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ABSTRACT
Despite its theoretical relationship, the effect of body size on the performance of
species distribution models (SDM) has only been assessed in a few studies, and to
date, the evidence shows unclear results. In this context, Chilean fishes provide an
ideal case to evaluate this relationship due to their short size (fishes between 5 cm and
40 cm) and conservation status, providing evidence for species at the lower end of
the worldwide fish size distribution and representing a relevant management tool for
species conservation. We assessed the effect of body size on the performance of SDM
in nine Chilean river fishes, considering the number of records, performance metrics,
and predictor importance. The study was developed in the Bueno and Valdivia basins
of southern Chile. We used a neural networkmodeling algorithm, trainingmodels with
a cross-validation scheme. The effect of fish size on selected metrics was assessed using
linear models and beta regressions. While no relationship between fish size and the
number of presences was found, our results indicate that the model specificity increases
with fish size. Additionally, the predictive importance of Riparian Vegetation and
Within-Channel Structures variables decreases for larger species. Our results suggest
that the relationship between the grain of the dataset and the home range of the species
could bias SDM, leading in our case, to overprediction of absences.We also suggest that
evolutionary adaptation to low slopes among Chilean fishes increases the relevance of
riparian vegetation in the SDMs of smaller species. This study provides evidence on
how species size may bias SDM, which could potentially be corrected by adjusting the
model grain.
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INTRODUCTION
Species distribution models (SDM) provide an important management tool to support
conservation planning. SDMs generate species distribution maps that allow for more
efficient and effective field inventories, suggest sites of high potential occurrence of rare
species for survey planning, and permit the testing of biogeographical, ecological and
evolutionary hypotheses (Guisan & Thuiller, 2005). Given these advantages, different
international organizations (e.g., UNEP, Conservation International, IUCN, WWF) have
employed SDM to address key policy objectives at a global scale (Cayuela et al., 2009).

Different species traits have been shown to influence species model performance
(Brotons et al., 2004; Segurado & Araújo, 2004; McPherson & Jetz, 2007; França & Cabral,
2016), which could generate biases in the SDM predictions made by each species, negatively
impacting its role as a management tool. One important trait is body size (Radinger et al.,
2017), whichmay affect SDMperformance or accuracy in different ways (McPherson & Jetz,
2007). Small species are often less visible and harder to capture, reducing presence/absence
data availability (McPherson & Jetz, 2007) and implying less precise SDMs (Stockwell &
Peterson, 2002). Additionally, positive relationships between body size, geographic range
size, and home range may also affect SDM performance. Species with different home
range sizes may perceive the environment of different way (McPherson & Jetz, 2007). As a
result, model performance is expected to be higher for species whose homerange matches
the climatic or environmental data used to train the SDM (Suarez-Seoane, Osborne &
Alonso, 2002).

The relationship between body size, geographic range size, and home range in fish species
may also affect SDM variable selection. For example, larger fishes can disperse farther than
small fishes and are expected to be more significantly restricted by in stream barriers
(Radinger & Wolter, 2015; Radinger et al., 2017). Conversely, the lower dispersal ability of
smaller fishes implies a smaller response to anthropogenic drivers (Radinger & Wolter,
2015; Radinger et al., 2017). Thus, body size can potentially affect SDMs by influencing
predictor variable selection.

To date, the effect of body size on distribution models has been tested in different taxa
with unclear results (e.g., McPherson & Jetz, 2007; França & Cabral, 2016; Morán-Ordóñez
et al., 2017; Radinger et al., 2017). In the case of fish, this relationship has been tested
indirectly for riverine fish (Radinger et al., 2017) and directly for marine and estuary fishes
(Perry et al., 2005; França & Cabral, 2016). For example, Radinger et al. (2017) tested future
distributions according the body size of river fishes and showed that smaller-body fishes
are less sensitive to anthropogenic intervention in the river network due to their smaller
home ranges.

The native ichthyofauna in Chile comprises a total of 44 species, including two lampreys
(Habit, Dyer & Vila, 2006) and is characterized as being highly endemic, adapted to low
slope rivers, and having small body sizes (Vila, Fuentes & Contreras, 1999; Vila et al.,
2006; Habit, Dyer & Vila, 2006). In addition to its high biogeographic value, the Chilean
ichthyofauna is broadly endangered, with only two species (Cheirodon austral Eigenmann,
1927 and Mugil cephalus Linnaeus, 1758) currently classified as non endangered, which
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provides additional modeling challenges. For example, all species have scant distribution
data due to the type of research conducted in the area, and adult body size ranges from 5 to
40 cm, making them additionally difficult to capture and sample. Given these challenges,
assessing how fish size affects SDMs in Chile will allow us to determine better model
methodologies suited to the region’s small-sized, data-deficient and endangered species.

