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ABSTRACT
Metabarcoding can rapidly determine the species composition of bulk samples and thus
aids biodiversity and ecosystem assessment. However, it is essential to use primer sets
that minimize amplification bias among taxa tomaximize species recovery. Despite this
fact, the performance of primer sets employed for metabarcoding terrestrial arthropods
has not been sufficiently evaluated. This study tests the performance of 36 primer sets
on amock community containing 374 insect species. Amplification success was assessed
with gradient PCRs and the 21 most promising primer sets selected for metabarcoding.
These 21 primer sets were also tested by metabarcoding a Malaise trap sample. We
identified eight primer sets, mainly those including inosine and/or high degeneracy,
that recovered more than 95% of the species in the mock community. Results from
the Malaise trap sample were congruent with the mock community, but primer sets
generating short amplicons produced potential false positives. Taxon recovery from
bothmock community andMalaise trap samplemetabarcoding were used to select four
primer sets for additional evaluation at different annealing temperatures (40–60 ◦C)
using the mock community. The effect of temperature varied by primer pair but overall
it only had a minor effect on taxon recovery. This study reveals the weak performance
of some primer sets employed in past studies. It also demonstrates that certain primer
sets can recovermost taxa in a diverse species assemblage. Thus, based our experimental
set up, there is no need to employ several primer sets targeting the same gene region.
We identify several suitable primer sets for arthropod metabarcoding, and specifically
recommend BF3 + BR2, as it is not affected by primer slippage and provides maximal
taxonomic resolution. The fwhF2 + fwhR2n primer set amplifies a shorter fragment
and is therefore ideal when targeting degraded DNA (e.g., from gut contents).

Subjects Ecology, Ecosystem Science, Entomology, Molecular Biology, Forestry
Keywords DNA metabarcoding, Primer bias, Degeneracy, Insects, Biodiversity

INTRODUCTION
Over the past decade, twomethodological and technological advances havemade it possible
to address the urgent need for the capacity to undertake large-scale surveys of biodiversity
(Vörösmarty et al., 2010;Dirzo et al., 2014; Steffen et al., 2015). First, the emergence of DNA
barcoding which uses sequence variation in short, standardized gene regions (i.e., DNA
barcodes) to discriminate species, has made it possible to quickly and reliably characterize
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species diversity (Hebert et al., 2003). Second, high-throughput sequencers (HTS) permit
the inexpensive acquisition of millions of sequence records (Reuter, Spacek & Snyder,
2015). The coupling of HTS with DNA barcoding, commonly known as metabarcoding,
allows for characterization of biodiversity at unprecedented scales (Creer et al., 2016) as
shown by studies of terrestrial (Gibson et al., 2014; Beng et al., 2016), freshwater (Hajibabaei
et al., 2011; Carew et al., 2013; Andújar et al., 2017), and marine (Leray & Knowlton, 2015)
ecosystems.

Metabarcoding studies on bulk collections of animals usually target a subset of the 658
bp cytochrome c oxidase subunit I (COI) ‘‘Folmer’’ region (Folmer et al., 1994; Andújar
et al., 2018). This gene region has gained broad adoption because of a rapidly expanding
reference database (Ratnasingham & Hebert, 2007;Porter & Hajibabaei, 2018b) and its good
taxonomic resolution (Meusnier et al., 2008). Ribosomal markers have been suggested as
an alternative (Deagle et al., 2014; Marquina, Andersson & Ronquist, 2018) because their
slower rate of evolution results in more conserved motifs/regions aiding the design of
universal primer sets. However, arthropod reference databases for ribosomal markers are
very limited for most taxonomic groups (Clarke et al., 2014) and ribosomal primer sets
often show no substantial improvement in taxon recovery over well-designed COI primer
sets (Elbrecht et al., 2016; Clarke et al., 2017; Elbrecht & Leese, 2017; Krehenwinkel et al.,
2017).

An important consideration for metabarcoding studies is the primer combination used
for amplification of the target fragment. It is critical that primer sets optimally match the
template sequences of the target species. Mismatches between primer and template can
skew read abundance and lead to a substantial bias in taxon detection (Piñol et al., 2014;
Elbrecht & Leese, 2015). Failure to minimize amplification bias reduces the amount of taxa
detected in a sample (Elbrecht & Leese, 2017). Furthermore, insufficient sequencing depth
and/or low DNA concentration can introduce stochastic effects that additionally bias taxon
recovery (Barnes & Turner, 2015; Leray & Knowlton, 2017).

The effectiveness of primer sets can be evaluated by in vitro tests withmock communities
(Elbrecht & Leese, 2015; Brandon-Mong et al., 2015; Leray & Knowlton, 2017) or by in silico
tests (Clarke et al., 2014; Elbrecht & Leese, 2016; Piñol, Senar & Symondson, 2018; Bylemans
et al., 2018b; Marquina, Andersson & Ronquist, 2018). The failure to evaluate primers can
seriously compromise data quality. For instance, a primer set (Zeale et al., 2011) often
employed for analyzing gut contents of insect predators (see references in Jusino et al.,
2018) lacks degeneracy, leading to poor taxon recovery (Brandon-Mong et al., 2015). The
use of multiple primer sets or even multiple marker genes was proposed to improve taxon
recovery (Alberdi et al., 2017;Zhang et al., 2018). This approachmay be optimal for samples
of very phylogenetically divergent groups such as protists (Pawlowski et al., 2017) or marine
benthic communities (Cowart et al., 2015; Wangensteen et al., 2018; Drummond, 2018).
However, given the increased cost and time associated with amplifying and sequencing
additional markers (Bohmann et al., 2018; Zhang et al., 2018), the use of multiple primer
sets is unnecessary for taxonomic groups with limited diversity. Additionally, relative read
abundance comparisons between primer sets will become difficult, as each is subjected
to different primer biases (Elbrecht & Leese, 2015). We hypothesize that in the case of
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Experimental outline

