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ABSTRACT
Flatfish undergo extreme morphological development and settle to a benthic in the
adult stage, and are likely to be more susceptible to environmental stress. Heat shock
proteins 70 (hsp70) are involved in embryonic development and stress response in
metazoan animals. However, the evolutionary history and functions of hsp70 in flatfish
are poorly understood. Here, we identified 15 hsp70 genes in the genome of Japanese
flounder (Paralichthys olivaceus), a flatfish endemic to northwestern Pacific Ocean.
Gene structure and motifs of the Japanese flounder hsp70 were conserved, and there
were few structure variants compared to other fish species.We constructed amaximum
likelihood tree to understand the evolutionary relationship of the hsp70 genes among
surveyed fish. Selection pressure analysis suggested that four genes, hspa4l, hspa9,
hspa13, and hyou1, showed signs of positive selection. We then extracted transcriptome
data on the Japanese flounder with Edwardsiella tarda to induce stress, and found
that hspa9, hspa12b, hspa4l, hspa13, and hyou1 were highly expressed, likely to protect
cells from stress. Interestingly, expression patterns of hsp70 genes were divergent in
different developmental stages of the Japanese flounder. We found that at least one
hsp70 gene was always highly expressed at various stages of embryonic development of
the Japanese flounder, thereby indicating that hsp70 genes were constitutively expressed
in the Japanese flounder. Our findings provide basic and useful resources to better
understand hsp70 genes in flatfish.
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INTRODUCTION
Heat shock proteins (HSPs) are a super family of proteins that are induced by physical,
chemical and biological stressors in all living organisms from bacteria to humans (Kregel,
2002). HSPs were first discovered as genes involved in heat-shock responses in the fruit fly
Drosophila melanogaster (Ritossa, 1962). Based on their roles and expression patterns, HSPs
were categorized into two different types: constitutive heat shock proteins (HSCs) that
are expressed constitutively, and inducible forms that are expressed in response to certain
factors (Boone & Vijayan, 2002). HSCs are expressed early in development and are involved
in cellular activity, in contrast, inducible HSPs are involved in the response to harmful
circumstances and protect the cell from stress (Angelidis, Lazaridis & Pagoulatos, 1991;
Whitley, Goldberg & Jordan, 1999). HSPs have also been classified based on their protein
molecular weight, where they are divided into HSP90 (83∼110 KD), HSP70 (66∼78 KD),
HSP60 (58∼65 KD) and other small molecular weight proteins (Morimoto, Tissieres &
Georgopoulous, 1990). Characterization of HSPs in a species genome will facilitate better
interpretation of how an organism responds to environmental stressors.

HSP70 are the most conserved HSPs across different species (Hunt & Morimoto, 1985;
Mayer & Bukau, 2005). HSP70 proteins have a characteristic N-terminal ATPase domain,
substrate binding domain, and C-terminal domain (Schlesinger, 1990; Kiang & Tsokos,
1998), the N-terminal ATPase domain, and the substrate binding domain are often
more conserved than the C-terminal domain (Munro & Pelham, 1987). Humans, birds,
amphibians, zebrafish, catfish, and medaka contain 17, 12, 19, 20, 16, and 15 hsp70 genes,
respectively (Song et al., 2015). In previous studies, it was shown that hsp70 genes play
fundamental roles as chaperones involved in maintaining cellular function that facilitate
protein-folding, regulate kinetic partitioning, and reduce protein aggregation (Gething &
Sambrook, 1992; Pratt & Toft, 1997; Parsell et al., 1994; Morimoto et al., 1997; Pratt, 1993).

HSP70 is a well-known stress protein in aquatic organisms, which is involved in
stress response, including thermo tolerance as well as regulating the immune system
(Gornati et al., 2004; Poltronieri et al., 2007; Bertotto et al., 2011; Wallin et al., 2002; Tsan &
Gao, 2009). For example, hyper-thermic treatment of Penaeus monodon increases hsp70
expression and reduces the replication of gill associated virus (GAV) (Vega et al., 2006). In
addition, upregulation of endogenous HSP70 in the Artemia franciscana (Kellogg) occurs
simultaneously when shielding bacterial infection (Sung et al., 2009). Coho salmon infected
with Renibacteriumsal moninarum expressed higher levels of hsp70 in the liver and kidney
when compared with uninfected salmon, highlighting the importance of hsp70 genes
in immune response of fish (Forsyth et al., 1997). Juvenile rainbow trout (Oncorhynchus
mykiss) infected with Vibrio anguillarum has higher hsp70 expression in hepatic and kidney
tissues before showing clinical signs of disease (Ackerman & Iwama, 2001). Therefore,
hsp70 is important for the immune response of aquatic species against diverse infections.

