At 48 h post-transfection, the cells were lysed in Passive Lysis Buffer (Promega), and
firefly and Renilla luciferase activities were measured using the Dual luciferase reporter
assay (Promega) following the manufacturer’s instructions. The relative firefly luciferase
reporter activities were calculated by normalizing transfection efficiencies according to the
Renilla luciferase activities.

Three-dimensional (3D) spheroid proliferation assay
The 3D spheroid proliferation assay was performed using the Cultrex R© 3D Spheroid
Colorimetric Proliferation/Viability Assay (Trevigen, Gaithersburg, MD) following the
manufacturer’s instructions. Briefly, 3,000 cells were plated in 50 µL medium containing
Spheroid Formation ECM in a 3D Culture Qualified 96-well Spheroid Formation plate and
cultured for 72 h. In an experiment using CLCN3 shRNA stable cells, 50 µL medium was
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added to each well and cells were cultured for additional 72 h. In an exosome treatment
experiment, 50 µL medium plus 10 µL PBS or 10 µL exosomes derived fromMCF10A-neo
cells were added to each well, and cells were cultured for an additional 72 h. Cellular
proliferation was assessed by MTT analysis, and absorbance was measured on a Biotrak II
Plate Reader (GE Healthcare, Chicago, IL) at a wavelength of 562 nm, with background
subtracted at 690 nm.

shRNA expression plasmid construction
The retroviral vector pSINsi-DK II-CLCN3 shRNA and the negative control vector
pSINsi-DK II-control shRNA were constructed by inserting the pSINsi-DK II Promoter
Cassette and the following sense-loop-antisense DNA sequences into Sse8387I and
ClaI sites of the pSINsi-DK II vector (Takara Bio): CLCN3 shRNA, DNA-1 sense:
5′-GATCCAAGGCTCATCAAACAGGTAAATAGTGCTCCTGGTTGTTTACCTGTTT
GATGAGCCTTTTTTTTAT-3′, DNA-1 antisense: 5′-GTTCCGAGTAGTTTGTCCA
TTTATCACGAGGACCAACAAATGGACAAACTACTCGGAAAAAAAATAGC-3′; DNA-
2 sense: 5′-CTAGAAAGGCTCATCAAACAGGTAAACACAGGGAAGCGAGTCTG
TTTACCTGTTTGATGACCTTTTTTTTCCTGCA-3′, DNA-2 antisense: 5′-TTTCCG
AGTAGTTTGTCCATTTGTGTCCCTTCGCTCAGACAAATGGACAAACTACTC
GAAAAAAAAGG-3′; and control shRNA, DNA-1 sense: 5′-GATCCGTCTTAAT
CGCGTATAAGGCTAGTGCTCCTGGTTGGCCTTATACGCGATTAAGACTTTTTTAT-
3′, DNA-1 antisense: 5′-GCAGAATTAGCGCATATTCCGATCACGAGGACCAACC
GGAATATGCGCTAATTCTGAAAAAATAGC-3′; DNA-2 sense: 5′-CTAGAGGCT
ATTACGACGTTAATCCACAGGGAAGCGAGTCTGGATTAACGTCGTAATAGC
CTTTTTTCCTGCA-3′, DNA-2 antisense: 5′-TCCGATAATGCTGCAATTAGGTGT
CCCTTCGCTCAGACCTAATTGCAGCATTATCGGAAAAAAGG-3′.

Stable cell generation
Retroviral infection was performed as previously described (Adachi et al., 2011; Hasegawa
et al., 2017). shRNA-expressing retroviruses were prepared by transient co-transfection
with pSINsi-DK II-CLCN3 shRNA or pSINsi-DK II-control shRNA and the amphotropic
helper virus pSV-A-MLV into 293T cells by using calcium phosphate precipitation. SKBR3
and MDA-MB-453 cells were cultured with fresh retroviral supernatants in the presence of
polybrene for 48 h and then subjected to selection by 1.5 mg/mL G418 (Sigma) for SKBR3
and 1 mg/mL G418 for MDA-MB-453.

