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The cave deposits of the Lower Permian Richards Spur locality in Oklahoma, USA, have
produced an incredible number of terrestrial tetrapod taxa, many of which are currently
only known from this locality. One of the many recent taxa to be described from the
locality was the small lanthanosuchoid parareptile Feeserpeton oklahomensis.
Represented by a well-preserved, near complete skull, F. oklahomensis would have been a
small predatory sauropsid, likely preying upon arthropods, and contributes to the
extensive tetrapod fauna that was present at Richards Spur. New computed tomography
(CT) data of the holotype and only specimen has allowed us to visualize and describe
previously obscured and inaccessible anatomy of this taxon. These areas include the
mandibular ramus, the palate, the sphenethmoid, the epipterygoids, and the braincase.
Furthermore, this new anatomical information allowed formerly unknown character
codings to be updated, thus we also performed a new phylogenetic analysis that
incorporated this new information. The results of this updated phylogenetic analysis are
very similar to those of past studies, with F. oklahomensis being found as the sister taxon
to all other lanthanosuchoids.
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Abstract

The cave deposits of the Lower Permian Richards Spur locality in Oklahoma, USA, have
produced an incredible number of terrestrial tetrapod taxa, many of which are currently only
known from this locality. One of the many recent taxa to be described from the locality was the
small lanthanosuchoid parareptile Feeserpeton oklahomensis. Represented by a well-preserved,
near complete skull, F. oklahomensis would have been a small predatory sauropsid, likely
preying upon arthropods, and contributes to the extensive tetrapod fauna that was present at
Richards Spur. New computed tomography (CT) data of the holotype and only specimen has
allowed us to visualize and describe previously obscured and inaccessible anatomy of this taxon.
These areas include the mandibular ramus, the palate, the sphenethmoid, the epipterygoids, and
the braincase. Furthermore, this new anatomical information allowed formerly unknown
character codings to be updated, thus we also performed a new phylogenetic analysis that
incorporated this new information. The results of this updated phylogenetic analysis are very
similar to those of past studies, with F. oklahomensis being found as the sister taxon to all other

lanthanosuchoids.

Keywords: Parareptilia, Reptilia, Sauropsida, Cisuralian, Palaeozoic
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Introduction

The Lower Permian (Cisuralian) Richards Spur locality of southwestern Oklahoma,
represented by an extensive cave system, is known for its immense terrestrial tetrapod fauna
(Sullivan & Reisz, 1999; MacDougall et al., 2017b). Over the last few decades, more than 30
taxa have been described from the locality (MacDougall et al., 2017b), which includes various
anamniotes, synapsids, and sauropsids. Among these tetrapods are numerous parareptile taxa,
specifically: Colobomycter pholeter Vaughn, 1958, Delorhynchus priscus Fox, 1962, Bolosaurus
grandis Reisz et al., 2002, Microleter mckinzieorum Tsuji et al., 2010, Abyssomedon williamsi
MacDougall and Reisz, 2014, Delorhynchus cifelli Reisz et al., 2014, Colobomycter vaughni
MacDougall et al., 2016. Most early Permian continental assemblages exhibit only a single
parareptile taxony Richards Spur is in stark contrast to this pattern, with eight parareptiles being
known from the locality (MacDougall et al., 2017b), several of which belong to the clade
Lanthanosuchoidea (Vaughn, 1958; Fox, 1962; Modesto, 1999; MacDougall & Reisz, 2012;
Reisz, Macdougall & Modesto, 2014; MacDougall, Modesto & Reisz, 2016).

Lanthanosuchoidea is a small clade of sauropsids that includes various early and middle
Permian forms. Currently, all early Permian lanthanosuchoids are only known from North
America, whereas as the Middle Permian taxa are known only from Russia. There are also
notable differences between the North American and Russian lanthanosuchoids. The early
Permian North American taxa are considered to be small, fully-terrestrial, predatory taxa
(Modesto, Scott & Reisz, 2009; Haridy, MacDougall & Reisz, 2017; MacDougall et al., 2017a),
whereas the Middle Permian Russian taxa are larger and considered to be semi-aquatic
(Sennikov, 1996; Reisz, 1997; Verricre, Brocklehurst & Frobisch, 2016). Overall, this suggests

that the clade could have potentially originated in western Laurasia and later dispersed to eastern
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Laurasia, though the lack of Russian early Permian strata makes this biogeographic hypothesis
difficult to test.