Our aim is to evaluate the relationship between fish size and SDM goodness-of-fit using
three approaches: (1) assess the relationship between fish size and data availability, (2)
assess the relationship between fish size andmodel performance, and (3) compare predictor
variable participation and patterns according to fish size. We focus on two well-studied
southern Chilean river basins, Bueno and Valdivia, and model nine native species.

METHODS
Study area and modeled species
The study area covers the Valdivia and the Bueno River basins located in the southern
zone of Chile between 39.33◦ and 41.08◦S (Fig. 1). The Valdivia River basin has a pluvial
hydrological regime and is characterized by a chain of interconnected lakes at higher
altitudes. The upper section of the Bueno River basin has a pluvio-nival regime, while the
middle and lower parts of the basin are governed by a pluvial regime (Errázuriz et al., 1998).

Our study examined nine native freshwater fish species (Table 1): Aplochiton taeniatus
Jenyns, 1842, Aplochiton zebra Jenyns, 1842, Basilichthys microlepidotus (Jenyns, 1841),
Brachygalaxias bullocki (Regan, 1908), Cheirodon australe, Diplomystes camposensis
(Arratia, 1987), Galaxias maculatus (Jenyns, 1842), Percilia gillissi Girard, 1855, and
Trichomycterus areolatus (Valenciennes inCuvier &Valenciennes, 1840). Statistical analyses
of the effect of body size were carried out using theoretical species maximum length, which
is available for all these species. Maximum length estimates were obtained from official
species descriptions provided the conservation assessment of each species, developed by
the Chilean Ministry of the Environment, with the only exceptions being B. bullocki and
B. australis (Table 1).

Modeling methods
Model grain
To build the SDM database, the drainage network of the study area was divided into
segments. We considered river segments as having homogeneous hydromorphological
conditions with no significant confluences and 2 and 10 km in length. Each segment
represented an analysis unit in which the presence and SDM predictor variables for
each species were evaluated. This segment definition was generated using cartographic
information, visual interpretation of Google Earth imagery (https://www.google.com/
intl/es/earth/), and Arc GIS version 9.2 (http://desktop.arcgis.com/es/; Esri, Redlands,
CA, USA). To characterize a set of hydrological variables for the study area, we used the
national official drainage network generated by the Military Geographic Institute (Instituto
GeográficoMilitar, Government of Chile).
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Figure 1 Study area.Map shows study basins (Valdivia and Bueno). Green river reaches contain species
records. The black square in the map of South America shows the study area.

Full-size DOI: 10.7717/peerj.7771/fig-1

Species occurrence data
Historical records of the georeferenced presences of the study species were obtained from
the Ministry of the Environment’s (Ministerio del Medio Ambiente, Government of Chile)
database on freshwater organisms. This database was generated by collecting published
databases of scientific samples in the study area (Ministerio de Energía División de Desarrollo
Sustentable, 2016). Since this biogeographic region contains 16 native fish species (Habit,
Dyer & Vila, 2006), our study accounts for 56% of extant species in this region of Chile
(Vila et al., 2006). The remaining species had insufficient numbers of occurrence records
inthe database (between 0 and 10) and were not considered.

A field sampling campaign was conducted in the study area to increase the records by
specie presents in the government data. The sampling was performed in December 2015
and January 2016 using electrofishing equipment (SAMUS, model 745G). We collected all
fish along a 100 m section of river, with sampling times of 45 to 60 min, depending on
the hydromorphological features of the site. Seven rivers were sampling: Llancahue River,
Pinchichirre River, Nilfe Channel, Quinchilca River, Los Nadis River, Punahue Channel
and Cahuinalhue River, recording nine presences to seven species. All collected fish were
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Table 1 Model summaries. Columns on order: Modeled species, natural log of maximum body size in cm, conservation category assigned by the Chilean government,
number of recorded presences, K folds used in the model, number of modeled presences, and TSS, AUC, Balanced accuracy (B Acc), Sensibility (Sens) and Specificity
(Spec) values for each model with their standard errors (SE).

