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New information on the early Permian lanthanosuchoid
Feeserpeton oklahomensis based on Computed Tomography
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The cave deposits of the Lower Permian Richards Spur locality in Oklahoma, USA, have
produced an incredible number of terrestrial tetrapod taxa, many of which are currently
only known from this locality. One of the many recent taxa to be described from the
locality was the small lanthanosuchoid parareptile Feeserpeton oklahomensis.
Represented by a well-preserved, near complete skull, F. oklahomensis would have been a
small predatory sauropsid, likely preying upon arthropods, and contributes to the
extensive tetrapod fauna that was present at Richards Spur. New computed tomography
(CT) data of the holotype and only specimen has allowed us to visualize and describe
previously obscured and inaccessible anatomy of this taxon. These areas include the
mandibular ramus, the palate, the sphenethmoid, the epipterygoids, and the braincase.
Furthermore, this new anatomical information allowed formerly unknown character
codings to be updated, thus we also performed a new phylogenetic analysis that
incorporated this new information. The results of this updated phylogenetic analysis are
very similar to those of past studies, with F. oklahomensis being found as the sister taxon
to all other lanthanosuchoids.
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49 Abstract
50

51 The cave deposits of the Lower Permian Richards Spur locality in Oklahoma, USA, have 

52 produced an incredible number of terrestrial tetrapod taxa, many of which are currently only 

53 known from this locality. One of the many recent taxa to be described from the locality was the 

54 small lanthanosuchoid parareptile Feeserpeton oklahomensis. Represented by a well-preserved, 

55 near complete skull, F. oklahomensis would have been a small predatory sauropsid, likely 

56 preying upon arthropods, and contributes to the extensive tetrapod fauna that was present at 

57 Richards Spur. New computed tomography (CT) data of the holotype and only specimen has 

58 allowed us to visualize and describe previously obscured and inaccessible anatomy of this taxon. 

59 These areas include the mandibular ramus, the palate, the sphenethmoid, the epipterygoids, and 

60 the braincase. Furthermore, this new anatomical information allowed formerly unknown 

61 character codings to be updated, thus we also performed a new phylogenetic analysis that 

62 incorporated this new information. The results of this updated phylogenetic analysis are very 

63 similar to those of past studies, with F. oklahomensis being found as the sister taxon to all other 

64 lanthanosuchoids. 

65

66 Keywords: Parareptilia, Reptilia, Sauropsida, Cisuralian, Palaeozoic

PeerJ reviewing PDF | (2019:04:37076:0:1:NEW 16 May 2019)

Manuscript to be reviewed



67 Introduction

68 The Lower Permian (Cisuralian) Richards Spur locality of southwestern Oklahoma, 

69 represented by an extensive cave system, is known for its immense terrestrial tetrapod fauna 

70 (Sullivan & Reisz, 1999; MacDougall et al., 2017b). Over the last few decades, more than 30 

71 taxa have been described from the locality (MacDougall et al., 2017b), which includes various 

72 anamniotes, synapsids, and sauropsids. Among these tetrapods are numerous parareptile taxa, 

73 specifically: Colobomycter pholeter Vaughn, 1958, Delorhynchus priscus Fox, 1962, Bolosaurus 

74 grandis Reisz et al., 2002, Microleter mckinzieorum Tsuji et al., 2010, Abyssomedon williamsi 

75 MacDougall and Reisz, 2014, Delorhynchus cifelli Reisz et al., 2014, Colobomycter vaughni 

76 MacDougall et al., 2016. Most early Permian continental assemblages exhibit only a single 

77 parareptile taxon, Richards Spur is in stark contrast to this pattern, with eight parareptiles being 

78 known from the locality (MacDougall et al., 2017b), several of which belong to the clade 

