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Background: The classification of hepatitis viruses still predominantly relies on ad hoc criteria, i.e.,
phenotypic traits and arbitrary genetic distance thresholds. Given the subjectivity of such practices
coupled with the constant sequencing of samples and discovery of new strains, this manual approach to
virus classification becomes cumbersome and impossible to generalize.

Methods: Using two well-studied hepatitis virus datasets, HBV and HCV, we assess if computational
methods for molecular species delimitation that are typically applied to barcoding biodiversity studies
can also be successfully deployed for hepatitis virus classification. For comparison, we also used ABGD, a
tool that in contrast to other distance methods attempts to automatically identify the barcoding gap
using pairwise genetic distances for a set of aligned input sequences.

Results - Discussion: We find that, the mPTP species delimitation tool identified -even without adapting
its default parameters- taxonomic clusters that, either correspond to the currently acknowledged
genotypes or to known subdivision of genotypes (subtypes or subgenotype). In the cases where the
delimited cluster corresponded to subtype or subgenotype, there were previous concerns that their
status maybe underestimated. The clusters obtained from the ABGD analysis differed depending on the
parameters used. However, under certain values the results were very similar to the taxonomy and mPTP
which indicates the usefulness of distance based methods in virus taxonomy under well informed
parameters. The overlap of predicted clusters among methods and taxonomically acknowledge
genotypes implies that virus classification can be successfully automated.
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29 Abstract

30

31 Background The classification of hepatitis viruses still predominantly relies on ad hoc criteria, 

32 i.e., phenotypic traits and arbitrary genetic distance thresholds. Given the subjectivity of such 

33 practices coupled with the constant sequencing of samples and discovery of new strains, this 

34 manual approach to virus classification becomes cumbersome and impossible to generalize.

35

36 Methods

37 Using two well-studied hepatitis virus datasets, HBV and HCV, we assess if computational 

38 methods for molecular species delimitation that are typically applied to barcoding biodiversity 

39 studies can also be successfully deployed for hepatitis virus classification. For comparison, we 

40 also used ABGD, a tool that in contrast to other distance methods attempts to automatically 

41 identify the barcoding gap using pairwise genetic distances for a set of aligned input sequences.

42

43 Results - Discussion

44 We find that, the mPTP species delimitation tool identified -even without adapting its default 

45 parameters- taxonomic clusters that, either correspond to the currently acknowledged genotypes 

46 or to known subdivision of genotypes (subtypes or subgenotype). In the cases where the 

47 delimited cluster corresponded to subtype or subgenotype, there were previous concerns that 

48 their status maybe underestimated. The clusters obtained from the ABGD analysis differed 

49 depending on the parameters used. However, under certain values the results were very similar to 

50 the taxonomy and  mPTP which indicates the usefulness of distance based methods in virus 

51 taxonomy under well informed parameters. The overlap of predicted clusters among methods 

52 and taxonomically acknowledge genotypes implies that virus classification can be successfully 

53 automated.

54
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56 Introduction

57

58 The continuous advances in next generation sequencing technologies lead to an increasingly 

59 easier and inexpensive production of genome and metabarcoding data. The wealth of available 

60 data has triggered the development of new models of molecular evolution, algorithms, and 

61 software, that aim to improve molecular sequence analyses in terms of biological realism, 

62 computational efficiency, or a trade-off between the two. In response to such technological and 

63 technical advancements, several fields of biology have undergone a substantial transformation. 

64 Sequence-based species delimitation and identification, in the framework of DNA-

65 (meta)barcoding constitutes a representative example that revived taxonomy and systematics 

66 (Tautz et al. 2003; Moritz & Cicero, 2004; Savoleinen et al., 2005; Waugh, 2007; Bucklin et al., 

67 2010; Valentini et al., 2009; Li et al., 2014), while provide a new mean of analysis in several 

68 fields (Galimberti et al., 2013; Mishra et al., 2015; Lewray & Knowlton, 2015; Bell et al., 2016; 

69 Batovska et al., 2017). Among others, the development of novel species delimitation tools has 

70 substantially advanced the study of biodiversity of microorganism that are often hard to isolate 

71 and study (Taberlet et al., 2012; Gibson et al., 2014; Thomsen & Willerslev, 2015). The 

72 sequencing of environmental samples in conjunction with algorithms for genetic clustering has 

73 led to the identification of a plethora of previously unknown organisms and a re-assessment of 

74 the microbial biodiversity in several settings.