Species Ln
size

Conservation
category

Presences K folds
by model

Presences
used on
model

TSS TSS
SE

AUC AUC
SE

B Acc B Acc
SE

Sens Sens
SE

Spec Spec
SE

Aplochiton taeniatusa 3.40 EN 28 3 17 0.78 0.03 0.92 0.03 0.89 0.02 0.83 0.06 0.94 0.03
Aplochiton zebrab 3.33 EN 22 3 16 0.47 0.05 0.87 0.02 0.73 0.03 0.57 0.02 0.90 0.03
Basilichthys australisc 3.60 FP 56 3 23 0.83 0.08 0.98 0.01 0.92 0.04 0.86 0.08 0.98 0.01
Brachygalaxias bullockid 1.70 VU 37 3 28 0.45 0.05 0.84 0.01 0.72 0.03 0.64 0.08 0.80 0.03
Cheirodon australee 1.95 VU 56 3 21 0.74 0.04 0.94 0.01 0.87 0.02 0.81 0.05 0.93 0.02
Diplomystes camposensisf 3.21 EN 34 2 14 0.68 0.18 0.90 0.07 0.84 0.09 0.79 0.15 0.89 0.03
Galaxias maculatusg 2.77 FP 30 3 17 0.55 0.01 0.92 0.00 0.77 0.00 0.76 0.07 0.79 0.07
Percilia gillissih 2.20 EN 62 3 33 0.55 0.06 0.87 0.03 0.77 0.03 0.79 0.08 0.76 0.06
Trichomycterus areolatusi 2.71 VU 72 3 36 0.46 0.01 0.82 0.01 0.73 0.01 0.64 0.03 0.82 0.03

Notes.
Reference to fish size:

aMinisterio del Medio Ambiente (2011a).
bMinisterio del Medio Ambiente (2011b).
cCifuentes et al. (2012).
dMinisterio del Medio Ambiente (2008d).
eMinisterio del Medio Ambiente (2008a).
fMinisterio del Medio Ambiente (2008e).
gMinisterio del Medio Ambiente (2008b).
hFroese & Pauly (2017).
iMinisterio del Medio Ambiente (2008c).
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identified to species level. The electrofishing was approved by theNational Fisheries Service,
permit number 514.

Each presence record was associated with the closest river segment in the GIS, thus
building a presence database for species distribution modeling. Overall, 118 river segments
had at least one presence record. The total number of presences for each species across the
two study basins ranged between 22 and 72, but the modeling only considered one record
per segment, so modeled presences ranged between 14 and 36 (Table 1).

Predictor variables
The predictor variables or features considered were accumulated rainfall, catchment
area, source-of-flow, altitude, slope, channel width, percent riparian vegetation, land-use,
cross-channel structures, and within-channel structures (Table 2).

Annual rainfall was obtainedby relating the isolines of average annual rainfall (Dirección
General de Aguas, Government of Chile) over the segment basin. The catchment
area was calculated using a 1 km ×1 km DEM image (Landsat 7 images from 2015,
https://landsat.usgs.gov/) using the Hydrology package in ArcGIS for each segment
basin considering the accumulated catchment area. Source-of-flow, that represents the
geographical origin of the flow, was obtained and adapted from the published REC-Chile
classification (Peredo-Parada et al., 2011), and each category was used independently as
a Boolean variable. Final source-of-flow variables were lakes, floodplains, valleys and
mountains. Altitude and slope were estimated using the altitudes atthe downstream end of
each river segment based on the DEM. Channel width, riparian vegetation cover, land-use,
cross-channel structures, and within-channel structures were estimated using a visual
analysis of Google Earth imagery. The channel width was calculated as the mean of three
points along the reach. Riparian vegetation coverage was considered up to 50 m from
the stream, with sections and land-use classes defined based on evaluation up to 200 m.
Land use was defined in three categories: Antr-Antr = on both banks over 50% of the
area has anthropogenic interventions; Nat-Antr = on one bank over 50% of the area has
anthropogenic interventions; and Nat-Nat = on both banks less than 50% of the area has
anthropogenic interventions.Within-channel structures included roads parallel to the river,
bank reinforcement, river channel maintenance structures, and channelization, among
others. Cross-channel structures included bridges, dams, and water-intake structures.