79 Lanthanosuchoidea (Vaughn, 1958; Fox, 1962; Modesto, 1999; MacDougall & Reisz, 2012; 

80 Reisz, Macdougall & Modesto, 2014; MacDougall, Modesto & Reisz, 2016).

81 Lanthanosuchoidea is a small clade of sauropsids that includes various early and middle 

82 Permian forms. Currently, all early Permian lanthanosuchoids are only known from North 

83 America, whereas as the Middle Permian taxa are known only from Russia. There are also 

84 notable differences between the North American and Russian lanthanosuchoids. The early 

85 Permian North American taxa are considered to be small, fully-terrestrial, predatory taxa 

86 (Modesto, Scott & Reisz, 2009; Haridy, MacDougall & Reisz, 2017; MacDougall et al., 2017a), 

87 whereas the Middle Permian Russian taxa are larger and considered to be semi-aquatic 

88 (Sennikov, 1996; Reisz, 1997; Verrière, Brocklehurst & Fröbisch, 2016). Overall, this suggests 

89 that the clade could have potentially originated in western Laurasia and later dispersed to eastern 
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90 Laurasia, though the lack of Russian early Permian strata makes this biogeographic hypothesis 

91 difficult to test.

92 The lanthanosuchoid Feeserpeton oklahomensis is one of the more recently described 

93 taxa from Richards Spur locality and is currently only known from its holotype (MacDougall & 

94 Reisz, 2012). It is represented by a small, nearly complete skull, and is characterized by several 

95 enlarged maxillary teeth on the maxillae and dentaries, as well as large postorbitals and small 

96 squamosals. In the initial description, MacDougall and Reisz (2012) largely described the visible 

97 external anatomy of the skull, although CT data was used to examine the mandibular dentition. 

98 However, they did not examine any other areas of the skull that were obscured or inaccessible, 

99 which left some aspects of the anatomy of the skull unknown.

100 Herein, we describe the previously inaccessible anatomy of Feeserpeton oklahomensis 

101 using new CT data. Areas that were segmented and examined include obscured parts of the lower 

102 jaw and palate, the sphenethmoid, the epipterygoids, and elements of the braincase (Fig. 1). 

103 Furthermore, the new information obtained from this data also warranted updating the 

104 phylogenetic character codings of F. oklahomensis, thus an updated phylogenetic analysis was 

105 performed as well.

106

107 Institutional Abbreviations: OMNH, Sam Noble Oklahoma Museum of Natural History, 

108 Norman, Oklahoma, USA.

109

110

111 Materials & Methods

112 Specimen
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113 The skull of Feeserpeton oklahomensis examined for this study is the holotype and 

114 currently only known specimen, OMNH 73541. It was previously studied and described by 

115 MacDougall and Reisz (2012).

116

117 Computed Tomography Scans

118 The skull of Feeserpeton oklahomensis was scanned using the x-ray computed 

119 tomography setup (Phoenix ǀ x-ray Nanotom ǀ s) at the Museum für Naturkunde in Berlin. Scan 

120 parameters were set to 57 kV voltage and 170µA current with 1440 images /360° at an exposure 

121 time of 1000ms/image and an effective voxel size of 0.0129 mm, resulting in a magnification 

122 rate of 3.857. Cone beam reconstruction was performed using datos ǀ x-ray sensing 4 Inspection 

123 Technologies GmbH (phoenix ǀ x-ray) with a correction value of 1.845. The elements were 

124 visualized and digitally segmented in VG studio Max 3.2.

125

126 Phylogenetic Analysis

127 The data matrix used in the phylogenetic analysis is based on the data matrix of 

128 MacDougall et al. (2018). The analysis itself was performed in PAUP 4.0a165 (Swofford, 2019), 

129 using parsimony as the optimality criterion. The outgroup was set to include the taxa Seymouria, 

130 Limnoscelis, and Orobates. Furthermore, minimum branch lengths of zero were set to collapse. 

131 A heuristic search (TBR) was then performed using these parameters. Both a bootstrap and 

132 Bremer decay analysis were conducted to determine support values for clades.

133 The character codings of Feeserpeton oklahomensis were updated based on new 

134 information obtained from the CT data. The characters that were recoded are as follows: 