Primer shortlist

Metabarcoding (46°C annealing)

• 36 Candidate primer sets (Fig. 2, primer sequences Tab. S2)
• Two insect bulk samples for testing:

• Gradient PCR, annealing 46 - 64.5 °C (Fig. S7 & S8)
• Discarding primer sets with poor ampli�cation
  or no plateau in PCR gradient

• Fusion primer design for 21 primer sets
• Two step PCR at 46° annealing temperature
• Two Illumina MiSeq sequencing runs (v3 300 bp Paired End):
  Run I: “mock community”                    Run II: “malaise trap sample”
• Objective: Assess and compare performance
                       of di�erent primer sets (Fig. 3 & 4)

Mock sample gradient metabarcoding
• Fusion primer design for 4 representative primer sets
• Two step PCR at di�erent annealing temperatures:
  40.0, 41.6, 43.7, 46.0, 48.5, 50.8, 53.0, 54.7 and 56.0 °C
• MiSeq run III: “gradient”
• Objective: Optimise annealing temperature for the best
                       performing primer sets (Fig. 5)

Primer recommendations

374 taxa mock insect community
(from Braukmann et al. 2019)

One complete malaise trap,
1 week July, Ontario, Canada

Figure 1 Overview of the experimental design. The performance of 36 primer pairs was tested via gradi-
ent PCRs with a mock community of insects (A). The 21 pairs that showed best amplification results (B)
were selected for further DNA metabarcoding runs utilizing both the mock community and a Malaise trap
sample (C). Based on the metabarcoding results, four primer sets showing the good performance were se-
lected for a third test that examined the effects of varying annealing temperatures on taxon recovery and
non-specific amplification (D). Based on all results, the optimal primer sets were designated (E).

Full-size DOI: 10.7717/peerj.7745/fig-1

terrestrial arthropods a single well-designed primer set can be sufficiently effective, and the
use of multiple primer sets is not necessary.

This study compares the performance of commonly used and newly developed primer
sets on the recovery of species in a bulk DNA extract from 374 insect species (Braukmann
et al., 2019) and from aMalaise trap sample. Based on a hierarchical testing scheme (Fig. 1)
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using gradient PCRs and assessing species recovery with metabarcoding, we selected
four primer pairs whose metabarcoding performance was tested on a range of annealing
temperatures.

MATERIAL AND METHODS
Tested samples and experimental outline
We used two samples to test a range of primer sets for metabarcoding: a mock community
of 374 species (Braukmann et al., 2019) and a sample collected with a Malaise trap (Fig. 1).
Themock community is comprised of 374 species (Fig. 1A), and each specimen represented
by an individual BIN (taxonomic breakdown shown in Fig. S1A, Ratnasingham & Hebert,
2013). A detailed list of specimens and their Barcode of Life Datasystems process IDs
(BOLD, Ratnasingham & Hebert, 2007) is given in Table S1. For most specimens, the full
658 bp barcode region was available through BOLD, but we completed reads for three
taxa with shorter sequences by extracting haplotypes from our metabarcoding data using
a denoising approach (Elbrecht et al., 2018b). The resulting reference library is available
as a fasta file (See Scripts S1). To compare mock community results with a field sample,
we collected insects with a Townes-style Malaise trap (Bugdorm, Taiwan) deployed in
a grassland/forest area near Waterloo, Ontario, Canada (43◦29′30.8′′N80◦36′59.6′′W).
We selected a single weekly sample (June 30–July 7, 2018) and dried it for three days
in a disposable grinding chamber. The sample was ground to fine powder using an IKA
Tube Mill control (IKA, Breisgau, Germany) at 25,000 rpm for 2 × 3 min. DNA was
extracted from 21 mg of ground tissue using the DNeasy Blood & Tissue kit (Qiagen,
Venlo, Netherlands).

The mock community DNA extract was used to test 36 primer pairs by comparing
amplification success across a range of annealing temperatures. Twenty-one primer pairs
whose amplicon concentrations plateaued in amplicon concentration at lower annealing
temperatures were selected for metabarcoding both the mock community and the Malaise
trap sample. Four representative primer sets showing high success in species recovery were
selected to determine the optimal annealing temperature for maximizing species recovery
from bulk samples (see Fig. 1).

Gradient PCRs
Thirty-six primer combinations commonly used for metabarcoding were selected for
gradient PCR (Fig. 2), to assess primer efficiency at different annealing temperatures.
Some of these primers represent new combinations, as well as new variants of primers
by shifting the primer binding site by 3 bp, by incorporating degeneracy, or by replacing
inosine ‘‘I’’ with ‘‘N’’ and vice versa. PrimerMiner v0.18 was used to generate an alignment
visualization (Elbrecht & Leese, 2016) using reference sequences for 31 arthropod orders
downloaded and aligned as part of an earlier study (Vamos, Elbrecht & Leese, 2017). The
plot of the full alignment with binding sites for all primers used in this study is available in
Fig. S2.