Model training and evaluation
We used neural network (NNET) algorithms to estimate SDMs (Stern, 1996). This
method was chosen based on their good performance with presence and absence or
pseudoabsencesfor species-distribution data (Mastrorillo et al., 1997; Elith & Leathwick,
2009). NNET is derived from a simple model that mimics the structure and function of the
brain and maximizes the prediction during the model-training phase by comparing actual
outputs with desired outputs (Manel, Dias & Ormerod, 1999). All analyses were performed
in R (v 3.5.0) using the Caret package (Kuhn, 2008).

Models were trained using a 3- or 2-fold cross-validation scheme, according to records
by species (Table 1). Pseudoabsences were set at twice the number of observed species
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Table 2 Results of analyses of different response variables as a function of fish size. Columns in order: response variables, p-value of the Phi coefficient, p-value of the
RM test to residuals, evaluation of the presence of a significant covariance (True or False), pseudo R2 (with link transformation of response variable), mean estimate of
analysis, Std. Error of analysis, and the Z -value and P-value of the beta regression analysis.

Response
variables

Phi coefficient
p-value

RM test
p value

Significant
covariance

Pseudo
R2

Mean
estimate

Std.
error

Z
value

P
value

Significance

Balanced accuracy 0.03 0.68 F 0.26 0.31 0.21 1.51 0.132
Sensitivity 0.03 0.70 F 0.10 0.16 0.23 0.70 0.484
Specificity 0.03 0.40 F 0.41 0.56 0.28 2.04 0.042 **
TSS 0.03 0.68 F 0.26 0.31 0.21 1.51 0.132
AUC 0.03 0.48 F 0.48 0.36 0.23 1.57 0.117
Cross-channel structure 0.03 0.19 F 0.11 −0.21 0.25 −0.82 0.411
Within-channel structure 0.03 0.47 F 0.54 −0.65 0.21 −3.15 0.002 ***
Land use: Antr-Antr 0.02 0.38 F 0.21 −0.13 0.54 −0.24 0.813
Land use: Nat-Antr 0.03 0.20 F 0.39 −0.52 0.49 −1.07 0.283
Land use: Nat-Nat 0.03 0.27 F 0.31 −0.26 0.29 −0.92 0.358
Altitude 0.02 0.29 F 0.12 −0.41 0.38 −1.09 0.277
Slope 0.02 0.36 F 0.04 −0.21 0.42 −0.50 0.616
Channel width 0.02 0.99 F 0.15 0.36 0.44 0.80 0.423
Riparian vegetation 0.03 0.49 F 0.49 −0.50 0.22 −2.27 0.023 **
Catchment area 0.02 0.61 F 0.15 −0.51 0.60 −0.85 0.397
Annual rainfall 0.02 0.49 T 0.47 0.31 0.46 0.66 0.508
Source-of-flow: Lakes 0.03 0.68 F 0.25 −0.47 0.33 −1.41 0.158
Source-of-flow: Foodplain 0.03 0.30 F 0.03 0.19 0.44 0.44 0.659
Source-of-flow: Mountains 0.03 0.01 F 0.26 −0.27 0.33 −0.81 0.420
Source-of-flow: Valleys 0.03 0.74 F 0.25 −0.53 0.33 −1.62 0.106
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presences and were randomly selected. We designated as the final model the ensemble
average of each k-fold model by its weighting each individual model by their Area Under
the Curve statistic (AUC) of the Receiver Operating Characteristic (ROC).

The Caret R package was used to fit NNET models and tune the model’s two
hyperparameters, namely, the weight decay for successive neural layers (‘‘decay ’’) and
the number of hidden units (‘‘size’’). The grid search procedure examined weight decay
values ranging between 4 and 6, while the number of hidden units was allowed to vary
between 0.05 and 0.9. Both hyperparameter ranges were calibrated by a trial and error
process, optimizing the model performance.

Occurrence probabilities were categorized as presence/absence for allmodels. Thresholds
were determined to maximize the sum of sensitivity and specificity (MaxSens+Spec;
PresenceAbsence package in R v 3.5.0) (R Core Team, 2017). This criterion is independent
of the theoretical prevalence (Manel, Dias & Ormerod, 1999; Allouche, Tsoar & Kadmon,
2006), causing the distribution of rare species to be overpredicted. In our case, the theoretical
prevalence in the study area for all the species is close to 0.5, but the presence of our study
species is low, requiring a relaxation of this criterion when defining the threshold that
allows for the definition of each of the species distribution across the studied watersheds.
All the presences and environmental data by river segment in supplemental material
(Appendix S1).