Exosome isolation and exosomal RNA purification
Exosomes were isolated using Total Exosome Isolation (from cell culture media) (Thermo
Fisher Scientific) following themanufacturer’s instruction. Briefly, 1× 106 cells were seeded
in a 10 cm dish and cultured in serum-containing medium for 24 h. After washing cells
with serum-free medium, the cells were cultured in serum-free medium for 48 h. Culture
medium was then harvested and centrifuged at 2,000× g for 30 min. The supernatant
was incubated with the Total Exosome Isolation (from cell culture media) reagent at 4 ◦C
overnight and then centrifuged at 10,000× g for 1 h at 4 ◦C. The supernatant was then
removed, and the exosome-containing pellet was resuspended in 100 µL PBS. Exosomal
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RNA was purified using the Total Exosome RNA & Protein Isolation Kit (Thermo Fisher
Scientific) following the manufacturer’s instructions. Confirmation of exosome isolation
was checked by evaluating exosomal marker protein expression (Fig. S1).

Exosome treatment
Cells (4 × 105) were seeded in a 6-well plate and cultured in serum-free medium with
60 µL exosome suspension in PBS or 60 µL PBS for 24 h. Cells were harvested and applied
to Real-time RT-PCR analysis for miR-205-5p and CLCN3 and 3D spheroid proliferation
assays.

RESULTS
MiR-205-5p inhibits expression of CLCN3 in breast epithelial cells
We previously established breast epithelial cells that stably overexpress ErbB2 (MCF10A-
ErbB2) and the associated control cells (MCF10A-neo). In this previous study, we reported
that the overexpression of ErbB2 inhibits the expression of miR-205-5p (Adachi et al.,
2011). We next searched for potential target genes of miR-205-5p using in silico analysis
(miRBLAST-B,CosmoBio, Tokyo, Japan) andnarroweddown candidate genes by literature
search and real-time RT-PCR analysis. Then we selected CLCN3 as one of the candidates.
To determine whether miR-205-5p expression correlates with CLCN3 expression in breast
epithelial cells, we further examined CLCN3 expression in MCF10A cells, MCF10A-neo
cells, MCF10A-ErbB2 cells, negative control precursor-transfected, and miR-205-5p
precursor-transfected MCF10A-ErbB2 cells by western blotting. Our results revealed that
the expression of CLCN3 increased in MCF10A-ErbB2 cells compared with MCF10A
and MCF10A-neo cells and that the elevated CLCN3 expression level was reduced by
transfection with the Pre-miR-205-5p precursor (Fig. 1).

MiR-205-5p directly targets CLCN3 3′-UTR in breast epithelial cells
An Argonaute protein (Ago) plays a crucial role in the maturation process of miRNAs
as a component of the RNA-induced silencing complex. We next performed RIP assay
with anti-Ago1/2/3 antibody to validate the interaction between miR-205-5p and CLCN3.
RIP assay revealed that the relative enrichment of CLCN3 in Ago immunoprecipitation
complex was significantly increased in 293T cells transfected with miR-205-5p mimic
compared with negative control mimic group (Fig. 2A). MiR-205-5p mimic transfection
resulted in the similar enrichment of ZEB2, a known target of miR-205-5p, whereas didn’t
change the enrichment level of β-actin. We further evaluated whether CLCN3 is a direct
target of miR-205-5p. We predicted a putative miR-205-5p binding site in the CLCN3
3′-UTR (Fig. 2B) and constructed luciferase reporter plasmids containing wild-type CLCN3
3′-UTR or the three different mutations at the putative miR-205-5p binding site (Fig. 2C).
To this end, we transfected the reporter plasmids with either the miR-205-5p mimic or
the negative control mimic into MCF10A-ErbB2 or MCF10A-neo cells to determine the
reporter activities. Our results indicated that the reporter activity of CLCN3-3′-UTR-wt
was significantly decreased by the miR-205-5p mimic co-transfection in MCF10A-ErbB2
cells (Fig. 3A). Moreover, the reporter activities of the partial mutants, CLCN3-3′-UTR-
mut2 and CLCN3-3′-UTR-mut3, were significantly decreased by miR-205-5p mimic
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Figure 1 Expression of CLCN3 in ErbB2-overexpressing breast epithelial cells. (A) Western blot analy-
sis of MCF10A, MCF10A-neo, MCF10A-ErbB2 cells and MCF10A-ErbB2 cells transfected with either the
miR-205-5p miRNA precursor or negative control precursor. β-actin was used as a control for loading.
(B) The graph showed the relative intensities of the bands normalized to β-actin. Data were represented
the mean± SEM of five independent experiments.