The lanthanosuchoid Feeserpeton oklahomensis is one of the more recently described
taxa from Richards Spur locality and is currently only known from its holotype (MacDougall &
Reisz, 2012). It is represented by a small, nearly complete skull, and is characterized by several
enlarged maxillary teeth on the maxillae and dentaries, as well as large postorbitals and small
squamosals. In the initial description, MacDougall and Reisz (2012) largely described the visible
external anatomy of the skull, although CT data was used to examine the mandibular dentition.
However, they did not examine any other areas of the skull that were obscured or inaccessible,
which left some aspects of the anatomy of the skull unknown.

Herein, we describe the previously inaccessible anatomy of Feeserpeton oklahomensis
using new CT data. Areas that were segmented and examined include obscured parts of the lower
jaw and palate, the sphenethmoid, the epipterygoids, and elements of the braincase (Fig. 1).
Furthermore, the new information obtained from this data also warranted updating the
phylogenetic character codings of F. oklahomensis, thus an updated phylogenetic analysis was

performed as well.

Institutional Abbreviations: OMNH, Sam Noble Oklahoma Museum of Natural History,

Norman, Oklahoma, USA.

Materials & Methods

Specimen
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The skull of Feeserpeton oklahomensis examined for this study is the holotype and
currently only known specimen, OMNH 73541. It was previously studied and described by

MacDougall and Reisz (2012).

Computed Tomography Scans

The skull of Feeserpeton oklahomensis was scanned using the x-ray computed
tomography setup (Phoenix | x-ray Nanotom | s) at the Museum fiir Naturkunde in Berlin. Scan
parameters were set to 57 kV voltage and 170uA current with 1440 images /360° at an exposure
time of 1000ms/image and an effective voxel size of 0.0129 mm, resulting in a magnification
rate of 3.857. Cone beam reconstruction was performed using datos | x-ray sensing 4 Inspection
Technologies GmbH (phoenix | x-ray) with a correction value of 1.845. The elements were

visualized and digitally segmented in VG studio Max 3.2.

Phylogenetic Analysis

The data matrix used in the phylogenetic analysis is based on the data matrix of
MacDougall et al. (2018). The analysis itself was performed in PAUP 4.0a165 (Swofford, 2019),
using parsimony as the optimality criterion. The outgroup was set to include the taxa Seymouria,
Limnoscelis, and Orobates. Furthermore, minimum branch lengths of zero were set to collapse.
A heuristic search (TBR) was then performed using these parameters. Both a bootstrap and
Bremer decay analysis were conducted to determine support values for clades.

The character codings of Feeserpeton oklahomensis were updated based on new
information obtained from the CT data. The characters that were recoded are as follows:

interpterygoid vacuity anterior extent (61) ?—0, alar flange of the vomer presence or absence
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(64) ?—0, cultriform process present; (67) ?7—1, pterygoid anterior extent (85) ?—0, cultriform
process anterior extent (86) ?—1, sutural contact between paroccipital process and
dermatocranium (92) ?—1, Meckelian fossa orientation (108) ?—0, Meckelian fossa
anteroposterior length (109) ?—0, number of coronoids (113) ?—1, prearticular anterior extent
(114) 1—0, coronoid process height (119) ?—0, high coronoid process composition (120) 7—-,
single large tooth on anteriormost end of vomer (169) 1—0.

Furthermore, a few characters were recoded for other taxa to correct some coding errors;
these changes are indicated in the data matrix. The updated data matrix and the full character list

can be found in the supplementary info.

Description

The CT scans of Feeserpeton oklahomensis allowed for several previously inaccessible
and obscured areas of the skull to be examined and segmented (Fig. 1). These areas include parts
of the palate and the mandible, the sphenethmoid, the epipterygoids, and elements of the

braincase.