Relationship between fish size and models
As proxy of body size, log10—transformations of maximum length (max. length) were
calculated for each species. We assessed the relationship between max. length and the
number of historical records in both basins, with balanced accuracy, sensitivity, specificity,
true skill statistic (TSS), and area under curve (AUC), all different performance metrics
(Altman & Bland, 1994; Allouche, Tsoar & Kadmon, 2006; Velez et al., 2007; Kuhn, 2008),
andwith variable importance to each predictor variable. Sensitivity evaluates the proportion
of actual presences that are correctly classified and specificity evaluates the proportion of
actual negatives that are correctly identified (Allouche, Tsoar & Kadmon, 2006). AUC, TSS
and balanced accuracy evaluate overall performance using different approximations, being
valuable contrast them all (Velez et al., 2007; Kuhn, 2008). In all this cases, obtain a value
of 1 to this metrics represent the best performance, and in the AUC case, 0.5 represent the
worst performance. Variable importance is calculated with ‘‘Weights’’ method (Gevrey,
Dimopoulos & Lek, 2003), and the highest importance is 100.

The statistical test of the relationship between max. length and historical records was a
classical linear model (lm) (Chambers, 1992), while the other comparisons were evaluated
with beta regression analysis (betareg ) (Cribari-Neto & Zeileis, 2010). This test assumes
response variables to be in the standard unit interval (0, 1) and to be beta distributed, and it
is more precise in performance metrics cases or variable importance cases where the values
are at a fixed interval. Rescaled Moment test (RMtest) and Q–Q plots were applied to
all residual models to evaluate model validity (Das & Imon, 2016; Kozak & Piepho, 2018).
While, the normality test is used on observed data to evaluate parametricity, in regressions
the true errors are unobserved, being a common practice to use residuals as substitutes for
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observed data in tests for normality (Das & Imon, 2016). In this context, we used RMtest
to evaluate normality of residuals and validate betareg and lm models. RM test correct
shrinkage and superimposed normality effect of the residual data, improve its normality
evaluation (Imon, 2003; Rana, Midi & Imon, 2009).

To avoid a potential bias from conservation status by specie on all statistical tests,
we introduced this category as a covariable. Given the hierarchical relationship between
conservation status categories, we transformed this to a numeric covariable, with Least
Concern (LC) being 1, Vulnerable (VU) as 2, and Endangered (EN) as 3. Finally, an a priori
betareg test was developed to discard the relationship between the number of presences by
model and metric performance models, allowing for directly linking fish size with model
indicators.

RESULTS
All models showed good performance, with ROC AUC varying between 0.82 and 0.98,
while TSS varied between 0.45 and 0.83. The best trained model was for B. australis (AUC
= 0.98 and TSS = 0.83), while the worst trained model was for T. areolatus (AUC = 0.82
and TSS = 0.46) (Table 1). The number of presences used by the model did not show a
significant relationship with model performance metrics (betareg to AUC, p value= 0.104,
betareg to TSS, p value = 0.159).

Channel width and Catchment area were the most important variables in most species
models, excluding A. taeniatus, G. maculatus, and P. gillissi models, where Annual rainfall,
Land-use: Antr-Antr, and Altitude were the most important, respectively. However, if we
added the Source-of-Flow participation by category, its participation was more relevant
than the Channel width and Catchment area for all species (Table 2).

Historical records
The number of presences and conservation status did not correlate with fish size (lm test:
Conservation status, coefficient = −4.7, std. error = 7.9, t value = −0.56, p value = 0.57;
Historical records, coefficient = −8.1, std. error = 9.67, t value = -0.84, p value = 0.43).
Model residuals show a normal distribution (Chisq = 1.83, p value = 0.59). The species
with the lowest presence was A. zebra, with 22 records and 28 cm maximum length and
is one of the largest native species found in the basins. The species with most historical
records was T. areolatus, with 72 presences and a maximum length of 15 cm. However,
many of the T. areolatus presences were spatially clustered, and the model was trained
using only 36 presence records (Table 1).