Mock community gradient PCRs for 36 primer combinations were run on an Eppendorf
Mastercycler pro (Hamburg, Germany). PCRs were set up with 2×Multiplex PCR Master
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dgLCO1490 dgHCO2198 658 709

    LCO1490 HCO2198 658 709

Fol−degen−for Fol−degen−rev 658 707

AncientLepF3 C_LepFolR 463 514

RonMWASPdeg C_LepFolR 421 470
BF2 BR2 421 461

ArF5 Fol−degen−rev 418 467
Ill_B_F HCO2198 418 464

BF3 BR2 418 458

MLepF1 C_LepFolR 407 455
MhemF dgHCO2198 403 455

LCO1490 Ill_C_R 325 370

MZplankF2 C_LepFolR 322 369
BF2 BR1 322 362

jgLCO1490 mlCOIintR 319 370
fwhF1 BR3 319 369

BF1 BR2 316 356
mlCOIintF jgHCO2198 313 365
mlCOIintF Fol−degen−rev 313 365

mlCOIintF−XT jgHCO2198 313 365
B E 313 353

Bn En 313 353
ArF5 ArR5 310 356

C F 256 298
LCO1490 230_R 229 280

LepF1 MLepF1−Rev 218 265
BF1 BR1 217 257
BF1i BR1i 217 257

A D 205 254
fwhF2 fwhR2n 205 254

fwhF1 fwhR1 178 222
ZBJ−ArtF1c ZBJ−ArtR2c 157 211

ZBJ−ArtF1c_deg ZBJ−ArtR2c_deg 157 211
MG−LCO1490 MG−univR 133 187

LepF1 EPT−long−univR 127 181
Uni−MinibarF1 Uni−MinibarR1 127 177

Meyer et al. 2003

Folmer et al. 1994

Yu et al. 2012

M. A. Smith (unpublished), Hernández-Triana et al. 2014

Elbrecht & Leese 2017

Gibson et al. 2014, Yu et al. 2012

Shokralla et al. 2015, Folmer et al. 1994

This Publication, Elbrecht & Leese 2017

Hajibabaei et al. 2006

Park et al. 2011, Meyer et al. 2003

Folmer et al. 1994, Shokralla et al. 2015

Elbrecht & Leese 2017

Geller et al. 2013, Leray et al. 2013

Vamos et al. 2017, This Publication

Elbrecht & Leese 2017

Leray et al. 2013, Geller et al. 2013

Leray et al. 2013, Yu et al. 2012

Wangensteen et al. 2018, Geller et al. 2013

Hajibabaei et al. 2012

This Publication

Gibson et al. 2014

Hajibabaei et al. 2012

Folmer et al. 1994, Gibson et al. 2015

Hebert et al. 2004, BrandonMong et al. 2015

Elbrecht & Leese 2017

This Publication

Hajibabaei et al. 2012

Vamos et al. 2017

Vamos et al. 2017

Zeale et al. 2011

This Publication

Galan et al. 2017

Hebert et al. 2004, Hajibabaei et al. 2011

Meusnier et al. 2008

Prosser et al. 2016, Hernández-Triana et al. 2014

N. Ivanova (unpublished), Hernández-Triana et al. 2014

0 100 200 300 400 500 600 658 Primer binding site relative to COI Folmer region (in bp)

Forward & reverse primer re�erence

Targeted
region
in [bp]

Amplicon
size
 in [bp]

1

2

3

4

5

9

8

10

12

13

17

14

16

18

15

19

20

21

7

6

11

Figure 2 Target and amplicon length for the 36 primer sets evaluated via gradient PCR. The 21 primer
sets selected for sequencing are highlighted in yellow while an ID for each pair is shown on the left. See Ta-
ble S2 for primer sequences. Primer references: Folmer et al., 1994;Meyer, 2003; Hebert et al., 2004; Ha-
jibabaei et al., 2006;Meusnier et al., 2008; Hajibabaei et al., 2011; Zeale et al., 2011; Park et al., 2011; Yu et
al., 2012; Hajibabaei et al., 2012; Leray et al., 2013; Geller et al., 2013; Gibson et al., 2014; Hernández-Triana
et al., 2014; Shokralla et al., 2015; Brandon-Mong et al., 2015; Gibson et al., 2015; Prosser et al., 2015; El-
brecht & Leese, 2017; Vamos, Elbrecht & Leese, 2017;Wangensteen et al., 2018; Galan et al., 2018.

Full-size DOI: 10.7717/peerj.7745/fig-2

Mix Plus (Qiagen, Hilden, Germany), 0.5 µM of each primer (IDT, Skokie, Illinois), 12.5
ng DNA, and molecular grade water (HyPure, GE, Utha, USA) for a total volume of
25 µL. One BF2 + BR2 primer (Elbrecht & Leese, 2017) positive control using the mock
community DNA and one negative control were included with each primer set.

The following thermocycling protocol was used: initial denaturation at 95 ◦C for 5 min
then 29 cycles of denaturation at 95 ◦C for 30 s followed by a gradient of annealing
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temperatures from 44.5 –64.5 ◦C for 30 s with extension at 72 ◦C for 50 s, and a final
extensions of 5 min at 72 ◦C. PCR success and fragment length were determined by
visualizing amplicons on a 1% agarose gel. Amplicon concentration was quantified without
prior cleanup using a High Sensitivity dsDNA Kit on a Qubit fluorometer (Thermo Fisher
Scientific, MA, USA).