135 interpterygoid vacuity anterior extent (61) ?⇾0, alar flange of the vomer presence or absence 
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136 (64) ?⇾0, cultriform process present; (67) ?⇾1, pterygoid anterior extent (85) ?⇾0, cultriform 

137 process anterior extent (86) ?⇾1, sutural contact between paroccipital process and 

138 dermatocranium (92) ?⇾1, Meckelian fossa orientation (108) ?⇾0, Meckelian fossa 

139 anteroposterior length (109) ?⇾0, number of coronoids (113) ?⇾1, prearticular anterior extent 

140 (114) 1⇾0, coronoid process height (119) ?⇾0, high coronoid process composition (120) ?⇾-, 

141 single large tooth on anteriormost end of vomer (169) 1⇾0.

142 Furthermore, a few characters were recoded for other taxa to correct some coding errors; 

143 these changes are indicated in the data matrix. The updated data matrix and the full character list 

144 can be found in the supplementary info. 

145

146

147 Description

148 The CT scans of Feeserpeton oklahomensis allowed for several previously inaccessible 

149 and obscured areas of the skull to be examined and segmented (Fig. 1). These areas include parts 

150 of the palate and the mandible, the sphenethmoid, the epipterygoids, and elements of the 

151 braincase. 

152

153 The Palate

154 Many of the palatal elements of Feeserpeton oklahomensis are visible in the holotype, 

155 however, only the right side of the palate was prepared, and there are portions of it that are 

156 obscured by supportive matrix. Through segmentation of the CT data both sides of the palate are 

157 visible in their entirety (Fig. 2), some parts of the palate are damaged or not preserved, but it is 

158 largely intact. The most notable feature of the palate that is clarified by the scans is the extent of 
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159 the palatal dentition, in particular on the palatine. The left palatine appears to be largely complete 

160 and grants us a view of the element that was not available previously. 

161 As was suggested by MacDougall and Reisz (2012), the palatine is a large element and 

162 makes up a considerable portion of the overall palatal surface. Anteriorly, the palatine contacts 

163 the vomer, whereas it contacts the pterygoid medially and posteriorly, the ectopterygoid is also 

164 contacted posteriorly. Laterally, there is a contact with the maxilla. MacDougall and Reisz 

165 (2012) note that there are two clusters of palatine teeth visible, though the full extent of these 

166 clusters could not be fully determined. The segmented left palatine clearly shows that there is a 

167 lateral and medial group of teeth on the element; they are roughly organized in the form of rows. 

168 The lateral row consists of seven large teeth and a few smaller ones, whereas the medial row 

169 consists of several smaller teeth.

170 The full anteroposterior extent of the vomer is also now apparent, the element is about the 

171 same length as the palatine, and ends anteriorly with a narrow, pointed medially positioned 

172 process. Likewise, the full lateral extent of the element reveals that the anterior end of the 

173 palatine is nestled between two posterior extensions of the vomer: a broad medial extension, and 

174 a narrower lateral one.

175 There are other features of the palate that are clarified with this new CT data. It is now 

176 clear that the interpterygoid vacuity extends quite far anteriorly, past the posterior edge of the 

177 palatines. Likewise, it is apparent that the cultriform process of the parasphenoid extends 

178 forward for much of the length of the vacuity. Furthermore, a suborbital foramen is not present, 

179 with the palate being unbroken at the intersection of the pterygoid, palatine, and ectopterygoid, 

180 as is the case in other lanthanosuchoids (deBraga & Reisz, 1996; Reisz, Macdougall & Modesto, 

181 2014).
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182

183 The Mandibles

184 Due to the mandibular rami of Feeserpeton oklahomensis being occluded with the upper 

185 jaw, only details of the ventral and labial surfaces can be clearly observed, with much of the 

186 dorsal and lingual surfaces being obscured by the occlusion. However, segmentation of the entire 

187 left mandibular ramus (Fig. 3) reveals new information regarding these previously inaccessible 

188 areas. The left ramus is slightly damaged on its labial surface, which results in a small gap 

189 through which the labial surface of the prearticular can be seen.