Metric performance
Of all the evaluated performance metrics, only specificity showed a significant positive
relationship with fish size (Fig. 2). In most modeled species, we observed residuals being
normally distributed considering Q–Q plots and RMtest (Tables 3A and 3B). The only
one exception is Source-of-flow: Mountains, with a non significant RMtest. Specificity
had a positive relationship with fish size (Fig. 2). Other metrics did not show significant
relationships with fish size (Table 3).
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Figure 2 Significant relationships between SDMmetrics and (Ln) fish size. (A) Positive relationship
between the specificity of the SDM and Ln fish size. (B) Negative relationship between importance in the
SDM of Within-Channel Structures and Ln fish size. (C) Negative relationship between importance in the
SDM of Riparian Vegetation and Ln fish size. Text in each plot shows pseudo R2 and p-value obtain with
beta regression analysis.

Full-size DOI: 10.7717/peerj.7771/fig-2

Variable importance
When we examined the significance of individual predictor variables, we observed that
only Riparian Vegetation andWithin-Channel Structures showed a significant relationship
with fish size. Again, we observed residuals being normally distributed, thus validating the
statistical analysis (Tables 3A and 3B). In these cases, the fitted models for larger fish tended
to give less importance to these variables than models for small fish, showing a negative
relationship (Fig. 2). Other variables did not show significant relationships with fish size
(Tables 3A and 3B).

When exploring the relationship between occurrence probability by SDMand percentage
of Riparian Vegetation and number of Within-Channel Structures (Fig. 3), we found no
clear patterns. In the RiparianVegetation case, smaller species tended to increase occurrence
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Table 3A Variable participation by modeled species. Bold values indicate the largest values by species. Final row represents the participation mean by variable.

Species Within-channel
structures

Cross-channel
structures

Land use:
Antr-Antr

Land use:
Nat-Antr

Land use:
Nat-Nat

Land use:
All

Altitude Slope Channel
width

Aplochiton taeniatus 25.40 20.11 10.63 2.73 13.60 26.96 48.39 17.09 58.79
Aplochiton zebra 32.84 28.87 13.85 5.12 16.49 35.47 14.14 66.58 95.34
Basilichthys australis 16.08 26.85 6.01 3.84 3.60 13.45 37.40 9.62 67.91
Brachygalaxias bullocki 35.48 53.20 23.58 27.80 29.32 80.70 24.02 34.48 50.85
Cheirodon australe 20.30 43.59 14.01 11.19 15.57 40.76 63.42 51.03 57.85
Diplomystes camposensis 19.88 39.20 28.79 13.95 34.79 77.53 34.61 32.04 75.77
Galaxias maculatus 57.51 34.04 97.22 87.72 13.65 198.59 59.40 68.30 35.27
Percilia gillissi 33.63 59.36 6.00 12.40 8.67 27.07 81.60 11.84 79.45
Trichomycterus areolatus 26.79 62.18 20.75 24.51 15.50 60.76 47.99 39.15 99.26
Summary participation 26.79 40.82 24.54 21.03 16.80 62.37 45.66 36.68 68.94
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Table 3B Variable participation by modeled species. Bold values indicate the largest values by species. Final row represents the participation mean by variable.

sp Riparian
vegetation

Catchment
area

Annual
rainfall

Source-of-flow:
Lakes

Source-of-flow:
Plain

Source-of-flow:
Mountains

Source-of-flow:
Valleys

Source-of-flow:
All

Aplochiton taeniatus 15.77 30.88 100.00 9.39 14.93 28.50 37.39 90.21
Aplochiton zebra 24.83 18.12 77.49 20.14 21.10 29.33 25.62 96.19
Basilichthys australis 22.75 94.50 8.12 11.10 8.31 2.94 4.78 27.13
Brachygalaxias bullocki 55.88 99.38 40.38 30.21 33.43 16.29 27.18 107.11
Cheirodon australe 28.69 100.00 26.50 24.72 1.18 30.24 43.95 100.09
Diplomystes camposensis 26.05 100.00 31.62 30.51 15.45 37.68 6.94 90.57
Galaxias maculatus 40.79 31.67 33.86 62.37 23.40 51.51 30.35 167.63
Percilia gillissi 24.77 39.48 75.92 43.56 7.01 42.01 19.98 112.56
Trichomycterus areolatus 53.47 59.72 34.26 16.63 54.65 31.11 39.94 142.33
Summary participation 32.56 63.75 47.57 27.63 19.94 29.96 26.24 103.76
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Figure 3 Occurrence probability boxplot according to species and predictor variable class. (A) Reaches
were classified as 1= 100% riparian vegetation and 0 < 100% riparian vegetation. (B) Reaches were clas-
sified as 1= one or more within-channel structures and 0= no within-channel structures. Boxplots show
the occurrence probability of each species model by reach class. Species on the X axis are sorted by size,
with larger species on the right. Boxplot is represent by five values:the extreme of the lower whisker is the
lowest datum still within 1.5 Interquartile range, the lower box extreme is the first quartile,the middle line
is the median, the upper box extreme is the third quartile andthe extreme of the upper whisker is the high-
est datum still within 1.5 Interquartile range. Outliers are excluded to clarify visualization.