The Palate

Many of the palatal elements of Feeserpeton oklahomensis are visible in the holotypey
however, only the right side of the palate was prepared, and there are portions of it that are
obscured by supportive matrix. Through segmentation of the CT data both sides of the palate are
visible in their entirety (Fig. 2), some parts of the palate are damaged or not preserved, but it is

largely intact. The most notable feature of the palate that is clarified by the scans is the extent of
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the palatal dentition, in particular on the palatine. The left palatine appears to be largely complete
and grants us a view of the element that was not available previously.

As was suggested by MacDougall and Reisz (2012), the palatine is a large element and
makes up a considerable portion of the overall palatal surface. Anteriorly, the palatine contacts
the vomer, whereas it contacts the pterygoid medially and posteriorly, the ectopterygoid is also
contacted posteriorly. Laterally, there is a contact with the maxilla. MacDougall and Reisz
(2012) note that there are two clusters of palatine teeth visible, though the full extent of these
clusters could not be fully determined. The segmented left palatine clearly shows that there is a
lateral and medial group of teeth on the element; they are roughly organized in the form of rows.
The lateral row consists of seven large teeth and a few smaller ones, whereas the medial row
consists of several smaller teeth.

The full anteroposterior extent of the vomer is also now apparent, the element is about the
same length as the palatine, and ends anteriorly with a narrow, pointed medially positioned
process. Likewise, the full lateral extent of the element reveals that the anterior end of the
palatine is nestled between two posterior extensions of the vomer: a broad medial extension, and
a narrower lateral one.

There are other features of the palate that are clarified with this new CT data. It is now
clear that the interpterygoid vacuity extends quite far anteriorly, past the posterior edge of the
palatines. Likewise, it is apparent that the cultriform process of the parasphenoid extends
forward for much of the length of the vacuity. Furthermore, a suborbital foramen is not present,
with the palate being unbroken at the intersection of the pterygoid, palatine, and ectopterygoid,
as is the case in other lanthanosuchoids (deBraga & Reisz, 1996; Reisz, Macdougall & Modesto,

2014).
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The Mandibles

Due to the mandibular rami of Feeserpeton oklahomensis being occluded with the upper
jaw, only details of the ventral and labial surfaces can be clearly observed, with much of the
dorsal and lingual surfaces being obscured by the occlusion. However, segmentation of the entire
left mandibular ramus (Fig. 3) reveals new information regarding these previously inaccessible
areas. The left ramus is slightly damaged on its labial surface, which results in a small gap
through which the labial surface of the prearticular can be seen.

MacDougall and Reisz (2012) used CT scans to investigate the dentition of the dentary,
however, only the shape of the teeth was examined. The segmented mandibular ramus of the
holotype exhibits 21 teeth on the dentary, however, when empty alveoli are included the total
number of dentary teeth increases to 25. Furthermore, there are enlarged teeth found on the
anterior end of the element; there are two visible and an empty alveolus, suggesting that there
would have been three enlarged teeth, the same pattern that is observed on the maxilla
(MacDougall & Reisz, 2012).

One of the more notable features of the mandible are the coronoid elements (Fig. 3, 4). In
their investigation of multiple coronoids and coronoid dentition in Palacozoic sauropsids, the
coronoid of Feeserpeton oklahomensis was examined by Haridy et al. (2017) using CT scans.
They identified the presence of two coronoids on each ramus, as well as the presence of coronoid
dentition. We are able to confirm that coronoid dentition is present in F. oklahomensis (Fig. 4),
though much of the dentition appears to not be preserved, there are three small teeth that are

clearly visible on the right coronoid. However, unlike what was observed by Haridy et al. (2017),
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we find no trace of two coronoid elements (Fig. 3), suggesting that the presence of multiple
coronoids in F. oklahomensis was likely a misinterpretation.

The coronoid itself is a relatively long element found lingual to the posterior end of the
dentary. It extends from its posterior articulation with the surangular to the middle of the dentary,
narrowing for most of its length. A posteroventral process of the coronoid curves posteriorly to
meet with the prearticular.