190 MacDougall and Reisz (2012) used CT scans to investigate the dentition of the dentary, 

191 however, only the shape of the teeth was examined. The segmented mandibular ramus of the 

192 holotype exhibits 21 teeth on the dentary, however, when empty alveoli are included the total 

193 number of dentary teeth increases to 25. Furthermore, there are enlarged teeth found on the 

194 anterior end of the element; there are two visible and an empty alveolus, suggesting that there 

195 would have been three enlarged teeth, the same pattern that is observed on the maxilla 

196 (MacDougall & Reisz, 2012). 

197 One of the more notable features of the mandible are the coronoid elements (Fig. 3, 4). In 

198 their investigation of multiple coronoids and coronoid dentition in Palaeozoic sauropsids, the 

199 coronoid of Feeserpeton oklahomensis was examined by Haridy et al. (2017) using CT scans. 

200 They identified the presence of two coronoids on each ramus, as well as the presence of coronoid 

201 dentition. We are able to confirm that coronoid dentition is present in F. oklahomensis (Fig. 4), 

202 though much of the dentition appears to not be preserved, there are three small teeth that are 

203 clearly visible on the right coronoid. However, unlike what was observed by Haridy et al. (2017), 
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204 we find no trace of two coronoid elements (Fig. 3), suggesting that the presence of multiple 

205 coronoids in F. oklahomensis was likely a misinterpretation.

206 The coronoid itself is a relatively long element found lingual to the posterior end of the 

207 dentary. It extends from its posterior articulation with the surangular to the middle of the dentary, 

208 narrowing for most of its length. A posteroventral process of the coronoid curves posteriorly to 

209 meet with the prearticular.

210 The full extent of the prearticular, an element not described by MacDougall and Reisz 

211 (2012), is revealed in the segmented mandibular ramus (Fig. 2). It is a long element that extends 

212 from the articular to the posterior end of the splenial. It also articulates ventrally with the portion 

213 of the angular that wraps around to the lingual side of the ramus, whereas its anterodorsal edge 

214 contacts the coronoid and dentary. The dorsal portion of the prearticular forms the lingual margin 

215 of the large adductor fossa. Overall, the prearticular is quite similar in shape and position to that 

216 of other closely related taxa, such as Delorhynchus (Haridy, MacDougall & Reisz, 2017).

217 The Meckelian fossa, normally completely obscured by the occlusion of the jaws to the 

218 rest of the skull, is revealed in its entirety in the segmented mandibular ramus as well (Fig. 2). 

219 The Meckelian fossa of Feeserpeton oklahomensis is found on the posterior end of the 

220 mandibular ramus. The fossa faces dorsomedially and it is quite long, extending anterior for 

221 about a third of the length of the ramus, as is the case in Delorhynchus (Haridy, MacDougall & 

222 Reisz, 2017).

223  

224 The Sphenethmoid

225 The sphenethmoid is a rarely described element in early sauropsids, usually because it is 

226 either not preserved or not visible. Due to the internal position of the sphenethmoid in the 
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227 holotype of Feeserpeton it was not noted or discussed in MacDougall and Reisz (2012), here we 

228 present the fully segmented sphenethmoid element (Fig. 5).

229 The sphenethmoid is found in its expected position, ventral to the frontals. It is a roughly 

230 Y-shaped element when viewed in anterior and posterior aspects, possessing a slender ventral 

231 process (often termed the keel) and two equally slender dorsal processes with a rounded trough 

232 between them. Lateral view of the element reveals that its anteroposterior length is about 

233 equivalent to its dorsoventral height. This sphenethmoid shape is similar to what has been 

234 observed in other early sauropsids, such as Captorhinus (Heaton, 1979; Modesto & Reisz, 2008).