75 In a similar context, genetic information has been a rich source of information for viral 

76 species. Several studies show how phylogenetic information can be deployed for identifying the 

77 spatial and temporal origin of a virus, potential factors that trigger its dispersal, and other key 

78 epidemiological parameters (Stadler et al., 2012a; Stadler et al., 2014b; Gire et al., 2014). In an 

79 era of high human mobility, such methods are important, as the increase of emerging and re-

80 emerging epidemics is even more prominent than in the past (Balcan et al., 2009; Meloni et al., 

81 2011; Pybus et al., 2015). Nevertheless, phylogenetic information is still not used in the context 

82 of virus species classification or identification. As we have witnessed for other microorganisms, 

83 using or adapting already available methods for fast and automated delimitation or identification 

84 of virus species can greatly contribute to better understand their evolution.

85 To date, the official taxonomy of viruses (ICTV, i.e., International Committee on 

86 Taxonomy of Viruses) has mainly been based on established biological classification criteria as 
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87 used for other life forms, such as plants or animals. An analogous hierarchical classification 

88 system containing orders, families, subfamilies, genera, and species is being applied (Simmonds, 

89 2015). The ICTV is typically based on phenotypic criteria, such as morphology, nucleic acid 

90 type (i.e., DNA or RNA), hosts, symptoms, mode of replication, geographical data, or presence 

91 of antigenic epitopes, to name a few. Generally, such criteria, despite being informative, can be 

92 subjective, require highly specialized knowledge, and are time consuming to apply. In contrast, 

93 sequence evolution takes into account the evolutionary history of life forms and, thus, may offer 

94 a more objective source of information for taxonomic classification. An important difference in 

95 viruses compared to other organisms is that they lack a common set of universal genes such as 

96 the 18S rRNA in eukaryotes or the 16S rRNA in prokaryotes. Therefore, we cannot infer a 

97 comprehensive virus tree of life (Simmonds et al., 2017), and, more importantly for species 

98 delimitation, we cannot rely upon barcoding markers that are universally suitable for all viruses. 

99 We can nonetheless gain valuable insights for their systematics by utilizing phylogenetic 

100 information at lower taxonomic ranks (e.g., families, genera, species), using appropriate genes 

101 for each dataset. In this context, methods using genetic-distance thresholds (Bao et al., 2014, 

102 Lauber & Gorbalenya, 2012, Yu et al., 2013) have been suggested as a complementary method 

103 to the traditional virus classification for accelerating new species identification.

104 In this study, we explore whether a recently developed algorithm for molecular species 

105 delimitation on barcoding or marker gene phylogenies can be deployed for ICTV. In contrast to 

106 genetic distance based methods the multi-rate Poisson Tree Processes (mPTP, Kapli et al., 2017) 

107 infers the number of genetic clusters given a phylogenetic input tree. Such trees can easily be 

108 inferred using both, Maximum Likelihood (Stamatakis, 2014), or Bayesian approaches (Ronquist 

109 et al., 2012) on single-gene or multi-gene multiple sequence alignments. The fundamental 

110 assumption of the model is that, variance in the data, as represented by the phylogeny, is greater 

111 among species than within a species (Zhang et al., 2013). The additional assumption of mPTP, 

112 that the genetic variation may differ substantially among species allows to accurately delimit 

113 species in large (meta-) barcoding datasets comprising multiple species of diverse life histories 

114 (Kapli et al., 2017). Experiments using empirical data for several animal phyla (Kapli et al., 

115 2017) and recently also viruses (Thézé et al., 2018; Modha et al, 2018) show that the method 

116 consistently provides extremely fast and sensible species estimates on ‘classic’ phylogenetic 

117 marker and barcoding genes.
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118 To assess whether mPTP can be deployed as a quantitative ICTV method we analyze two 

119 medically important viruses, Hepatitis B (HBV) and Hepatitis C (HCV) that are a leading global 

120 causes of human mortality (Stanaway et al., 2016). Both viruses cause liver inflammation but are 

121 substantially different from each other. HBV has a partially double-stranded circular DNA 

122 genome with a length of about 3.2 kb while HCV is a single-stranded, positive-sense RNA virus, 

123 with a genome length of approximately 10kb (Radziwill et al., 1990; Tang et al., 2001; Martell 