Primer selection for metabarcoding
Based on the results of gradient PCR (Fig. 1B), we selected 21 primer sets formetabarcoding
that showed strong, consistent amplification and reachedplateau in amplicon concentration
at lower annealing temperatures (minimum of 0.6x amplification at 50.2 ◦C, Fig. S8). A
few primer sets generated amplicons at 46 ◦C, but were excluded because they failed to
reach an asymptote in concentration at lower annealing temperatures.

Metabarcoding (mock community and malaise trap)
21 primer sets for both the mock community and the Malaise trap sample were selected
for DNA metabarcoding and Illumina MiSeq sequencing. We employed a fusion primer
based two-step PCR protocol that amplifies target fragments in the first step and attaches
in-line tags and Illumina TruSeq library sequence tails during the second PCR (Elbrecht
& Steinke, 2018). To ensure sufficient sequence diversity for sequencing we used in-line
tags of different length to shift amplicons against each other and sequenced half of the
samples in reverse orientation by swapping the Illumina P5 and P7 sequencing adapters
on the fusion primers (Elbrecht & Leese, 2015). The 7 bp tags with different insert lengths
were randomly generated using R scripts (Elbrecht & Steinke, 2018), but were subsequently
manually edited to maximize the Levenshtein distance between tags (Fig. S3). Figure S4
shows the fusion primer sequences used for library preparation.

For the first PCR step, we used the same protocol as for the gradient PCR but used a
fixed annealing temperature of 46 ◦C and 24 cycles of amplification. One negative control
containing the BF2 + BR2 primer combination and one containing no primers were
included in the PCR (see Table S2 for primer list).

For the second PCR step, one µL of the PCR product generated by each primer set
was used as template (with no quantification or reaction cleanup) under similar PCR
conditions to the first PCR step except the extension time was increased to 2 min while the
number of cycles was reduced to 14.

PCR products were cleaned using SPRIselect (BeckmanCoulter, CA, USA) with a sample
to volume ratio of 0.76×. DNA concentration was quantified using a Qubit fluorometer,
High Sensitivity dsDNAKit (Thermo Fisher Scientific, MA, USA). Subsequently, individual
libraries were equimolar pooled following adjustment for amplicon length (Table S1).

The mock community library was sequenced on an Illumina MiSeq with 300 bp paired
end sequencing (v3 chemistry) with a 5% PhiX spike in. Amplicons for the Malaise
sample were generated with half the DNA amount (6.25 ng) to reduce the chance of PCR
inhibition and 29 cycles for the first PCR step. Individual libraries were pooled equimolar,
but we factored in the preference for shorter reads by Illumina sequencing using the mock
community sequencing results (Fig. S9, Table S1). The Malaise sample was also sequenced
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on an Illumina MiSeq with 300 bp paired end sequencing (v3 chemistry) with a 5% PhiX
spike in.

For both sequencing runs, PCR negative controls where omitted, as additional fusion
primers would have been needed for sample tagging. For the same reason, we also
decided against PCR replicates, given that DNA metabarcoding results are usually highly
reproducible (Elbrecht et al., 2017; Braukmann et al., 2019) and potential tag switching
could be easily identified based on the different primer sets used (i.e., amplicon length).

Bioinformatic processing
Quality control of raw sequence datawas donewith FastQCv0.11.7 andmultiQCv1.4 (Ewels
et al., 2016). Sequence data was first demultiplexed and processed with the R wrapper script
JAMP v0.68 (https://github.com/VascoElbrecht/JAMP). Reads were paired-end merged
using Usearch v11.0.667 (Edgar, 2010), allowing for 99 mismatches or 75% similarity
between overlapping regions to maximize the amount of merged reads. Primer sequences
were subsequently trimmedusing cutadapt v1.18with default settings (Martin, 2011). Reads
deviating by more than 10 bp from the expected amplicon length were discarded. Usearch
(Edgar & Flyvbjerg, 2015) was used to remove reads with an expected error probability
of 1 or higher, and to dereplicate and map reads against the 374 reference sequences of
the mock community (usearch_global with minimum 97% identity). Resulting tables
were automatically summarized into a hit table of all samples using the function map2ref
implemented in JAMP. The hit table was subsampled using a custom R script (Scripts S1)
to determine the number of taxa detected at different sequencing depths. Figure 3 provides
an overview of the results of the processing steps and all scripts are available in Scripts S1.

Data for the Malaise sample was processed using the same pipeline but mapped against
a reference database consisting of public sequence records for arthropods found in Ontario
(downloaded from BOLD December 2018). Gaps and terminal Ns were removed from
all sequences. Sequences outside the length range of 648–668 bp were discarded (Scripts
S1). Reads were mapped against this reference database using map2ref, but singletons
in each sample were discarded and mapping required a 99% match and maxaccepts=0,
maxrejects=0, to reduce the number of false positives. Reads matching to the same Barcode
Index Number (BIN, Ratnasingham & Hebert, 2013) were collapsed and reads that matched
reference sequences that lacked a BIN assignment were merged based on taxonomy, and
combined into 11 MOTUs.