Full-size DOI: 10.7717/peerj.7799/fig-1
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Figure 2 RNA-binding protein immunoprecipitation, predicted miR-205-5p binding site in
the CLCN3 3′-UTR and construction of luciferase reporter plasmids. (A) RNA-binding protein
immunoprecipitation analysis using a pan-Ago antibody. 293T cells were transfected with miR-205-5p
mimic or negative control mimic. At 24 h post-transfection, RIP analysis was performed, and expression
of CLCN3, ZEB2 and β-actin was measured by real time RT-PCR. Data were normalized to the input
levels and represented as the mean± SEM of three independent experiments. *p< 0.01 by Student’s t -test
compared with the negative control mimic. (B) Hsa-miRNA-205-5p/CLCN3 alignment. Predicted miR-
205-5p binding site (GenBank Accession No.: NM_001829, 3171–3192) in CLCN3 3′-UTR was indicated.
Red letters represent the matched bases. (C) Construction of luciferase reporter plasmids containing
wild-type CLCN3 3′-UTR (CLCN3-3t′-UTR-wt) and mutated CLCN3 3′-UTR (CLCN3-3′-UTR-mut1,
-mut2, -mut3). Red letters represent the bases matched to CLCN3 3′-UTR. Underlined letters represent
the mutated bases. CLCN3-3′-UTR-mut1 corresponds to a complete mutant and CLCN3-3′-UTR-mut2,
-mut3 correspond to partial mutants.

Full-size DOI: 10.7717/peerj.7799/fig-2
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Figure 3 Luciferase reporter assay. (A) Luciferase reporter analysis using the CLCN3 3′-UTR-wt.
MCF10A-ErbB2 and MCF10A-neo cells were transiently co-transfected with pGL4.70 Renilla luciferase
plasmid, CLCN3 3′-UTR-wt and miR-205-5p mimic or negative control mimic. At 48 h post-transfection,
luciferase activities were measured. Data were normalized to pGL4.70 Renilla luciferase plasmid control
and represented as the mean± SEM of three independent experiments. * p < 0.01 by Student’s t -test
compared with the negative control mimic. (B) Luciferase repoter analysis using the CLCN3-3′-UTR-
mut1, -mut2, -mut3. MCF10A-ErbB2 cells were transiently co-transfected with pGL4.70 Renilla luciferase
plasmid, CLCN3 3′-UTR-mut1, -mut2, -mut3 and miR-205-5p mimic or negative control mimic. At 48
h post-transfection, luciferase activities were measured. Data were normalized to the pGL4.70 Renilla
luciferase plasmid control and represented as the mean± SEM of three independent experiments. *
p< 0.01 by Student’s t -test compared with the negative control mimic.

Full-size DOI: 10.7717/peerj.7799/fig-3
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co-transfection in MCF10A-ErbB2 cells, whereas the reporter activity of the complete
mutant, CLCN3-3′-UTR-mut1, was not significantly decreased (Fig. 3B).

Functional exosomal miRNA is transferred into ErbB2-overexpressing
breast epithelial cells
Since the expression of miR-205-5p was significantly reduced in MCF10A-ErbB2 cells
compared with MCF10A-neo cells as previously described (Adachi et al., 2011), we next
determined the expression of miR-205-5p in the exosomes from these cells. We found
that miR-205-5p expression in exosomes isolated from MCF10-neo cells was much higher
than in exosomes isolated from MCF10-ErbB2 cells (Fig. S2). It has been reported that
exosomal miRNAs can be transferred between cells and mediate target gene repression
and physiological function (Bovy et al., 2015; Mittelbrunn et al., 2011; Santos et al., 2016).
Therefore, we treatedMCF10A-ErbB2 cells with exosomes derived fromMCF10A-neo cells
to determine whether functional miR-205-5p could be transferred. Our results showed
that miR-205-5p expression in MCF10A-ErbB2 cells treated with MCF10A-neo-derived
exosomes was increased by about 7-fold compared with vehicle (PBS) treatment (Fig. 4A).
Moreover, CLCN3 expression in MCF10A-ErbB2 cells treated with MCF10A-neo-derived
exosomes was significantly decreased compared with vehicle treatment (Fig. 4B).