124 et al., 1992). Both virus types comprise two taxonomic levels (HBV: genotypes, sub-genotypes; 

125 HCV: genotypes, subtypes). Besides the significance of the two viruses for human health, we 

126 selected them as test cases since due to the substantial amount of taxonomic research that has 

127 been conducted and that we can hence use to assess the efficiency of genetic clustering (e.g., 

128 Simmonds et al., 2005; Schaefer, 2007; Smith et al., 2014; Messina et al., 2015).

129

130

131 Materials and methods

132

133 Datasets

134 We obtained two previously published multiple sequence alignments (MSAs) corresponding to 

135 two virus types: HBV and HCV (Kramvis, 2014; Smith et al., 2014, respectively).

136 The HBV dataset comprises 110 sequences corresponding to eight genotypes (i.e., A-H) and 31 

137 subgenotypes. The genotypes (A through D, F, and H) have been further divided into 

138 subgenotypes indexed by numbers for the corresponding genotype (e.g., A1, A2, B1, B2, B3, etc.; 

139 Kramvis et al., 2014). The inter-genotypic and inter-subgenotypic divergence exceeds 8% and 

140 4%-8%, respectively across the genome. No sub-genotypes have been reported for genotypes E, 

141 G and H which shows that they are of lower levels of genetic divergence than the rest. The 

142 distribution of HBV genotypes differ greatly with respect to the geographical origin. Moreover, 

143 they differ in their natural history, response to treatment and disease progression (Huang, 2013; 

144 Biswas, 2013; Moura, 2013; Shi, 2013). For our study we included the sequences of the eight 

145 genotypes (A-H) that form part of the oldest identified HBV groups.

146 The HCV dataset I) comprises 213 sequences corresponding to seven major taxonomic 

147 units named after genotypes (1, 2, 3, 4, 5, 6, and 7) and numerous subtypes (Smith et al., 2014). 

148 The HCV classification into genotypes and subtypes was based on genetic-distance thresholds 
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149 that were verified by the fact that they formed monophyletic clades in an inferred phylogeny 

150 (Smith et al., 2014). Therefore, the HCV classification serves as an appropriate test case for 

151 assessing whether a similar clustering can be identified with a more objective and automated 

152 method, such as mPTP, that does not require any user input apart from a phylogeny.

153

154 Genetic Cluster delimitation

155 To delimit the putative species, additionally to mPTP, we used the distance-based “Automatic 

156 Barcode Gap Discovery” tool (ABGD, Puillandre et al., 2012). ABGD is a popular distance-

157 based barcoding method that, compared to other distance-based methods attempts to 

158 automatically identify the threshold value for the transition from intra-specific variation to inter-

159 specific divergence (Puillandre et al., 2012).

160 For the mPTP delimitation, a fully binary (bifurcating) rooted phylogeny is required. 

161 Therefore, using the aligned sequences we inferred the phylogenetic relationships under the 

162 GTR+Γ model of nucleotide substitution using RAxML-NG (Kozlov et al., 2018). We rooted the 

163 phylogenetic trees according to the originally published phylogenies (i.e., using the branch 

164 leading to genotypes F/H for HBV and genotype 7 for HCV). Using heuristic search algorithms 

165 for finding the ‘best’ delimitation given the rooted phylogeny and without any further prior 

166 assumptions. We performed the mPTP delimitation under Maximum Likelihood (ML) and 

167 calculated the support of the delimited clusters using Markov-chain Monte Carlo (MCMC) 

168 sampling (Kapli et al., 2017). We conducted the MCMC sampling twice for 106 generations, to 

169 identify potential lack of convergence with a sampling frequency of 0.1.

170 For ABGD, the user has to define two important parameters, i) the prior maximum 

171 divergence of intraspecific diversity (P), which implies that the barcode gap is expected to 

172 exceed this value and should not be confused with the genetic thresholds assumed to define the 

173 inter-specific relationships, ii) a proxy for the minimum gap width (X), which indicates that the 

174 barcoding gap is expected to be X times larger than any intraspecific gap (Puillandre et al., 

175 2012). For both, HBV, and HCV, we used 10 prior maximum thresholds in the range of p = 

176 0.001 and P = 0.05. The proxy for the minimum gap width (X) was set to the default value (X = 

177 1.5) for HCV, while for HBV the default value did not yield any delimitation and we therefore 

178 set it to a lower value (X = 0.5).