In addition to its role in cellular function, stress response and immunity, HSPs have
also been shown to be involved in embryonic development and extra-embryonic structures
(Morange et al., 1984; Voss et al., 2000; Matwee, 2001; Louryan et al., 2002; Rupik et al.,
2006). During embryonic development, Many HSPs exhibit complex spatial and temporal
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expression patterns (Krone, Lele & Sass, 1997). For example, mouse embryos treated with
anti-HSP70 showed significant reduction in the progression of development (Neuer et al.,
1998). Zebrafish demonstrated low and constitutive hsp90a expression during embryonic
development, and these levels increased when the gastrula and later stage embryos were
exposed to heat (Krone & Sass, 1994). Moreover, hsp47 showed higher expression in
response to stress (Pearson et al., 1996), and was involved in the formation of embryonic
tissues in fish through its interactionwith procollagen (Krone, Lele & Sass, 1997). Therefore,
HSPs play an important role during embryonic development in addition to their basic
cellular functions.

Japanese flounder is endemic to the northwestern Pacific Ocean (Minami & Tanaka,
1992). It is the dominant flatfish species in the aquaculture industry because of its rapid
growth rate, delicious taste, and high nutritional value, therefore becoming an economically
important marine species in China, Korea, and Japan (Fuji et al., 2006). The genome of
Japanese flounder was recently completed (Shao et al., 2017), thereby facilitating the
discovery of hsp70 genes. Here, we identified and characterized the Japanese flounder
hsp70 family and determined whether these genes are involved in stress response to a
pathogen, and embryonic development. Comparative genomics between the other closely
related species offer a chance to understand the evolutionary relationship of hsp70 and the
selective pressures that affect the evolution of these genes. Our findings provide insight
into the function of hsp70 in embryonic development and disease defense in the Japanese
flounder, which may help future improvement of the Japanese flounder for aquaculture.

MATERIALS & METHODS
Ethics statement
The handling of experimental fish was approved by the Animal Care and Use Committee of
the Chinese Academy of Fishery Sciences, and all protocals were performed in accordance
with the guidances of the Animal Care and Use Committee.

Database mining and sequence extraction
A comprehensive search of the sequence database on the NCBI website and Ensemble
website was employed to identify hsp70 orthologs among six different teleost fish, including:
zebrafish, stickleback, medaka, tilapia, platyfish, and tetraodon. Protein sequences of all
chosen species were collected, and HSP70 proteins were selected from zebrafish according
to the accession number, and HSP70 protein sequences from zebrafish were used as
queries to search against the Japanese flounder gene set with an intermediate stringency
of e−10. Redundant gene sequences were removed by setting the identity value and
coverage of the alignment length to 60% and 60%, respectively. All remaining sequences
were manually confirmed for the presence of known HSP70 domains using the software
SMART (Schultz et al., 1998; Schultz et al., 2000) to remove pseudogenes. When applying
a similar method, hsp70 gene sequences were retrieved from the gene set of other
species, including stickleback, medaka, platyfish, tilapia, and tetraodon. The Zebrafish
Nomenclature Guidelines were used as a benchmark to name hsp70 genes in flounder.
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Furthermore, the isoelectric point (pI ) of the HSP70 protein was determined using ExPASy
(https://www.expasy.org/).