CLCN3 mediates 3D spheroid proliferation in ErbB2-overexpressing
breast epithelial cells and breast cancer cells
Since our data indicated that CLCN3 is one of the potential targets of miR-205-5p, we
investigated the possible biological function of CLCN3 in ErbB2-overexpressing breast
epithelial cells and breast cancer cells. We analyzed 3D spheroid proliferation of MCF10A-
ErbB2 cells treated with exosomes derived from MCF10A-neo cells because we previously
found that miR-205-5p inhibited 3D colony formation in soft agar using MCF10A-ErbB2
cells. Our results showed that the treatment of MCF10A-neo-derived exosomes decreased
3D spheroid proliferation by about 40% compared with vehicle (Fig. 5A). In addition,
we established CLCN3 shRNA or control shRNA stably expressing cells using the ErbB2-
overexpressing breast cancer cell lines SKBR3 and MDA-MB-453 (Fig. S3) and analyzed
the 3D spheroid proliferation of these stable cells. Inhibition of CLCN3 expression in 3D
spheroids was confirmed by real-time RT-PCR (Fig. S4). Our results showed that CLCN3
shRNA stable cells have significantly decreased 3D spheroid proliferation compared with
control shRNA stable cells in both SKBR3 and MDA-MB-453 cells (Fig. 5B, Fig. S5).

DISCUSSION
To understand the comprehensive role of miR-205-5p in breast cancer, we attempted to
identify a novel target of miR-205-5p that may be involved in breast cancer progression
and performed analyses focusing on CLCN3. On the basis of our observation that CLCN3
expression was increased in the ErbB2-overexpressing breast epithelial cells MCF10A-
ErbB2, and ectopic transfection of the miR-205-5p precursor reduced the elevated
CLCN3 expression levels, CLCN3 may prove to be a miR-205-5p target. Interestingly,
we additionally found that miR-205-5p expression was significantly reduced in the ErbB2-
overexpressing breast cancer cell lines stably expressing CLCN3 shRNA (Fig. S6). This may
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Figure 4 Effect of the treatment withMCF10A-neo-derived exosome on the expression of miR-205-5p
and CLCN3 inMCF10A-ErbB2 cells. (A) Real-time RT-PCR analysis for miR-205-5p. MCF10A-ErbB2
cells were treated with MCF10A-neo-derived exosome for 24 h. Data were normalized to vehicle control
and represented as the mean± SEM of three independent experiments. *p< 0.01 by Student’s t -test com-
pared with vehicle. (B) Real-time RT-PCR analysis for CLCN3. MCF10A-ErbB2 cells were treated with
MCF10A-neo-derived exosome for 24 h. Data were normalized to vehicle control and represented as the
mean± SEM of three independent experiments. *p< 0.05 by Student’s t -test compared with vehicle.

Full-size DOI: 10.7717/peerj.7799/fig-4
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Figure 5 3D spheroid proliferation assay. (A) MCF10A-ErbB2 cells were pre-treated with MCF10A-
neo-derived exosome for 24 h and applied for 3D spheroid proliferation assay for 6 days. Data were nor-
malized to vehicle control and represented as the mean± SEM of three independent experiments. *p <

0.01 by Student’s t -test compared with vehicle. (B) CLCN3 shRNA or control shRNA stably expressing
SKBR3 and MDA-MB-453 cells were applied for 3D spheroid proliferation assay for 6 days. MTT analysis
was performed. Data were normalized to control shRNA stable cells and represented as the mean± SEM
of three independent experiments. *p< 0.01 by Student’s t -test compared with control shRNA stable cells.