Full-size DOI: 10.7717/peerj.7771/fig-3

probability on reaches with less riparian vegetation, but the pattern of larger species was
unclear. In contrast, larger species tended to show higher occurrence probabilities on
reaches without Within-Channel Structures, while there was no clear pattern in smaller
fish species.

DISCUSSION
The principal result in the current study showed that SDM of smaller fishes has lower
specificity, tending to overpredict presences. This finding has important implications for
conservation,management and the science related to SDMs, especially in countries as Chile,
with particularly small species. While, it is not recommended modeling a group of species
with the same methodology, is very common in papers and management projects. In this
context, our results show the relevance of evaluate potential bias according to physiological
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and ecological traits by specie, identifying species that need different methodologies to
make more accurate model.

The good performance obtained for all the trained models shows how the
hyperparametrization process using software such as Caret allows us to obtain good
SDMs (Kuhn, 2008). Additionally, good SDM performance using few presences may also
occur when models are projected on regions that have highly similar environmental
conditions to where the species occur (Pearson et al., 2006).

Regarding predictor variable importance, the most important variables were those that
represented hydrological regime (Source-of-flow) and flow discharge (Catchment area
or Accumulated rainfall), with both variables representing segment scale (Frissell et al.,
1986; Snelder & Biggs, 2002). Large-scale predictor variables have more participation across
models, and as the geographical scale of the variables decreases, their participation in the
model does, as well; in addition, their importance is resolved species by species. This notion
corresponds with the hierarchical framework of stream habitat proposed in the literature
(Frissell et al., 1986; Snelder & Biggs, 2002; Creque, Rutherford & Zorn, 2005; Steen et al.,
2008; Peredo-Parada et al., 2011).

Records by fish species
Although many authors mention the relationship between body size and data availability
(Boone & Krohn, 1999; McPherson & Jetz, 2007; França & Cabral, 2016), we found no
studies in which this relationship was statistically evaluated. The premise that larger fish
species are more detectable than smaller fish species depends on the sampling method and
species characteristics (diurnal or nocturnal, color, habitat selection, etc.) (Boone & Krohn,
1999). Thus, a detection bias may occur if sampling is conducted at the community or
ensemble level using a single sampling methodology. However, if sampling is stratified or
designed for a given species population using adequatemethodologies, we would expect this
bias to be corrected. In this study, presence information was obtained from a governmental
database generated from published scientific studies, with sampling methodologies having
been determined by studies focused on independently assessing species abundances and
distributions. This situation explains the lack of relationship between fish size and presence
records in our study.

Fish size and model fit
Our results regarding the body-size effects on SDM performanceare relevant to the
unresolved debate about this expected theoretical relationship. While Morán-Ordóñez et
al. (2017) found no significant relationship between body size and model performance
for trees and birds, França & Cabral (2016) successfully related model performance to
species feeding mode and estuarine functional groups, with body size having a marginally
significant contribution tomodel performance. In studies aimed at river fish, whileRadinger
et al. (2017) and Filipe, Cowx & Collares-Pereira (2002) found that fish size increasedmodel
performance,Markovic, Freyhof & Wolter (2012) did not observe this pattern.

Our results show that the specificity performance metric increases with fish size,
suggesting that the ability to predict true absences increases with fish size. This outcome
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means that models for smaller fishes tend to overpredict presences. These results reflect
those of Lobo & Tognelli (2011), who found using virtual species, models with randomly
determined presences tend to have lower specificity relative to models with spatially biased
presences. We suggest that in our study, smaller fish may have a statistically random
distribution as a result of a potential mismatch between the study grain and their home
range. This outcome would be the consequence of a random distribution of predictor
variables used to characterize fish habitat (McPherson & Jetz, 2007).