Phylogenetic analyses
To investigate the phylogenetic relationship of hsp70 genes among the surveyed fish species,
the sequences were processed as follows: protein sequences were aligned using Guidance2
with MAFFT as the MSA algorithm and 100 bootstrap repeats. Ambiguous sites were
manually trimmed while aligning sequences. The multiple sequence alignment was used as
input into MEGA7 to construct a phylogenetic tree (Kumar, Stecher & Tamura, 2016). The
phylogenetic relationships of hsp70 genes of seven teleost fishes were constructed using the
ML method in MEGA7. In the ML analyses, the maximum composite likelihood model
was used, and a total of 1,000 bootstrap replicates were conducted for each calculation.
Finally, Evolview was used to visualize the phylogenetic tree (Zhang et al., 2012).

Sequence structure analysis and motif prediction of hsp70
To analyze the gene structure of hsp70 in the Japanese flounder, the Gene Structure Display
Server of Peking University (Hu et al., 2015) was used to display the intron and exon
structure of all hsp70 genes. To identify the motif of hsp70 genes, a structural motif search
was conducted usingMEME (Machanick & Bailey, 2011) with a targetmotif number setting
of 15.

Molecular evolution analysis
Protein sequences from each clade in the phylogenetic tree were retrieved and used for
multiple sequence alignment with Guidance2 (Sela et al., 2015). Unreliable sites were
trimmed in the multiple sequence alignment, and a tree was constructed using IQ-TREE
(Nguyen et al., 2014). Codon alignment of protein sequences was converted by pal2nal
(Suyama, Torrents & Bork, 2006). Using these data, molecular evolution analysis was
conducted to measure the selection pressure within each clade, and the CODEML program
from PAML (Yang, 1997; Yang, 2007) was used to estimate the ω value using the branch
site model. The aim of the branch-site test was to identify episodic Darwinian selection
along a prespecified branch in a phylogenetic tree that impacts only a few codons in the
coding sequence of a gene. Using this model, we detected genes under positive selection
and the corresponding sites with a nonsynonymous/synonymous ratio of ω> 1 (Yang &
Nielsen, 2002; Yang & Reis, 2011; Zhang, Nielsen & Yang, 2005).

Structure modeling
To better understand the protein structure of genes under positive selection in Japanese
flounder, PHYRE2 (Kelley & Sternberg, 2009) was used to predict the protein structure and
secondary structure using the default parameter. The sites under positive selection were
marked by PyMol 2.0.

Immune response expression profile of hsp70 genes against
Edwardsiella tarda infection in the Japanese flounder
RNA-seq data was downloaded from Sequence Read Archive (SRA) database in NCBI,
including the following accession numbers: SRR5713071, SRR5713072, SRR5713073,
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SRR5713074, SRR5713075, SRR5713076, SRR5713077, SRR5713078, SRR5713079, and
SRR5713080. These data represented the Japanese flounder that was challenged with E. tar
at 0 h, 8 h, and 48 h, as well as a control injected with Ringer’s solution (Li et al., 2018).
The data was trimmed and the quota transcripts per million of each gene (TPM) was used
to display the expression profile of hsp70 genes.

Expression pattern of hsp70 genes during embryonic development
of Japanese flounder
The hsp70 gene expression analysis was conducted during early stages of embryonic
development and mature gonads of Japanese flounder. The family of Japanese flounder
with crosses of normal females and males were produced and kept in separate units until
the collection of samples of sperm, oocytes, the 4 cell stage, 32 cell stage, 128 cell stage,
high blastula stage, low blastula stage, early gastrula stage, late gastrula stage, myomere
stage, heart beat stage, and hatched larva stage. RNA-seq was conducted on all the above
developmental samples (Table S1). In addition, raw sequence data of ovaries and testis
were downloaded from NCBI (accession numbers SRR3509719 and SRR3525051). Gene
expression levels were assessed using TPM, then the R package pheatmap (Kolde, 2018)
was used to illustrate the expression patterns at different developmental stages.

RESULTS
Identification of hsp70 superfamily genes
A total of 111 genes were retrieved from seven fish species (Japanese flounder, zebrafish,
stickleback, medaka, tilapia, platyfish, and tetraodon), where the number of hsp70 genes
ranged from 9 to 21, depending on the species. There were 9 hsp70 genes in the tetraodon,
whereas tilapia had 21 hsp70 genes. Fifteen hsp70 genes, including hspa1a, hspa4a, hspa12a,
hsc70, hspa5, hspa9, hspa1b, hspa12b, hspa14, hspa13, hspa4l, hspa4b, hspa8a, hspa8b, and
hyou1 were identified in the Japanese flounder (Table 1). All genes contained the necessary
domains of hsp70. The length of the corresponding protein ranged from 442 to 1,020
amino acids. The pI of different genes was variable, ranged from 4.97 to 8.17 (Table 1).