235

236 The Epipterygoids

237 The epipterygoids are another example of rarely described elements of early sauropsids, 

238 largely due to their interior position within the skull. The new CT scans reveal the presence of 

239 both epipterygoids in the holotype of Feeserpeton oklahomensis, which were both fully 

240 segmented for the purpose of this study (Fig. 6). These elements were not described by 

241 MacDougall and Reisz (2012) as they are not exposed externally. Both epipterygoids appear to 

242 be disarticulated and not in their natural positions (Fig. 1), but overall they are similar in 

243 structure to those that have been described for other early sauropsids (Romer, 1956; Carroll & 

244 Lindsay, 1985), possessing a gracile dorsal columella that arches slightly posterior, and a ventral 

245 region that expands to form a more robust footplate with a broad anteroposterior length. The 

246 footplate also exhibits a process on its anteromedial surface, a characteristic that has also been 

247 observed in other early sauropsids, such as Captorhinus (Fox & Bowman, 1966). In their natural 

248 positions the dorsal columella of each epipterygoid would have contacted the supraoccipital and 

249 prootic, whereas the footplate would have presumably met with the quadrate process of the 
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250 pterygoid, as is the case in Captorhinus (Fox & Bowman, 1966) and the procolophonids 

251 Leptopleuron and Hypsognathus (Sues et al., 2000; Cisneros, 2008).

252

253 The Braincase

254 The braincase of Feeserpeton oklahomensis was described externally by MacDougall and 

255 Reisz (2012), however, there was still substantial portions of its overall anatomy that could not 

256 be described due to being obscured. The fully segmented braincase presented here (Fig. 7) 

257 reveals several details that could not be observed in the original description of the holotype. It is 

258 also quite apparent that the braincase exhibits slight disarticulation of elements from their natural 

259 position, as well as some damaged areas.

260 The prootics of Feeserpeton are large, irregularly shaped anterior elements of the 

261 braincase and form an extensive portion of its overall structure. While MacDougall and Reisz 

262 (2012) were able to identify the prootics, they were only able to describe the exposed ventral 

263 surface of the elements, which is only a small portion of the overall element. The prootics are 

264 slightly disarticulated and not in contact with any of the other elements of the braincase, but they 

265 appear to be entirely intact. The posterior surface of the prootic would have articulated with the 

266 anterior surface of the opisthotic. The flattened posterolateral extension of the element, usually 

267 termed the paroccipital process of the prootic would have met with the paroccipital process of 

268 the opisthotic, with a large depression in this region of the prootic contributing to the fenestra 

269 ovalis. Dorsomedially, there is a small process that would have met with the supraoccipital. The 

270 medial portion of the element exhibits another smaller process that extends ventrally out from the 

271 main body of the prootic, which would likely have come close to contacting the basioccipital. 

272 The anterior part of the prootic is convex in shape. Overall, the structure of the prootic is largely 
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273 similar to what has been described for other parareptiles, such as Leptopleuron (Spencer, 2000), 

274 though in the case of Leptopleuron the prootic appears to be not quite as robust as that of 

275 Feeserpeton. Unfortunately, this is a rarely described element of closely related taxa, due to its 

276 often inaccessible position.

277 The opisthotics are another large component of the braincase, and like the prootics, they 

278 were also only partially described by MacDougall and Reisz (2012). The segmented braincase 

279 clearly illustrates that both of the opisthotics suffer from damage (Fig. 7), however, the left 

280 opisthotic is substantially more damaged than the right one, with a large posterior segment of the 

281 element being completely absent. The better preserved right opisthotic clearly exhibits a laterally 

282 expanded anterodorsal end, and a posterior portion that extends ventrally. The broad anterior end 

283 contributes to the paroccipital process of the opisthotic, which would have met with the 

284 paroccipital process of the prootics. Moving medially the posterior portion of the opisthotic 

285 expands dorsoventrally and meets with the lateral edge of the fused exoccipital-basioccipital 

286 complex, contributing to the posterior end of the braincase and forming the remaining portion of 

287 the paroccipital process. 