179
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180

181 Results & Discussion

182

183 The biodiversity of viruses is tremendous and it is broadly accepted that our understanding of 

184 their ecology and evolution is constrained to a small fraction of species. In just a kilo of marine 

185 sediment there can be a million of different viral genotypes (Breitbart & Rohwer, 2005), while 

186 on a global scale the number of viruses is 10 million-fold higher than the number of stars in the 

187 universe (Suttle, 2013). The classification of such a diverse set of organisms constitutes a 

188 challenging task and is impossible to accomplish within reasonable time using phenotypic 

189 characters. Quantitative computational methods could provide a viable alternative, particularly 

190 for large scale clustering and fast identification of viral strains (Simmonds et al., 2017; Modha et 

191 al., 2018). Using empirical data of the HBV and HCV viruses we show that by applying 

192 phylogeny-aware and distance-based tools to classify the strains of the two virus types, the 

193 corresponding genetic clustering closely recovers their currently accepted taxonomy.

194

195 HCV Clustering

196 The current taxonomy of HCV comprises seven genotypes, while mPTP yielded 16 genetic 

197 clusters (Fig. 1, Suppl. Fig. 1, Suppl. Appendix). From the 16 clusters, five were congruent with 

198 the current taxonomy, i.e, genotypes 1, 2, 4, 5 and 7. On the contrary, genotype 3 and genotype 6 

199 were further split into three and eight sub-clusters correspondingly (Fig. 1), which corroborates 

200 former views that divergent variants of these genotypes may qualify as separate major genotypes 

201 (Simmonds et al., 2005, Smith et al, 2014). In particular, the additional clusters identified by 

202 mPTP correspond to previously identified groups of subtypes (Suppl. Fig. 1). For genotype 6, 

203 these clusters consisted of the following subtype groups: 6a; 6b and 6xd; 6c, 6d, 6e, 6f, 6g, 6o, 

204 6p, 6q, 6r, 6s, 6t, 6u, 6w, 6xc and 6xf; 6h, 6i, 6j, 6k, 6l, 6m, 6n, 6xb, 6xe; 6xa; 6v (uppl. Fig. 1, 

205 Suppl. Appendix). Similarly, for genotype 3, the delimited clusters were i) 3g, 3b, 3i, 3a, 3e, 3d, 

206 ii) 3k, and iii) 3h and 3. All clusters were substantially supported by the MCMC sampling, 

207 except the split of 3k subtype from it's sister group (Fig. 1), which may be due to lack of 

208 adequate sequences for the subtype.

209 The number of clusters inferred with ABGD ranged from 1 to 208 depending on the 

210 value of the maximum intraspecific divergence threshold (Fig. 3). The most reasonable result 
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211 (i.e., the one closest to the current standard taxonomy) comprised 19 clusters and was obtained 

212 for a minimum of intraspecific genetic diversity of 5.99% (i.e., p=0.0599). Under this threshold, 

213 the delimitation is largely identical to the delimitation obtained with mPTP (Fig. 1), with three 

214 differences: i) that genotype 3 was split into four clusters, instead of three, genotype six was 

215 divided into nine clusters instead of eight, and, iii) genotype 7 is divided into two clusters. When 

216 the prior intraspecific divergence was increased to a higher minimum of 10%, all sequences were 

217 grouped in a single cluster. When the threshold was set to a lower value (3.6%) the number of 

218 clusters increased to 135 (Fig. 3). Nevertheless, the delimitation with the 5.99% threshold is 

219 largely congruent to current taxonomy and the clusters obtained with mPTP, thus indicating the 

220 usefulness of distance based methods in virus taxonomy under well informed parameters.

221 The so far classification of HCV into genotypes and subtypes has been defined mostly by 

222 visual identification of clades in phylogenetic inference of HCV sequences (Simmonds et al., 

223 2005; Smith et al, 2014). Specifically, the genotypes correspond to the seven major highly-

224 supported phylogenetic HCV clusters while subtypes were defined as the secondary hierarchical 

225 clusters found within each genotype (Smith et al, 2014). This classification scheme has been 

226 widely adopted (Combet et al., 2007; Yusim et al., 2015) and has been shown to be robust (in 

227 terms of stability of the HCV phylogeny) and relevant for clinical practice, since response rates 

228 to immunomodulatory treatment for the chronic hepatitis C differs across genotypes. 