Phylogenetic analysis of hsp70 in fish
We next conducted a phylogenetic analysis using 111 hsp70 genes from seven teleost species
(Fig. 1). In our analysis, hsp70 genes were divided into eight subclades, which matched the
known subfamilies of hsp70 genes. However, we observed ambiguous separation between
hspa1, hsc70, and hspa8. Not all the fish species had genes from each clade. For example,
tetraodon did not contain hspa14 and medaka did not contain hyou1. All the members of
the flounder hsp70 were split into distinct clades and were grouped with the corresponding
genes from zebrafish and other fish.

Sequence structure analysis and motif prediction of hsp70 gene
family
In general, hsp70 genes are variable in length, ranging from from 1839 bp to 21277
bp (Table 1 and Fig. 2). They have diverse numbers of exons, for instance, hspa1a and
hspa1b contained one exon, hspa4a, hspa4b, and hspa4l that belong to the same subfamily
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Table 1 Summary of hsp70 genes in the Japanese flounder genome.

Name Accession number Gene length (bp) Protein length (aa) pI

hspa1b N_000000250.1 1839 613 5.31
hspa4a N_000000247.1 11776 834 5.13
hspa12b N_000000248.1 11247 673 8.17
hsc70 N_000000245.1 2998 578 5.08
hspa5 N_000000244.1 2767 654 4.97
hspa9 N_000000246.1 7683 716 6.23
hspa1a N_000000243.1 1923 640 5.42
hspa12a N_000000237.1 21277 655 7.3
hspa14 N_000000249.1 7155 506 5.96
hspa13 N_000000242.1 2934 442 5.5
hspa4l N_000000241.1 8479 1005 5.25
hspa4b N_000000236.1 7353 835 4.98
hspa8a N_000000238.1 10619 1020 6.47
hspa8b N_000000239.1 4364 659 5.32
hyou1 N_000000240.1 11459 970 5.12

Notes.
pI indicates the protein isoelectric point.

contained 19–23 exons. Other genes within the same subfamily shared similar number of
introns and exons. The gene structures of hsp70 from the seven species included in this
study are displayed in (Table S2 and Fig. S1). The hsp70 found in flounder had variable
protein motif patterns (Fig. 3). Genes hspa12a and hspa12b contained three motifs, and
hspa1a and hspa1b contained themaximumnumber ofmotifs (15). Themotif compositions
of different hsp70 genes are listed in Fig. S2.

Molecular evolution analysis
Although eight subclades can be found, hspa1, hsc70, and hspa8 clade show ambiguous
separation, and could not be used for positive selection analysis. Therefore, we only used
data from the other seven hsp70 subclade genes in Japanese flounder to identify signatures
of evolution.We identified four genes, hspa4l, hspa9, hspa13, and hyou1, as having signatures
of positive selection in the Japanese flounder, with P < 0.05. Among them, hspa4l and
hspa13 contained one positively selected site with posterior probabilities values > 0.95,
while hspa9 contained two positively selected sites. The sites were as follows: the Cys in
the protein sequence of gene hspa4l, which was the 235th amino acid; the 582th and 587th
amino acid Thr were present in the protein of hspa9 ; the His is the 337th amino acid in
gene hspa13 (Table S3).

Protein structure of genes under positive selection
Next, we generated three-dimensional protein structures of HSPA4L, HSPA9, HSPA13, and
HYOU1 using PHYRE2. However, we were unable to predict the structure of HSPA9 and
HYOU1. The site under positive selection in significant level was marked in the predicted
proteins of HSPA4L and HSPA13 (Fig. 4). The predicted secondary structure of HSPA4L
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Full-size DOI: 10.7717/peerj.7781/fig-1

demonstrates that the Cys under positive selection is located in a α-helix, and the His
under positive selection is located in a β-strand in HSPA13 (Fig. 5).