288 The stapes was briefly described by (MacDougall & Reisz, 2012), and we expand upon 

289 there description here. The stapes of Feeserpeton is not in its natural position, being slightly 

290 disarticulated, it consists of a bifurcating laterally compressed distal end, and the broad 

291 proximally located footplate, which are connected by a short, slightly twisted shaft. In its natural 

292 position the footplate would have met with the fenestra ovalis of the paraoccipital process, with 

293 the distal end extending laterally towards the quadrate. The distal end of the stapes bifurcates 

294 into two distinct processes, the distal facing columella, which appears to be broken, and prior to 

295 this process a dorsal extension. The stapes is similar in size and structure to the stapes of 
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296 Acleistorhinus pteroticus (deBraga & Reisz, 1996), but is quite distinct from the small gracile 

297 stapes of Leptopleuron lacertinum (Spencer, 2000). 

298

299

300 Phylogenetic Analysis

301 The phylogenetic analysis produced 27 optimal trees, each with a tree length of 667. As 

302 in the original MacDougall and Reisz (2012) study, the strict consensus tree (Fig. 8) produced 

303 from the optimal trees has Feeserpeton oklahomensis being recovered as the sister taxon of all 

304 other lanthanosuchoids (it is in this position in all 27 of the optimal trees). The clade 

305 Lanthanosuchoidea is recovered as the sister taxon to the clade that contains Bolosauria, 

306 Procolophonoidea, Pareiasauridae, Nycteroleteridae, Nyctiphruretidae, and Microleter. This is 

307 similar to what was recovered in the analysis of MacDougall and Reisz (2012), except for the 

308 inclusion of Microleter within this clade. However, the position of Bolosauria in our analysis 

309 differs from what was recovered by other studies (Modesto et al., 2015; MacDougall et al., 

310 2017a), where the clade was found to be more basal than Lanthanosuchoidea.

311 Similar to the results of MacDougall et al. (2018), the ophiacodontid (Archaeothyris) and 

312 varanopid taxa (Archaeovenator, Mycterosaurus) included in the analysis were recovered as 

313 being more closely related to the sauropsid taxa than to the synsapids. This is an atypical result 

314 that warrants further investigation in the future, but is at least partly in line with the results of 

315 recent work that has recovered varanopids within Sauropsida (Ford & Benson, 2018). In the case 

316 of our study this result could potentially be the result of the relatively narrow focus of our 

317 analysis.

318
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319

320 Discussion 

321 New Information from CT Scans 

322 The early Permian Richards Spur locality has produced a considerable amount of well-

323 preserved fossil material, largely due to the unique preservational environment associated with 

324 the caves found there (MacDougall et al., 2017b). In particular near complete skulls are not 

325 uncommon at the locality, with many taxa being known almost solely from skulls (e.g. Modesto 

326 and Reisz, 2008; Anderson et al., 2009; Tsuji et al., 2010; Polley and Reisz, 2011; MacDougall 

327 et al., 2017b). These various well-preserved specimens provide substantial information regarding 

328 the anatomy of the taxa to which they belong, however, there are also various regions of these 

329 skulls that cannot be examined normally, either due to being obscured or not being exposed 

330 externally. CT scans are proving to be an ideal way to study these skulls and their difficult to 

331 examine areas, which will in turn provide more information regarding the Richards Spur 

332 assemblage and the taxa that compose it. The new CT scans of the holotype of Feeserpeton 

333 oklahomensis have allowed for the segmentation of several previously inaccessible areas, 

334 revealing more details regarding the anatomy of this taxon. Specifically, the dentition of the 

335 mandible and palate, and various elements of the skull that are largely internal. 

336 Recently, there have been other parareptile taxa that have been examined using CT scans 

337 (Tsuji, Sobral & Müller, 2013; Zaher, Coram & Benton, 2018), which resulted in the discovery 

338 of new information about the examined taxa, however, there are still numerous parareptile taxa 

339 that have yet to be examined in comparable detail using CT scans. The new information that will 

340 be obtained from examining other parareptiles using CT scans will be important for resolving 

341 issues and testing existing hypotheses regarding early amniote relationships (Laurin & Piñeiro, 
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342 2017; Ford & Benson, 2018; MacDougall et al., 2018), as well as for better understanding the 

343 anatomy and evolution of these taxa (Zaher, Coram & Benton, 2018).