The full extent of the prearticular, an element not described by MacDougall and Reisz
(2012), is revealed in the segmented mandibular ramus (Fig. 2). It is a long element that extends
from the articular to the posterior end of the splenial. It also articulates ventrally with the portion
of the angular that wraps around to the lingual side of the ramus, whereas its anterodorsal edge
contacts the coronoid and dentary. The dorsal portion of the prearticular forms the lingual margin
of the large adductor fossa. Overall, the prearticular is quite similar in shape and position to that
of other closely related taxa, such as Delorhynchus (Haridy, MacDougall & Reisz, 2017).

The Meckelian fossa, normally completely obscured by the occlusion of the jaws to the
rest of the skull, is revealed in its entirety in the segmented mandibular ramus as well (Fig. 2).
The Meckelian fossa of Feeserpeton oklahomensis is found on the posterior end of the
mandibular ramus. The fossa faces dorsomedially and it is quite long, extending anterior for
about a third of the length of the ramus, as is the case in Delorhynchus (Haridy, MacDougall &

Reisz, 2017).

The Sphenethmoid

The sphenethmoid is a rarely described element in early sauropsids, usually because it is

either not preserved or not visible. Due to the internal position of the sphenethmoid in the

Peer] reviewing PDF | (2019:04:37076:0:1:NEW 16 May 2019)


michellaurin
Barrer 

michellaurin
Texte inséré 
3

michellaurin
Barrer 

michellaurin
Texte inséré 

michellaurin
Texte surligné 

michellaurin
Texte surligné 


PeerJ

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

holotype of Feeserpeton it was not noted or discussed in MacDougall and Reisz (2012), here we
present the fully segmented sphenethmoid element (Fig. 5).

The sphenethmoid is found in its expected position, ventral to the frontals. It is a roughly
Y-shaped element when viewed in anterior and posterior aspects, possessing a slender ventral
process (often termed the keel) and two equally slender dorsal processes with a rounded trough
between them. Lateral view of the element reveals that its anteroposterior length is about
equivalent to its dorsoventral height. This sphenethmoid shape is similar to what has been

observed in other early sauropsids, such as Captorhinus (Heaton, 1979; Modesto & Reisz, 2008).

The Epipterygoids

The epipterygoids are another example of rarely described elements of early sauropsids,
largely due to their interior position within the skull. The new CT scans reveal the presence of
both epipterygoids in the holotype of Feeserpeton oklahomensis, which were both fully
segmented for the purpose of this study (Fig. 6). These elements were not described by
MacDougall and Reisz (2012) as they are not exposed externally. Both epipterygoids appear to
be disarticulated and not in their natural positions (Fig. 1), but overall they are similar in
structure to those that have been described for other early sauropsids (Romer, 1956; Carroll &
Lindsay, 1985), possessing a gracile dorsal columella that arches slightly posterior, and a ventral
region that expands to form a more robust footplate with a broad anteroposterior length. The
footplate also exhibits a process on its anteromedial surface, a characteristic that has also been
observed in other early sauropsids, such as Captorhinus (Fox & Bowman, 1966). In their natural
positions the dorsal columella of each epipterygoid would have contacted the supraoccipital and

prootic, whereas the footplate would have presumably met with the quadrate process of the
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pterygoid, as is the case in Captorhinus (Fox & Bowman, 1966) and the procolophonids

Leptopleuron and Hypsognathus (Sues et al., 2000; Cisneros, 2008).

The Braincase

The braincase of Feeserpeton oklahomensis was described externally by MacDougall and
Reisz (2012), however, there was still substantial portions of its overall anatomy that could not
be described due to being obscured. The fully segmented braincase presented here (Fig. 7)
reveals several details that could not be observed in the original description of the holotype. It is
also quite apparent that the braincase exhibits slight disarticulation of elements from their natural
position, as well as some damaged areas.

The prootics of Feeserpeton are large, irregularly shaped anterior elements of the
braincase and form an extensive portion of its overall structure. While MacDougall and Reisz
(2012) were able to identify the prootics, they were only able to describe the exposed ventral
surface of the elements, which is only a small portion of the overall element. The prootics are
slightly disarticulated and not in contact with any of the other elements of the braincase, but they
appear to be entirely intact. The posterior surface of the prootic would have articulated with the
anterior surface of the opisthotic. The flattened posterolateral extension of the element, usually
termed the paroccipital process of the prootic would have met with the paroccipital process of
the opisthotic, with a large depression in this region of the prootic contributing to the fenestra
ovalis. Dorsomedially, there is a small process that would have met with the supraoccipital. The
medial portion of the element exhibits another smaller process that extends ventrally out from the
main body of the prootic, which would likely have come close to contacting the basioccipital.