Immune response expression profile of hsp70 genes against
Edwardsiella tarda infection in Japanese flounder
To test the role of hsp70 in response to an infection, we analyzed previously generated
RNA-seq data of Japanese flounder blood from samples infected with E. tar. Overall, the
hsp70 genes showed diverse expression patterns after the E. tar infection. Expression levels
of hspa8b, hspa12a, hspa1a, hspa8a, hsc70 and hspa1b decreased after 48 h of treatment with
E. tar. Other genes, such as hspa9, hspa12b, hspa4l, hspa13, and hyou1 showed increased
levels of expression after treatment for 48 h. Only the expression of hspa4a was similar
after 48 h of treatment (Fig. 6). The expression of hspa1a, hspa4a, hspa9, hspa12b, hspa4l,
hspa13, and hyou1 was dramatically changed in the samples injected with Ringer’s solution
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of the panel shows exon and intron structure of hsp70, where the orange rectangles represent exons, black
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after 8 h, however, the expression of genes hspa12b, hspa13 and hyou1 returned to the
original level of expression at 48 h after injection with Ringer’s solution.

Expression pattern in developmental stages of Japanese flounder
We next investigated the expression profile of hsp70 genes in various developmental stages
of the Japanese flounder. We observed significant differences in gene expression based on
the developmental stage. Differential expression was observed between oocytes and sperm,
where most hsp70 genes, including hspa4l, hspa4a, hspa9, hsc70, and hspa1b in oocytes
had higher expression level than the sperm. Comparing expression of hsp70 in sperm and
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PHYER2, and α-helixes were indicated in yellow and β-sheets were indicated in blue. The number on the
top indicates the position of the amino acid residue in the protein.
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Figure 5 The 3D-structural models of HSPA4L (A) and HSPA13 (B). The amino acid under positive se-
lection in HSPA4L is indicated in black (Cys 235) and located in an α-helix. The site under positive selec-
tion in HSPA13 is indicated in orange(His 337) and located in a β-sheet.

Full-size DOI: 10.7717/peerj.7781/fig-5
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testis, some genes, including hspa4l, hspa4a, hspa9, hspa13, hspa1a and hspa8a had a higher
expression level in the testis compared to sperm.When comparing the expression of ovaries
and oocytes, some genes, for instance, hspa1a and hspa8a showed higher expression in
the ovaries compared to oocytes, while other genes, for example, hspa9, hsc70, and hspa1b
showed the opposite. In early embryonic development, from oocyte to high blastula stage,
hspa9, hsc70, hspa1b, hspa4l, and hspa4a had high expression. Interestingly, the expression
of these genes decreased from the low blastula stage to hatching stage. In contrast, the
expression of hspa8b, hspa13, hspa4b, and hspa8a increased during later developmental
stages (Fig. 7).

DISCUSSION
Studies on HSPs have mainly focused on model organisms such as zebrafish, mouse, and
fruit flies (Rupik et al., 2011). With increasing genomic data available for other organisms,
more in-depth studies can be carried out in a variety of species. Here, we identified and
characterized HSPs at the genome level, then explored the evolution of HSPs and its
divergent functions on the immune response and different development stages of the
Japanese flounder.
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relative expression level is indicated by the color bar on the top right.
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The hsp70 family genes in Japanese flounder were divided into numbers of branches
containing the following genes: hsc70, hspa1, hspa4, hspa5, hspa8, hspa9, hspa12, hspa13,
hspa14, and hyou1. The phylogenetic relationship and topology of hsp70 were consistent
with previous studies (Daugaard, Rohde & Jäättelä, 2007), indicating the confidence of the
retrieved sequences in species that were included in the study. Most hsp70 showed similar
intron-exon boundary patterns, suggesting that these genes were highly conserved in fish.
However, hspa8a (17) had double the number of exons in the flounder compared to other
fish (8), and hspa4l from all the other species had about 19 exons, whereas the flounder
had 23 exons. Interestingly, we found signatures of positive selection in hspa4l, further
indicating the evolutionary difference of hspa4l between flounder and the other species.