Gradient metabarcoding
Out of the 21 metabarcoded primer sets, we selected four representative primer sets
of different amplicon length that recovered over 95% the mock community (ArF5 +
Fol-degen-rev, BF3 + BR2, mlCOIintF + Fol-degen-rev and fwhF2 + fwhR2n, Fig. 1D)
to evaluate the impact of nine annealing temperatures (40.0, 41.6, 43.7, 46.0, 48.5, 50.8,
53.0, 54.7 and 56.0 ◦C) on taxon recovery. Temperatures below 46 ◦C were specifically
chosen to explore the impact of non-specific amplification. Other than running the first
and second PCR step as gradient PCRs, all laboratory conditions and bioinformatic steps
were identical to the prior mock community metabarcoding run. For tagging samples in
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Figure 3 Proportion of sequences discarded or mapped to reference sequences in the mock commu-
nity. (A) Bar plots show the relative proportion of reads that were discarded or mapped. Numbers in bars
indicate the proportion of reads that matched one of the 374 species in the mock community. The number
for each primer pair on the x-axis corresponds with that in Fig. 2. (B) Proportion of sequences discarded
by max expected errors = 1 filtering using Usearch, plotted against the length of the target region (in bp).
Red line indicates linear regression.

Full-size DOI: 10.7717/peerj.7745/fig-3

the second PCR step, additional fusion primers were developed (Fig. S5) and checked for
sufficient Levenshtein distance (Fig. S6, Elbrecht & Steinke, 2018). Individual samples were
equimolar pooled, and the library sequenced using an Illumina MiSeq with 300 bp paired
end sequencing (v3 chemistry) and a 5% PhiX spike in. Bioinformatic analysis was identical
to the previous mock community MiSeq run at 46 ◦C annealing temperature.

Statistical analysis
For statistical analysis R v3.5.0 was used and all scripts used to generate figures are available
in Scripts S1. To simulate the effect? of equal sequencing depth at 10,000 and 100,000 reads
with each primer set, hit tables were subsampled 1,000 times and number of BINs or taxa
recovered was averaged. The relative abundance of reads per taxon (above 0.001%) for
each of the 21 primer sets (Table S1) tested with the mock community was analysed using
a Principal Component Analysis implemented in the R package FactoMineR v1.34. The
same data was used to visualize the similarity between communities recovered with each
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primer set, using the R package vegan v2.5-2. A dendrogram was generated using both
Jaccard similarity and Bray–Curtis dissimilarity.

RESULTS
Gradient PCR results and primer set selection
All primer sets generated amplicons with the expected length (Fig. S7) although a few
amplicons showed faint secondary bands following the gradient PCR. None of the negative
controls showed visible bands. Amplicon concentrations (ng/µl) reached an asymptote for
21 of the 36 primer sets (58%) at <50 ◦C and they were selected for sequencing (Fig. S8).
While some other primers showed clear bands in the agarose gel (Fig. S7), they were
excluded from sequencing because of their limited annealing temperature range.

Amplification success for newly designed primers showed mixed results (Figs. S7 and
S8). A more degenerate version of ZBJ − ArtF1c + ZBJ − ArtR2c decreased amplification
efficiency. Substituting N for inosine led to increased amplification efficiency for BF1i +
BR1i, while replacing inosine with N reduced amplification efficiency for Bn + En. The
binding site of the BF2 primer was shifted 3 bp forward (BF3) to reduce slippage effects
(Elbrecht, Hebert & Steinke, 2018a). In combination with the BR2 primer set, both versions
showed similar amplification efficiency.

Metabarcoding and bioinformatic processing
Sequencing of the mock community tested with 21 primer sets on MiSeq (300 bp PE)
produced 24,348,000 reads of good quality (Q30 ≤ 85.8% of reads). The PCR negative
control (not included in sequencing) showed no visible band on a agarose gel. Raw sequence
data is available on NCBI SRA via accession number SRX4908948. Sequencing depth was
negatively correlated with amplicon length (Fig. S9 , linear regression, p< 0.0001), with at
least 280 K sequences per sample. The number of discarded sequences after data processing
varied among primer sets (Fig. 3A); on average 80.61% (SD = 9.84%) of the reads were
mapped to the 374 reference sequences. For the primer sets MZplankF2 + C_LepFolR,
BF3 + BR2, BF2 + BR2 and AncientLepF3 + C_LepFolR more than 3% of the amplicons
deviated by more than 10 bp from the expected amplicon length (Fig. 3, Fig. S10). Primer
combinations involving mlCOIintF, BF1, BF2 and fwhF2 showed length variation of 1-2
bp base pairs (Fig. S10). Additionally, an average of 12.03% (SD= 8.07%) of all reads were
discarded through expected error quality filtering (max ee = 1, Fig. 3A). In particular,
longer amplicons with little or no overlap in paired end sequencing were affected (Fig. 3B).
Quality filtered read data mapped against reference sequences is provided in Table S1.