344

345

346 The Coronoid Process of Feeserpeton

347 One of the aspects of the anatomy of Feeserpeton oklahomensis that was clarified with 

348 CT scans is the composition of the coronoid process. The coronoid process of lanthanosuchoids 

349 has been shown to be quite complex, with the presence of multiple coronoids and dentition 

350 present on the elements (Haridy, MacDougall & Reisz, 2017; MacDougall et al., 2017a). Our 

351 identification of a single coronoid on the mandibular ramus of F. oklahomensis (Fig. 3), which is 

352 contrary to the observations of Haridy et al. (2017), does not dramatically change their 

353 interpretations about the evolution of the trait within Lanthanosuchoidea. The only potential 

354 change this reinterpretation introduces to their hypothesis is that multiple coronoids does not 

355 appear to be primitive for Lanthanosuchoidea, instead appearing later in the evolution of the 

356 clade. However, we were able to confirm that the coronoid of F. oklahomensis does indeed 

357 exhibit dentition (Fig. 4), thus it is clear that denticulate coronoids are the primitive condition for 

358 lanthanosuchoids, as was hypothesized by Haridy et al. (2017). Other lanthanosuchoid taxa, 

359 notably Acleistorhinus pteroticus, will have to be reexamined in the future to further elucidate 

360 details regarding the evolution of multiple and denticulate coronoids within the clade.

361

362

363 Conclusions

PeerJ reviewing PDF | (2019:04:37076:0:1:NEW 16 May 2019)

Manuscript to be reviewed

michellaurin
Texte surligné 

michellaurin
Note



364 Through computed tomography scans and modern visualization techniques this study 

365 reveals new information regarding the anatomy of the early Permian sauropsid Feeserpeton 

366 oklahomensis. Notably, we were able to describe numerous details regarding the anatomy of the 

367 mandibular rami, the palate, the sphenethmoid, the epipterygoids, and the braincase. All of which 

368 are parts of the skull that cannot be fully examined normally in the holotype specimen. This new 

369 information also allowed for several previously unknown phylogenetic characters to be coded. 

370 The evolution and relationships of early amniotes is still an area of palaeontological research that 

371 is far from set in stone, and the investigation of normally inaccessible anatomy using CT data has 

372 been and will continue to be important for better understanding sauropsid, and more broadly, 

373 early tetrapod evolution.

374
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488

489

490 Figure Captions

491 Figure 1. The skull of Feeserpeton oklahomensis, OMNH 73541, showing the regions that were 

492 reconstructed using CT data.  Scale bar equals 3 mm. [Half page width]

493

494 Figure 2. The palate of Feeserpeton oklahomensis, OMNH 73541, reconstructed from CT data. 

495 A, dorsal view, and B, ventral view. Abbreviations: ec, ectopterygoid; m, maxilla; pal, palatine; 

496 ps, parasphenoid; pt, pterygoid; v, vomer. Scale bar equals 4 mm. [Half page width]

497
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498 Figure 3. The left mandibular ramus of Feeserpeton oklahomensis, OMNH 73541, reconstructed 

499 from CT data. A, dorsal view, B, ventral view, C, labial view, and D, lingual view. 

500 Abbreviations: an, angular; ar, articular; c, coronoid; d, dentary; pra, prearticular; sa, 

501 surangular; sp, splenial. Scale bar equals 2 mm. [Half page width]

502

503 Figure 4. The right coronoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from 

504 CT data. A, lingual view, and B, dorsal view. Scale bar equals 1 mm. [Half page width]

505

506 Figure 5. The sphenethmoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from 

507 CT data. A, anterior view, B, posterior view, C, dorsal view, and D, lateral view. Scale bar 

508 equals 1 mm. [Half page width]

509

510 Figure 6. The left epipterygoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from 

511 CT data. A, lateral view, B, medial view, C, dorsal view, and D, ventral view. Scale bar equals 1 

512 mm. [Half page width]