The anterior part of the prootic is convex in shape. Overall, the structure of the prootic is largely
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similar to what has been described for other parareptiles, such as Leptopleuron (Spencer, 2000),
though in the case of Leptopleuron the prootic appears to be not quite as robust as that of
Feeserpeton. Unfortunately, this is a rarely described element of closely related taxa, due to its
often inaccessible position.

The opisthotics are another large component of the braincase, and like the prootics, they
were also only partially described by MacDougall and Reisz (2012). The segmented braincase
clearly illustrates that both of the opisthotics suffer from damage (Fig. 7), however, the left
opisthotic is substantially more damaged than the right one, with a large posterior segment of the
element being completely absent. The better preserved right opisthotic clearly exhibits a laterally
expanded anterodorsal end, and a posterior portion that extends ventrally. The broad anterior end
contributes to the paroccipital process of the opisthotic, which would have met with the
paroccipital process of the prootics. Moving medially the posterior portion of the opisthotic
expands dorsoventrally and meets with the lateral edge of the fused exoccipital-basioccipital
complex, contributing to the posterior end of the braincase and forming the remaining portion of
the paroccipital process.

The stapes was briefly described by (MacDougall & Reisz, 2012), and we expand upon
there description here. The stapes of Feeserpeton is not in its natural position, being slightly
disarticulated, it consists of a bifurcating laterally compressed distal end, and the broad
proximally located footplate, which are connected by a short, slightly twisted shaft. In its natural
position the footplate would have met with the fenestra ovalis of the paraoccipital process, with
the distal end extending laterally towards the quadrate. The distal end of the stapes bifurcates
into two distinct processes, the distal facing columella, which appears to be broken, and prior to

this process a dorsal extension. The stapes is similar in size and structure to the stapes of
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Acleistorhinus pteroticus (deBraga & Reisz, 1996), but is quite distinct from the small gracile

stapes of Leptopleuron lacertinum (Spencer, 2000).

Phylogenetic Analysis

The phylogenetic analysis produced 27 optimal trees, each with a tree length of 667. As
in the original MacDougall and Reisz (2012) study, the strict consensus tree (Fig. 8) produced
from the optimal trees has Feeserpeton oklahomensis being recovered as the sister taxon of all
other lanthanosuchoids (it is in this position in all 27 of the optimal trees). The clade
Lanthanosuchoidea is recovered as the sister taxon to the clade that contains Bolosauria,
Procolophonoidea, Pareiasauridae, Nycteroleteridae, Nyctiphruretidae, and Microleter. This is
similar to what was recovered in the analysis of MacDougall and Reisz (2012), except for the
inclusion of Microleter within this clade. However, the position of Bolosauria in our analysis
differs from what was recovered by other studies (Modesto et al., 2015; MacDougall et al.,
2017a), where the clade was found to be more basal than Lanthanosuchoidea.

Similar to the results of MacDougall et al. (2018), the ophiacodontid (Archaeothyris) and
varanopid taxa (Archaeovenator, Mycterosaurus) included in the analysis were recovered as
being more closely related to the sauropsid taxa than to the synsapids. This is an atypical result
that warrants further investigation in the future, but is at least partly in line with the results of
recent work that has recovered varanopids within Sauropsida (Ford & Benson, 2018). In the case
of our study this result could potentially be the result of the relatively narrow focus of our

analysis.
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Discussion

New Information from CT Scans

The early Permian Richards Spur locality has produced a considerable amount of well-
preserved fossil material, largely due to the unique preservational environment associated with
the caves found there (MacDougall et al., 2017b). In particular near complete skulls are not
uncommon at the locality, with many taxa being known almost solely from skulls (e.g. Modesto
and Reisz, 2008; Anderson et al., 2009; Tsuji et al., 2010; Polley and Reisz, 2011; MacDougall
et al., 2017b). These various well-preserved specimens provide substantial information regarding
the anatomy of the taxa to which they belong, however, there are also various regions of these
skulls that cannot be examined normally, either due to being obscured or not being exposed
externally. CT scans are proving to be an ideal way to study these skulls and their difficult to
examine areas, which will in turn provide more information regarding the Richards Spur
assemblage and the taxa that compose it. The new CT scans of the holotype of Feeserpeton
oklahomensis have allowed for the segmentation of several previously inaccessible areas,
revealing more details regarding the anatomy of this taxon. Specifically, the dentition of the
mandible and palate, and various elements of the skull that are largely internal.