This finding has important implications for conservation and management. First, it
suggests that the environmental resolution used in the evaluation should be commensurate
with the modeled species’ home range. However, when this outcome is not possible (due to
financial or logistic resources available, for example), then explicit assessment is necessary
to detect any potential biases in model performance for species of different body sizes. In
this way, it is also important to assess both metrics that represent general performance,
such as AUC, TSS or Accuracy, and to include other specific metrics that may provide
relevant information, such as any likelihood of overprediction of smaller species.

Our use of theoretical maximum length as the best available estimate of species body
size does not necessarily reflect actual maximum body size in the study areas, and certainly
may result in biases or estimation errors. Explicit assessment of possible biases stemming
from the use of theoretical or literature based maximum lengths versus empirical estimates
of maximum body length would certainly improve our current understanding of the
interaction between body size and SDM model performance. This could be achieved by
explicitly describing observed median and maximum body size of the set of recorded
presences within study hydrological basins, allowing body size to reflect current ecological
factors modifying this trait. Such a study design would allow the assessment of either fine
scale habitat alterations, or possible impacts of invasive species abundance. It must be
noted that such a study is not free of logistic and bioethical constraints. Most important,
most of the fish species addressed in this study face important threats, and wide scale
sampling and individual monitoring may pose additional stress to these individuals. As a
result, an important source of data for such a study could be the samples collected in the
development of environmental impact assessment (EIA) studies. However, under Chilean
legislation, EIA sampling designs respond the project developer specific goals, and body
size sampling is not often included among the variables registered.

Participation by predictor variable
The predictor variables that show trends in model importance according to fish size are
both obtained at smaller scales (reach scale) (Frissell et al., 1986). The participation of
riparian Vegetation and Within-Channel Structures decreases with fish size, suggesting
that these variables are not relevant to estimating the ecological niche of large fish species.
For Within-Channel Structures, Radinger et al. (2017) found that these may cause larger
habitat reduction for larger fish species by creating stream barriers that limit their dispersal.
This findingis consistent with our results, which show how the largest three species have
low occurrence probabilities on reaches with almost one structure detected.
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The relationship between riparian vegetation cover and fish size may be determined
by the association between riparian vegetation and river slope. Rivers with higher slopes
have short alluvial plains that allow for more riparian vegetation (Stefunkova, Neruda
& Vasekova, 2019). However, the morphologies of Chilean fish species are not adapted
to high-slope habitats (Arratia, 1987; Arratia, 1992); therefore, we presume that riparian
vegetation acts as a proxy of habitat conditions adequate for smaller species. Functionally,
this notion means that the occurrence probability of smaller species increases in rivers with
less riparian vegetation cover.

The current study presumed that no interspecific effects occurred between species
that impacted SDMs, particularly the potential role of the invasive species. Invasive
species have been shown to influence native fish body size (Blanchet et al., 2010), which
can have significant effects on SDM performance. In Chile, invasive species such as
rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) have strong impacts
on fishes (Pardo, Vila & Capella, 2009; Arismendi et al., 2014) and may benefit from
riparian vegetation conservation, especially in upland areas (Lacy, Ugalde & Mao, 2018).
Regrettably, in the current study, we were unable to evaluate the effect of invasive species
on body size. Future studies should seek to integrate ecological effects, especially effects
caused by invasive species, into the development of SDMs.

Finally, we want to highlight the use of source-of-flow as a predictor variable in our
study; we have not found this use in prior researchon river-species modeling, and it is
especially important in torrential river systems, such as those found in Chile. These systems
have short runs, with relatively large lakes, glaciers, or salt pans that significantly affect
hydrological and hydraulic conditions. The source-of-flow variable is implemented in river
evaluations in New Zealand (Snelder & Biggs, 2002) and Chile (Peredo-Parada et al., 2011),
which would facilitate its use in SDMs.

CONCLUSIONS
In this study, we found relationships between fish size and model performance,
increasing specificity along with fish size. This is new evidence in support of this classical
theoretical relationship, supporting the idea that model performance is affected by species
characteristics. We also show how predictor variables have different importance in the
models, according to scale, with Source-of-Flow, Catchment area or Accumulated rainfall
being relevant to all of themodels, and Riparian Vegetation andWithin-Channel Structures
being relevant variables according to the ecology of the species. Further investigations
should consider this potential source of bias to determine management and conservation
objectives from SDMs by either modifying the methodology or conducting a posteriori
evaluations.
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