513

514 Figure 7. The braincase of Feeserpeton oklahomensis, OMNH 73541, reconstructed from CT 

515 data. A, dorsal view, B, ventral view, C, right lateral view, and D, posterior view. Abbreviations: 

516 bo, basioccipital; eo, exoccipitals; op, opisthotic; pro, prootic; ps, parasphenoid; so, 

517 supraoccipital st, stapes; ?, unknown fragment that may be part of the left stapes or the left 

518 opisthotic. Scale bar equals 2 mm. [Half page width]

519
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520 Figure 8. Strict consensus tree obtained from the phylogenetic analysis. Tree length =667, 

521 consistency index = 0.301, rescaled consistency index = 0.195, retention index = 0.647. Nodes of 

522 clades of interest are labeled: A, Amniota; B, Sauropsida; C, Parareptilia; D, Eureptilia; E, 

523 Lanthanosuchoidea; F, Bolosauria; G, Nyctiphruretidae; H, Nycteroleteridae; I, Pareiasauridae; 

524 J, Procolophonoidea. Bootstrap support values are found above nodes, if no value is indicated it 

525 was less than 50%. Bremer support values are found below nodes, if no value is indicated the 

526 clade collapsed with the addition of one extra step. [Half page width]
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Figure 1
The skull of Feeserpeton oklahomensis, OMNH 73541, showing the regions that were
reconstructed using CT data.

Scale bar equals 3 mm.
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Figure 2
The palate of Feeserpeton oklahomensis, OMNH 73541, reconstructed from CT data.

(A) Dorsal view, and (B), ventral view. Abbreviations: ec, ectopterygoid; m, maxilla; pal,
palatine; ps, parasphenoid; pt, pterygoid; v, vomer. Scale bar equals 4 mm.
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Figure 3
The left mandibular ramus of Feeserpeton oklahomensis, OMNH 73541,reconstructed
from CT data.

(A) Dorsal view, (B) ventral view, (C) labial view, and (D) lingual view. Abbreviations: an,
angular; ar, articular; c, coronoid; d, dentary; pra, prearticular; sa, surangular; sp, splenial.
Scale bar equals 2 mm.
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Figure 4
The right coronoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from CT
data.

(A) Lingual view, and (B) dorsal view. Scale bar equals 1 mm.
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Figure 5
The sphenethmoid of Feeserpeton oklahomensis, OMNH 73541,reconstructed from CT
data.

(A) Anterior view, (B) posterior view, (C) dorsal view, and (D) lateral view. Scale bar equals 1
mm.
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Figure 6
The left epipterygoid of Feeserpeton oklahomensis, OMNH 73541, reconstructed from
CT data

(A) Lateral view, (B) medial view, (C) dorsal view, and (D) ventral view. Scale bar equals 1
mm.
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Figure 7
Figure 7. The braincase of Feeserpeton oklahomensis, OMNH 73541, reconstructed from
CT data.

(A) Dorsal view, (B) ventral view, (C) right lateral view, and (D) posterior view. Abbreviations:
bo, basioccipital; eo, exoccipitals; op, opisthotic; pro, prootic; ps, parasphenoid; so,
supraoccipitalst, stapes; ?, unknown fragment that may be part of the left stapes or the left
opisthotic. Scale bar equals 2 mm.
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Figure 8
Strict consensus tree obtained from the phylogenetic analysis.

Tree length =667, consistency index = 0.301, rescaled consistency index = 0.195, retention
index = 0.647. Nodes of clades of interest are labeled: A, Amniota; B, Sauropsida; C,
Parareptilia; D, Eureptilia; E, Lanthanosuchoidea; F, Bolosauria; G, Nyctiphruretidae; H,
Nycteroleteridae; I, Pareiasauridae; J, Procolophonoidea. Bootstrap support values are found
above nodes, if no value is indicated it was less than 50%. Bremer support values are found
below nodes, if no value is indicated the clade collapsed with the addition of one extra step.
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