Recently, there have been other parareptile taxa that have been examined using CT scans
(Tsuji, Sobral & Miiller, 2013; Zaher, Coram & Benton, 2018), which resulted in the discovery
of new information about the examined taxa, however, there are still numerous parareptile taxa
that have yet to be examined in comparable detail using CT scans. The new information that will
be obtained from examining other parareptiles using CT scans will be important for resolving

issues and testing existing hypotheses regarding early amniote relationships (Laurin & Pifieiro,
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2017; rord & Benson, 2018; MacDougall et al., 2018), as well as for better understanding the

anatomy and evolution of these taxa (Zaher, Coram & Benton, 2018).

The Coronoid Process of Feeserpeton

One of the aspects of the anatomy of Feeserpeton oklahomensis that was clarified with
CT scans is the composition of the coronoid process. The coronoid process of lanthanosuchoids
has been shown to be quite complex, with the presence of multiple coronoids and dentition
present on the elements (Haridy, MacDougall & Reisz, 2017; MacDougall et al., 2017a). Our
identification of a single coronoid on the mandibular ramus of F. oklahomensis (Fig. 3), which is
contrary to the observations of Haridy et al. (2017), does not dramatically change their
interpretations about the evolution of the trait within Lanthanosuchoidea. The only potential
change this reinterpretation introduces to their hypothesis is that multiple coronoids does not
appear to be primitive for Lanthanosuchoidea, instead appearing later in the evolution of the
clade. However, we were able to confirm that the coronoid of F. oklahomensis does indeed
exhibit dentition (Fig. 4), thus it is clear that denticulate coronoids are the primitive condition for
lanthanosuchoids, as was hypothesized by Haridy et al. (2017). Other lanthanosuchoid taxa,
notably Acleistorhinus pteroticus, will have to be reexamined in the future to further elucidate

details regarding the evolution of multiple and denticulate coronoids within the clade.

Conclusions
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Through computed tomography scans and modern visualization techniques this study
reveals new information regarding the anatomy of the early Permian sauropsid Feeserpeton
oklahomensis. Notably, we were able to describe numerous details regarding the anatomy of the
mandibular rami, the palate, the sphenethmoid, the epipterygoids, and the braincase. All of which
are parts of the skull that cannot be fully examined normally in the holotype specimen. This new
information also allowed for several previously unknown phylogenetic characters to be coded.
The evolution and relationships of early amniotes is still an area of palacontological research that
is far from set in stone, and the investigation of normally inaccessible anatomy using CT data has
been and will continue to be important for better understanding sauropsid, and more broadly,

early tetrapod evolution.
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Figure Captions

Figure 1. The skull of Feeserpeton oklahomensis, OMNH 73541, showing the regions that were

reconstructed using CT data. Scale bar equals 3 mm. [Half page width]

Figure 2. The palate of Feeserpeton oklahomensis, OMNH 73541, reconstructed from CT data.

A, dorsal view, and B, ventral view. Abbreviations: ec, ectopterygoid; m, maxilla; pal, palatine;

ps, parasphenoid; pt, pterygoid; v, vomer. Scale bar equals 4 mm. [Half page width]
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Figure 3. The left mandibular ramus of Feeserpeton oklahomensis, OMNH 73541, reconstructed
from CT data. A, dorsal view, B, ventral view, C, labial view, and D, lingual view.
Abbreviations: an, angular; ar, articular; ¢, coronoid; d, dentary; pra, prearticular; sa,

surangular; sp, splenial. Scale bar equals 2 mm. [Half page width]

Figure 4. The right coronoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from

CT data. A, lingual view, and B, dorsal view. Scale bar equals 1 mm. [Half page width]