229 Nevertheless, new, unassigned lineages are often discovered from understudied areas (Sulbaran 

230 et al., 2010; Nakano et al., 2011; Lu et al., 2013; Tong et al., 2015) and it challenging to assign 

231 them a taxonomic status, given that the genetic distance cut-off among intra and inter-specific 

232 relationships is arbitrary and variable for different parts of the HCV phylogeny (Simmonds et al., 

233 2005). The greatly overlapping mPTP and ABGD clusters with the HCV genotypes shows that 

234 the classification, and, consequently, the identification, of the genotypes can be easily automated 

235 utilizing objective, transparent, and unifying approaches. Embracing such alternatives can be 

236 crucial for viruses like HCV, taking into account that the correct identifying of the HCV 

237 genotypes is of clinical importance for providing the appropriate medical treatment (Strader et 

238 al., 2004; Ge et al., 2009).

239

240 HBV clustering
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241 In the case of HBV, the mPTP clustering is almost identical to the current classification (Norder 

242 et al., 2004; Kramvis et al., 2007) of the virus that comprises eight genotypes, except for 

243 subgenotype C4 which formed a new cluster (Fig. 2, Suppl. Fig. 2, Suppl. Appendix). This is in 

244 line with the greater genetic divergence of C4 compared to the other subgenotypes due to its 

245 ancient origin in native populations in Oceania (Paraskevis et al, 2013). However, the split of C4 

246 from its sister cluster (genotype C) is not supported by the MCMC sampling, potentially 

247 reflecting the lack of adequate sampling. On the other hand, the number of clusters identified by 

248 ABGD varied from 1 to 85 under different thresholds of minimum intraspecific divergence, 

249 while the delimitation for a threshold of 1.29% exactly matched the eight genotypes of the HBV 

250 classification (Fig. 2 and 3). Both ABGD and mPTP identified seven of the genotypes (A-F) as 

251 distinct genetic clusters. The only difference was that mPTP split genotype C into two distinct 

252 clusters (Fig. 2), i.e., subtype C4 was recovered as a distinct cluster from the remaining seven 

253 subtypes of genotype.

254

255 Conclusions

256 The application of mPTP to the HCV and HBV data sets shows that automated viral strain 

257 clustering using phylogeny-aware methods yields clusters that largely agree with the current  

258 standard taxonomy. The major advantage of mPTP over distance-based approaches is that it can 

259 be seamlessly applied to taxa of substantially different life histories (e.g., variable population 

260 sizes, evolution rates), as it does not require any input parameters except a phylogeny. On the 

261 contrary, the example of HCV and HBV, shows that meaningful parameter values for distance 

262 based methods may differ substantially among datasets, and, therefore, establishing global 

263 thresholds is impossible. The ease-of-use of mPTP in conjunction with the computational 

264 efficiency on phylogenies with thousands of strains that are increasingly becoming available 

265 (Modha et al., 2018; Paez- Espino et al. 2016) render mPTP a useful tool for viral biodiversity 

266 estimates, initial classification of understudied taxa, and accelerating the viral species 

267 identification.

268

269
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Figure 1(on next page)

Clustering of the HCV samples into genotypes

Clustering of the HCV samples into genotypes; the first bar of colors corresponds to the
genotypes currently acknowledged by ICTV, the second to the mPTP clustering and the third
to the ABGD clustering (p=0.0599, X=1.5). The numbers on the nodes are the support values
obtained by the MCMC sampling under the mPTP model. The phylogenetic relationships were
inferred using RAxML under the GTR+Γ model.
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Figure 2(on next page)

Clustering of the HBV samples into genotypes

Clustering of the HBV samples into genotypes; the first colored bar corresponds to the
genotypes currently acknowledged by ICTV, the second to the mPTP clustering and the third
to the ABGD clustering (p=0.0129, X=0.5). The numbers on the nodes are the support values
obtained by the MCMC sampling under the mPTP model. The phylogenetic relationships were
inferred using RAxML under the GTR+Γ model
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Figure 3
Number of delimited clusters for ABGD with respect to input parameters

The graph shows the change of the number of delimited clusters (y axis) with respect to the
minimum intraspecific threshold ("p") assumed by ABGD (x axis). The threshold that yielded
the most sensible clustering for HBV was p= 0.0129 while for HCV was p=0.0599, both are
shown with a dotted red line in the figure; the corresponding number of clusters is indicated
in a red box.
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