The Malaise sample yielded 16,629,020 reads of good quality (Q30 ≤ 92.59% of reads).
Raw sequence data is available on NCBI SRA via accession number SRX5175597. The
PCR negative control was not included in sequencing, but showed no visible band on
a agarose gel. Sequencing depth was positively correlated with amplicon length (linear
regression, p= 0.0004, Fig. S9), but there was a reduced length bias in comparison to the
mock community sequencing run (Fig. S9).
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Figure 4 Bar plot showing the number of BINs recovered using metabarcoding with 21 primer pairs.
The dark grey bar indicates subsampling at 10,000 reads while the light grey bar indicates subsampling at
100,000 reads per sample, each run with 1,000 replicates. Error bars show the standard deviation. Primer
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Mock sample data, with primer combinations highlighted in green that detected more than 350 of the
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tected less than 600 BINs.
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Primer performance and BIN/species recovery with metabarcoding
Recovery of the mock community was high for most primer sets with an average of 91%
of the 374 species recovered (SD = 0.64%, subsampling to 100,000 reads, Fig. 4A). With
decreasing sequencing depth, recovery diminished, as shown by rarefaction curves (Fig.
S11). The primer sets ZBJ-ArtF1c + ZBJ-ArtR2c, LepF1 +MLepF1-Rev and LCO1490 +
Ill_C_R showed poor species recovery in comparison with the other primers. Interestingly,
rarefaction analysis showed no strict relationship between recovery and primer degeneracy.
For example, LCO1490 + HCO2198 had no degenerate sites but had good recovery
(90% of taxa). However, primers that lacked degeneracy often had low amplification
success and detected fewer species than primer sets with degeneracy (Fig. S12). The primer
combinations fwhF2 + fwhR2n, BF1/BF2/BF3 + BR2, ArF5 + Fol-degen-rev and those
based on mlCOIintF and its derivatives showed the best performance with similar recovery
rates (recovery ≥ 95% of the community, Fig. 4, Fig. S12). Taxa recovery was consistent
across orders, except for Hymenoptera which were often recovered with lower read counts
(Fig. S1A). A Principal Component Analysis (PCA) of relative taxon recovery shows
that primer combinations with similar taxon recovery tended to cluster together (Fig.
S13), although only 29.36% of variability can be explained by both components. Jaccard
similarity and Bray-Curtis based dendograms (Fig. S14) illustrate that recovery is generally
similar among primers, but that combinations with poor species recovery tend to cluster
together.

Sequencing of the Malaise sample confirmed the strong performance of some primer
sets, but others showed lower species recovery (Fig. 4B). As the species composition
of the Malaise sample was unknown, BIN counts at different sequencing depths were
used to estimate taxon recovery for all sets of primers. Heat maps for both the Malaise
sample (Fig. S18) and the mock community (Fig. S12) were generally congruent but short
amplicons from the Malaise sample detected more taxa present in very low abundance.
This trend was also reflected in the number of taxa detected with each primer set (Fig. 4B)
because longer amplicons such as Ill_B_F + HCO2198, AcientLepF3 + C_LepFolR or
LCO1490 + HCO2198 exhibited lower taxon recovery than shorter fragments. Most
primers that performed well for the mock community also did so for the Malaise sample
(highlighted in green in Fig. 4B), except the ArF5 + Fol-degen-rev primer set. These
patterns were consistent with varying sequencing depths with no asymptote reached in the
rarefaction analysis (Fig. S19). Additionally, the rarefaction analysis shows a greater range
in the number of taxa detected with different primer sets than for the mock community
(Fig. S11). Detection across orders was very consistent for primer sets that show good
taxa recovery, while especially Hymenoptera and Hemiptera were underrepresented with
primer sets recovering fewer taxa (Fig. S1B).

Gradient PCR metabarcoding
When the performance of the four good performing primer pairs was analyzed at nine
annealing temperatures, 23,770,810 sequences (NCBI SRA; ID: sRX4908947) were obtained
with good read quality (Q30 =<82.9% of reads). Sequence coverage averaged 0.58 million
(SD = 0.1 million) per sample with a lowest value of 0.38 million reads. The PCR negative
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Figure 5 Bar plot showing the number of BINs recovered from the mock community at different an-
nealing temperatures. The dark grey bar indicates subsampling at 10,000 reads, while the light grey bar
depicts subsampling at 100,000 reads per samples; both were run with 1,000 replicates. Error bars show
the standard deviation.

Full-size DOI: 10.7717/peerj.7745/fig-5

control was not included in sequencing but it showed no visible band on the agarose
gel. Results at 46 ◦C were very similar to the prior metabarcoding run with abundance
differences mostly affecting low abundant OTUs (Fig. S15, linear regression adj. R2 > 0.97).
Changes in annealing temperature from40–56 ◦Conly hadminor effects on species recovery
(Fig. 5). In particular, two primer sets (mlCOIintF + Fol-degen-rev; fwhF2 + fwhR2n)
showed little variation in species recovery across the range of annealing temperatures. By
comparison, recovery rates decreased at temperatures above ∼53 ◦C for both BF3 + BR2
and ArF5 + Fol-degen-rev (Fig. 5, Fig. S16). Length variation in amplicons as a result of
primer slippage was not temperature dependent, but the BF3 + BR2 primer set generated
more short non-target amplicons at lower temperatures (over 1/4 of sequences, Fig. S17).

DISCUSSION
Using a mock community, we tested a total of 36 different primer combinations, 21
of which were selected for a more detailed metabarcoding analysis. While we did not
run replicates for most primer sets, results at 46 ◦C for gradient metabarcoding and the
mock community run were similar. This result is consistent with previous studies on
bulk samples which indicated that replicates typically produce similar results (Elbrecht
et al., 2017; Braukmann et al., 2019), particularly when the variation of low abundant
OTUs (i.e., <0.001%) introduced by stochastic effects is ignored (Leray & Knowlton, 2017).
Consequently, for metabarcoding of bulk samples, replication should be done at the
sampling level (Hurlbert, 1984) rather than using DNA extracts or replicate PCRs. While
technical replicates do increase confidence in experimental outcomes and make it easier to
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detect cross-contamination (Zepeda-Mendoza et al., 2016; Elbrecht & Steinke, 2018;Macher
& Weigand, 2018), they deliver limited information given the substantial increase in cost
and laboratory workload. If the detection of rare taxa is important for a project, an increase
in sequencing depth (Smith & Peay, 2014; Braukmann et al., 2019) and use of a tagging
system resistant to tag switching (e.g., fusion primers, Elbrecht et al., 2017) is a good
alternative to replication. Even with the shallow sequencing depth (100,000 reads) used
in this study, most primer sets recovered a majority of the taxa in the mock community.
This was not necessarily the case for the Malaise trap sample (Fig. S19) which is more
diverse than the mock community tested. However, the comparison of taxon recovery
at different sequencing depths by the tested primer sets allowed for good benchmarking,
without capturing the full community. We were also able to characterize the positive bias
of the Illumina MiSeq towards shorter fragments (Fig. S9), which can be offset by adjusted
amplicon concentrations when running fragments of different length in the same run
(Fig. S9).