Figure 5. The sphenethmoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from
CT data. A, anterior view, B, posterior view, C, dorsal view, and D, lateral view. Scale bar

equals 1 mm. [Half page width]

Figure 6. The left epipterygoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from
CT data. A, lateral view, B, medial view, C, dorsal view, and D, ventral view. Scale bar equals 1

mm. [Half page width]

Figure 7. The braincase of Feeserpeton oklahomensis, OMNH 73541, reconstructed from CT
data. A, dorsal view, B, ventral view, C, right lateral view, and D, posterior view. Abbreviations:
bo, basioccipital; eo, exoccipitals; op, opisthotic; pro, prootic; ps, parasphenoid; so,
supraoccipital st, stapes; ?, unknown fragment that may be part of the left stapes or the left

opisthotic. Scale bar equals 2 mm. [Half page width]
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Figure 8. Strict consensus tree obtained from the phylogenetic analysis. Tree length =667,
consistency index = 0.301, rescaled consistency index = 0.195, retention index = 0.647. Nodes of
clades of interest are labeled: A, Amniota; B, Sauropsida; C, Parareptilia; D, Eureptilia; E,
Lanthanosuchoidea; F, Bolosauria; G, Nyctiphruretidae; H, Nycteroleteridae; I, Pareiasauridae;
J, Procolophonoidea. Bootstrap support values are found above nodes, if no value is indicated it
was less than 50%. Bremer support values are found below nodes, if no value is indicated the

clade collapsed with the addition of one extra step. [Half page width]
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Figure 1

The skull of Feeserpeton oklahomensis, OMNH 73541, showing the regions that were
reconstructed using CT data.

Scale bar equals 3 mm.
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Figure 2

The palate of Feeserpeton oklahomensis, OMNH 73541, reconstructed from CT data.

(A) Dorsal view, and (B), ventral view. Abbreviations: ec, ectopterygoid; m, makxilla; pal,

palatine; ps, parasphenoid; pt, pterygoid; v, vomer. Scale bar equals 4 mm.
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Figure 3

The left mandibular ramus of Feeserpeton oklahomensis, OMNH 73541, reconstructed
from CT data.

(A) Dorsal view, (B) ventral view, (C) labial view, and (D) lingual view. Abbreviations: an,

angular; ar, articular; ¢, coronoid; d, dentary; pra, prearticular; sa, surangular; sp, splenial.

Scale bar equals 2 mm.
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Figure 4

The right coronoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from CT
data.

(A) Lingual view, and (B) dorsal view. Scale bar equals 1 mm.
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Figure 5

The sphenethmoid of Feeserpeton oklahomensis, OMNH 73541,reconstructed from CT
data.

(A) Anterior view, (B) posterior view, (C) dorsal view, and (D) lateral view. Scale bar equals 1

mm.
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Figure 6

The left epipterygoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from
CT data

(A) Lateral view, (B) medial view, (C) dorsal view, and (D) ventral view. Scale bar equals 1

mm.
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Figure 7

Figure 7. The braincase of Feeserpeton oklahomensis, OMNH 73541, reconstructed from
CT data.

(A) Dorsal view, (B) ventral view, (C) right lateral view, and (D) posterior view. Abbreviations:
bo, basioccipital; eo, exoccipitals; op, opisthotic; pro, prootic; ps, parasphenoid; so,

supraoccipitalst, stapes; ?, unknown fragment that may be part of the left stapes or the left

opisthotic. Scale bar equals 2 mm.
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Figure 8

Strict consensus tree obtained from the phylogenetic analysis.

Tree length =667, consistency index = 0.301, rescaled consistency index = 0.195, retention
index = 0.647. Nodes of clades of interest are labeled: A, Amniota; B, Sauropsida; C,
Parareptilia; D, Eureptilia; E, Lanthanosuchoidea; F, Bolosauria; G, Nyctiphruretidae; H,
Nycteroleteridae; I, Pareiasauridae; J, Procolophonoidea. Bootstrap support values are found
above nodes, if no value is indicated it was less than 50%. Bremer support values are found

below nodes, if no value is indicated the clade collapsed with the addition of one extra step.
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