New favorable genetic variants sweep population, which is known as positive seletion.
(Wagner, 2007; Darwin, 1912). Genes involved in metabolism, stress response and
reproduction tend to be under positive selection (Oliver et al., 2010; Koester, Swanson &
Armbrust, 2013). Among the 15 hsp70 identified in Japanese flounder, we found signatures
of positive selection in four genes, hspa4l, hspa9, hspa13, and hyou1, using the branch site
model in PAML. Genes under positive selection tended to express less than genes subject to
neutral or purifying selection, which tended to be expressed in specific tissues or conditions
(Hodgins et al., 2016). Purifying and neutral selection tended to affect variants that were
deleterious for the organism, and positive selection tended to affect variants that provided
an adaptive advantage to the animal (Rocha, 2006). Interestingly, hyou1 was not expressed
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at any of the developmental stages. These findings were consistent with previous studies
that indicated that genes under positive selection had low expression levels.

The functions of hsp70 were determined by their cellular location, and intracellular
hsp70 genes protected the cell from stress, while extracellular hsp70 genes were involved
in the immune system (De Maio, 2014). For example, hsp70 could be the cross-presenters
of immunogenic peptides in MHC antigens or stimulators that induced innate immune
responses (Pockley, Muthana & Calderwood, 2008; Asea et al., 2000). Aeromonas hydrophila
challenged with Labeorohita showed up-regulation of apg2, hsp90, grp78, grp75, and hsc70,
however, hsp70 was down-regulated upon infection (Das, Mohapatra & Sahoo, 2015).
Here, we used RNA-seq data of the Japanese flounder injected with E. tarda or Ringer’s
solution, and we found similar expression patterns as shown in previously published studies
(Li et al., 2018). However, hsc70 expression was decreased in Japanese flounder at 48 h after
injection with E. tarda, which was opposite from the expression pattern of A. hydrophila,
suggesting a species-specific expression pattern of this gene. Interestingly, some genes were
up-regulated shortly after injection with Ringer’s solution, and returned to the baseline
expression levels after 48 h. However, samples injected with E. tardamaintained differences
in gene expression even at 48 h after injection. Such divergent expression pattern suggested
that some hsp70 genes were involved in the response to E. tarda infection.

Recent studies demonstrated that heat shock proteins play an important role in the
sperm–egg recognition and embryonic development (Li & Winuthayanon, 2017; Luft &
Dix, 1999). Inmouse, hsp70 is constitutively expressed from the two-cell to blastocyst stages
(Hahnel et al., 1986). In this study, from the four-cell stage to the high blastula stage, five
genes, including hspa4l, hspa4a, hspa9, hsc70, and hspa1b, were initially highly expressed,
then expression ceased in later stages, besides these five genes also shows highly expression
in the oocyte cell. A reasonable conclusion of such a similar expression pattern between
the oocyte cell and the early stage of embryonic development is an initial, constitutive
burst of hsp70 expression after boosting the zygotic genome from the four cell stage to
the high blastula stage. From the low blastula stage, other genes, for example hspa8b, was
expressed at a high level, then hspa13 and hspa8a, and hspa4b showed highly expresssion in
chronological order. Overall, from the beginning of embryonic development to the sexual
maturation stage, different hsp70 genes are highly expressed in various developmental
stages. In addition, there is always one or more hsp70 genes expressed at high-level in
the different embryonic development stages. This type of expression during embryonic
development has proven that hsp70 genes were constitutive expression in embryonic
development of the Japanese flounder.

CONCLUSIONS
HSP70 constitutes an important group of proteins that respond to stress. Hsp70 in the
Japanese flounder are divided into eight clades, similar as in other species. Structure analysis
of hsp70 showed that these genes were highly conserved among different species. Four genes
were found under positive selection. Genes hspa9, hspa12b, hspa4l, hspa13, and hyou1 were
highly expressed in flounders challenged with E. tarda, suggesting that these hsp70 genes
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were induced to protect cells from stress. Expression analysis during the developmental
stages indicated that hsp70 genes were involved in embryonic development of the Japanese
flounder in a temporal manner. In conclusion, hsp70 genes play important roles in both
the immune response and embryonic development of the Japanese flounder.
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