Primer performance
As several primer sets recovered most of the taxa in the mock community in similar
proportions (Fig. 4A), our study has identified several suitable primer sets for
metabarcoding terrestrial arthropods communities. The exact choice of primer set will
depend on the context of a study, required amplicon length and desired taxonomic
resolution (Meusnier et al., 2008; Porter & Hajibabaei, 2018a). For instance, the fwhF2 +
fwhR2n primer set produces a 205 bp amplicon that is ideal when targeting degraded
DNA in eDNA or gut contents (Bylemans et al., 2018a). The BF1 + BR2 and all three
mlCOIintF-based primer sets generate slightly longer fragments (316/313 bp), but they
are prone to slippage (Elbrecht, Hebert & Steinke, 2018a) which can cause problems with
sequence denoising

(Callahan, McMurdie & Holmes, 2017) during data analysis. We overcame this problem
for the longer BF2+ BR2 fragment (421 bp) bymoving the BF2 primer 3 bp forward (BF3).
The BF3+ BR2 combination as well as the ArF5+ Fol-degen-rev primer set represent good
choices for long (>400 bp) COI fragment amplification. The ArF5+ Fol-degen-rev primer
set appears to be less affected by non-specific amplification at lower annealing temperatures
than the BF3+ BR2 primer pair. Although these longer fragments can improve taxonomic
resolution, they show less overlap in Illumina paired end sequencing leading to more reads
being excluded during quality filtering (Fig. 3).

We observed an increase of rare taxa detected with short amplicons in the Malaise
sample, but these are likely false positives due to the decreased taxonomic resolution of
shorter amplicons (Meusnier et al., 2008; Porter & Hajibabaei, 2018a). Even though the
ZBJ-ArtF1c+ ZBJ-ArtR2c primer set detected over 700 taxa in the Malaise sample, a value
comparable to other well performing primer pairs, it failed to detect abundant BINs that
most of the other primer pairs recovered (Fig. S18). Well performing primers showed
no bias against specific orders, while less suitable primers did struggle with detection of
Hymenoptera and Hemiptera (Fig. S1). The decreased detection of Hymenoptera in the
mock community can likely be attributed to the lysis protocol used for DNA extraction
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from the insect abdomens (Braukmann et al., 2019). This was not the case for the malaise
sample, where the bulk sample was ground to a fine powder, making the tissue more
accessible to the lysis buffer.

Based on the results of this study we recommend the BF3 + BR2 primer set for
metabarcoding of malaise trap samples. The 458 bp long amplicon offers excellent
taxonomic resolution and, unlike many of the other tested primer sets, it is not being
affected by primer slippage (Elbrecht, Hebert & Steinke, 2018a),making it ideal for denoising
approaches. Longer amplicons also contain more information about genetic variability
and haplotypes when using Exact Sequence Variants (ESVs). While about 20% of the reads
generated with this primer set are lost during quality filtering, this can be easily overcome
by using more recent Illumina platforms (e.g., NovaSeq) as they provide much higher
throughput (Singer et al., 2019). However, primer selection might vary with study goal,
targeted taxonomic groups, desired taxonomic resolution, DNA quality, and sequencing
platform used.

Primer design
Primer sets with differing degeneracy, inosine inclusion, and differences in the primer
binding region showed variable taxonomic recovery making it difficult to establish clear
predictors for primer performance. While degeneracy generally improves the universality
of a primer (Krehenwinkel et al., 2017), some highly degenerate primers performed poorly
in our tests (Fig. 4). Additionally, even if a primer set shows good taxon recovery, it can
still be susceptible to dimerization, to non-specific amplification, or to primer slippage
(Elbrecht, Hebert & Steinke, 2018a) (Fig. S10). These complexities are difficult to predict
in silico and it is important to validate metabarcoding primer sets in vitro using taxa and
samples from the targeted ecosystems. For example, the BF2 + BR2 primer set generated
non-specific amplicons (often bacterial), which can become a serious complication for
eDNA studies where target DNA is scarce (Macher et al., 2018; Hajibabaei et al., 2019b.;
Collins et al., 2019). High primer degeneracy will likely increase primer universality but
decrease specificity. This is less problematic when metabarcoding DNA extracts from bulk
specimen samples where target DNA predominates but can be different for environmental
DNA samples.