Full-size DOI: 10.7717/peerj.7799/fig-5
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occur by negative feedback loopmechanisms betweenmiRNA and its target genes (Herranz
& Cohen, 2010; Liu, Duan & Duan, 2018). Interaction between CLCN3 and miR-205-5p
was also verified by the significantly high enrichment of CLCN3 in miR-205-5p mimic
transfected 293T cells via RIP analysis. These observations were further confirmed by
reporter assays revealing that the miR-205-5p mimic significantly decreased the reporter
activity of CLCN3-3′-UTR-wt. Additional observations that the miR-205-5p mimic did
not show significant effects on the reporter activity of the complete mutant, CLCN3-3′-
UTR-mut1, strongly support that CLCN3 is likely a novel potential target of miR-205-5p.
The seed sequence, nucleotides 2 to 8 of the miRNA, has been recognized as a critical
determinant of canonical miRNA–target interaction. Although there are imperfect seed
matches between CLCN3 and miR-205-5p, recent reports revealed that imperfect seed
matches could be compensated for by extensive pairing with the seed-distal 3′ end of
the miRNA (Brancati & Grosshans, 2018; Broughton et al., 2016). According to our data
showing that the miR-205-5p mimic also significantly decreased the reporter activity of the
partial mutants, CLCN3-3′-UTR-mut2 and CLCN3-3′-UTR-mut3, it is suggested that the
miR-205-5p and CLCN3 interaction needs both seed and seed-distal pairing.

CLCN3 is a member of the voltage-gated chloride channel family and functions as a
Cl−/H+ transporter in intracellular membranes (Duran et al., 2010; Guzman et al., 2013).
In addition, several studies have shown that CLCN3 is involved in cell proliferation,
apoptosis, drug resistance, and invasion in many cancers (Lui et al., 2010; Su et al., 2013;
Xu et al., 2010; Zhang et al., 2013). In cellular proliferation, CLCN3 plays an important
role by controlling cell cycle progression (Wang et al., 2002; Xu et al., 2010). Knockdown
of CLCN3 by siRNA reduces cells in S phase, while increasing those in G0/G1 phase, in rat
basilar arterial smooth muscle cells and inhibits cellular proliferation by downregulating
the expression of cyclin D1 and cyclin E in mouse mesenchymal stem cells (Tang et al.,
2008; Tao et al., 2008). CLCN3 also accelerates the G0/G1 to S phase transition in the cell
cycle by enhancing the phosphorylation of ERK1/2 and upregulating cyclin E and cyclin D1
in multiple myeloma cells (Du et al., 2018). Thus, there are several reports on the functions
of CLCN3 in cancer. However, the roles of CLCN3 in breast cancer cell proliferation
remain unclear. Our findings in this study indicate that CLCN3 promotes 3D spheroid
proliferation in ErbB2-overexpressing breast epithelial and cancer cells. These findings
should improve our understanding of the significance of CLCN3 in breast cancer cellular
proliferation. In addition, we showed that miR-205-5p expression in exosomes isolated
fromMCF10-neo cells was higher than in exosomes isolated fromMCF10-ErbB2 cells. Our
data of exosome treatment experiments further indicate that exosomal miR-205-5p may be
functionally transferred between breast epithelial cells and inhibit 3D spheroid proliferation
by downregulating CLCN3. Although the inhibitory effect of exosomal miR-205-5p on
CLCN3 expression was marginal, it was likely due to the amount of exosomal miR-205-5p
transfer being considerably small in comparison with that of miR-205-5p precursor or
mimic transfection. The important thing was that miR-205-5p could be successfully and
functionally transferred by exosome treatment. We also found that expression of miR-200
family members in exosomes from MCF10A-neo cells was significantly higher than in
exosomes from MCF10-ErbB2 cells, but the transfer of miR-200 family members didn’t
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occur under the same exosome treatment condition (Figs. S7A and S7B). Our observation
suggests that exosome-mediated miR-205-5p transfer may contribute to the control of
cell proliferation in physiological conditions, and exosomes may be utilized to deliver
exogenous miR-205-5p.

CONCLUSIONS
In conclusion, our novel findings demonstrated that CLCN3 is a likely target ofmiR-205-5p,
and overexpression of ErbB2 induces CLCN3 expression by downregulating miR-205-5p
in breast epithelial cells. In addition, CLCN3 promotes 3D spheroid proliferation in
ErbB2-overexpressing breast epithelial and cancer cells. On the basis of these observations,
CLCN3 may have the potential to be a novel therapeutic target for ErbB2-overexpressing
breast cancers.
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