The present study did not reveal if the use of inosine can reduce problems created by high
primer degeneracy. Some primers modified with inosine performed well, but others did
not. The same was true for highly degenerate primers. However, we did show that for the
fusion primer system (Elbrecht & Steinke, 2018), primers employed in the second PCR step
can be designed with ‘‘N’’ instead of inosine (Fig. S5). This substantially reduces costs when
large fusion primer quantities are needed for reliably tagging and sample multiplexing.
Primer performance could be further improved by adding degeneracy and/or using inosine,
but performance will suffer if too much degeneracy is added. Despite careful primer design
following best practices (Abd-Elsalam, 2003), primer performance can still vary in its
suitability for the primer binding site. A primer that works well on paper, might still not
work in vitro and we strongly recommend testing primers with a mock community or field
sample.
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Annealing temperature
While primer choice is critical for metabarcoding projects, PCR can also be biased by
the polymerase used (Nichols et al., 2018), cycle number (Vierna et al., 2017; Krehenwinkel
et al., 2017), GC content (Braukmann et al., 2019), inhibitors (Demeke & Jenkins, 2009;
Sellers et al., 2018), and annealing temperature (Aylagas et al., 2016; Clarke et al., 2017;
Krehenwinkel et al., 2018). It is generally assumed that primers bind better at lower
annealing temperatures as potential mismatches between template and primer have less
influence. While touchdown PCR does not improve species recovery (Clarke et al., 2017),
lower annealing temperatures slightly increases recovery (Aylagas et al., 2016). Although
it seems intuitive that lower annealing temperatures lead to better taxonomic recovery,
previous studies explored only a limited temperature range never going below 46 ◦C, likely
due to the increased risk of non-specific amplification. We studied four representative
primer pairs at 9 different annealing temperatures across a wider range (gradient PCR
from 40–56 ◦C) and were unable to find a universal effect of annealing temperature. BF3+
BR2, mlCOIintF + Fol-degen-rev and fwhF2 + fwhR2n primer sets are largely unaffected
by changes at low annealing temperatures. On the other hand, recovery peaks at 48.5 ◦C
for the ArF5+ Fol-degen-rev primer set. For all four primer pairs, annealing temperatures
between 46–50 ◦C are probably good choices for metabarcoding. However, this highly
depends on melting temperature (Tm). It is advisable to test newly designed metabarcoding
primers across an annealing temperature gradient. However, given that most tested primers
did perform similarly well at temperatures usually used for metabarcoding, sequencing
gradient PCRsmight not always be necessary. Running the four primer pairs at temperatures
below 46 ◦C did not substantially increase taxa recovery, while for some primers it also
increased the risk of dimer amplification and occurrence of non-target DNA.

No need for multiple primer sets
Eight primer combinations (Fig. 4, highlighted in green) each detected 95% or more of the
taxa present in the mock community, and most of them could therefore be suitable choices
for metabarcoding studies targeting terrestrial arthropods. Of these, seven showed very
good performance with the malaise trap sample. This is in stark contrast to earlier studies
(Alberdi et al., 2017; Zhang et al., 2018) recommending the use of multiple primer sets to
increase coverage. This discrepancy can be explained by primer choice, because (Zhang
et al., 2018) used LCO1490 and HCO2198 primers which lack degeneracy, and (Alberdi
et al., 2017) worked with gut content samples; thus replicates might be substantially
affected by stochastic effects resulting from low DNA yield. Additionally, the primers
used (ZBJ-ArtF1c + ZBJ-ArtR2c) by Alberdi et al. (2017) performed poorly in our study.
This particular primer combination (Zeale et al., 2011) is widely used for gut content
metabarcoding (Jusino et al., 2018), but our results show substantial amplification bias,
confirming the low taxon recovery observed before for this primer pair (Brandon-Mong
et al., 2015). An alternative primer pair to analyze gut content from predators consuming
insects could be the pair fwhF2 + fwhR2n because it shows better taxonomic recovery.

The use of COI primer sets with limited or no degeneracy such as in (Zhang et al., 2018;
Jusino et al., 2018) is not recommended. In general, careful primer design and validation
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(ideally usingmock communities) cannot be replaced by the use ofmultiple COI primer sets
(Alberdi et al., 2017; Zhang et al., 2018) or ribosomal markers (Deagle et al., 2014), given
the increased workload of a multi marker/primer approach and the limited taxonomic
resolution of ribosomal markers (Clarke et al., 2017; Marquina, Andersson & Ronquist,
2018). These results were also recently confirmed by (Hajibabaei et al., 2019a), which
showed that the use of multiple primer sets did not substantially improve taxa detection.

CONCLUSIONS
Our study demonstrates that the fwhF2 + fwhR2n, BF1, BF2, BF3 + BR2 and mlCOIintF
based primer sets all perform well when metabarcoding terrestrial arthropod samples. We
recommend fwhF2 + fwhR2n for amplification of degraded DNA samples such as gut
contents, and BF3 + BR2 when high taxonomic resolution is required. The BF3 + BR2
primer set is also ideal for working with Exact Sequence Variants (ESVs), as it is not affected
by primer slippage. For most of these primer sets, annealing temperatures of 46-50 ◦C are
ideal. The present study also reinforces the importance of careful primer validation using
mock and field samples, especially when primer performance has not yet been evaluated
for the taxonomic group under study. Based on our results, the use of multiple primer sets
seems rarely justified as it increases laboratory effort without substantially improving taxon
recovery. Our study sets the stage for standardized approaches for large-scale biodiversity
analysis. However, given the vast diversity of arthropods in different sampling approaches
and geographical regions, primer tests on additional samples are required to fully confirm
our findings for large-scale surveys of arthropod diversity.
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