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Sleep apnea (SA) is the most common respiratory sleep disorder, leading to some serious
neurological and cardiovascular diseases if left untreated. The diagnosis of SA is
traditionally made using Polysomnography (PSG). However, this method requires many
electrodes and wires, as well as an expert to monitor the test. Several researchers have
proposed instead using a single channel signal for SA diagnosis. Among these options, the
ECG signal is one of the most physiologically relevant signals of SA occurrence, and one
that can be easily recorded using a wearable device. However, existing ECG signal-based
methods mainly use features (i.e. frequency domain, time domain, and other nonlinear
features) acquired from ECG and its derived signals in order to construct the model. This
requires researchers to have rich experience in ECG, which is not common. A convolutional
neural network (CNN) is a kind of deep neural network that can automatically learn
effective feature representation from training data and has been successfully applied in
many fields. Meanwhile, most studies have not considered the impact of adjacent
segments on SA detection. Therefore, in this study, we propose a modified LeNet-5
convolutional neural network with adjacent segments for SA detection. Our experimental
results show that our proposed method is useful for SA detection, and achieves better or
comparable results when compared with traditional machine learning methods.
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15 Abstract

16 Sleep apnea (SA) is the most common respiratory sleep disorder, leading to some serious 

17 neurological and cardiovascular diseases if left untreated. The diagnosis of SA is traditionally 

18 made using Polysomnography (PSG). However, this method requires many electrodes and wires, 

19 as well as an expert to monitor the test. Several researchers have proposed instead using a single 

20 channel signal for SA diagnosis. Among these options, the ECG signal is one of the most 

21 physiologically relevant signals of SA occurrence, and one that can be easily recorded using a 

22 wearable device. However, existing ECG signal-based methods mainly use features (i.e. frequency 

23 domain, time domain, and other nonlinear features) acquired from ECG and its derived signals in 

24 order to construct the model. This requires researchers to have rich experience in ECG, which is 

25 not common. A convolutional neural network (CNN) is a kind of deep neural network that can 

26 automatically learn effective feature representation from training data and has been successfully 

27 applied in many fields. Meanwhile, most studies have not considered the impact of adjacent 

28 segments on SA detection. Therefore, in this study, we propose a modified LeNet-5 convolutional 

29 neural network with adjacent segments for SA detection. Our experimental results show that our 

30 proposed method is useful for SA detection, and achieves better or comparable results when 

31 compared with traditional machine learning methods.

32

33 Keywords: Sleep Apnea, ECG, LeNet-5, Convolutional Neural Network, Automatic Feature-

34 Extraction
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36 Introduction

37 Sleep apnea (SA) is the most common respiratory disorder, caused by partial or complete 

38 obstructions of the upper respiratory tract (Li et al. 2018; Punjabi 2008). During sleep, SA events 

39 can occur hundreds of times, and, if repeated over a long period of time, can cause serious 

40 neurological and cardiovascular complications such as memory loss, high blood pressure, 

41 congestive heart failure, and poor cognitive ability during the day (Khandoker et al. 2009; Sharma 

42 & Sharma 2016; Varon et al. 2015; Young et al. 1997). Reportedly, approximately 5% of women 

43 and 14% of men have SA syndrome in the United States, and the incidence of the disease is 

44 increasing in various populations (Peppard et al. 2013; Song et al. 2016). The severity of SA is 

45 clinically assessed using the apnea-hypopnea index (AHI). Subjects with an  combined 𝐴𝐻𝐼 > 5
46 with other symptoms (i.e. excessive sleepiness and poor cognitive ability during the day) are 

47 diagnosed with SA (Marcus et al. 2012; Song et al. 2016).

48 Polysomnography (PSG) is one of the most common tests used for SA diagnosis. It analyzes 

49 physiological signals (e.g. airflow, electroencephalogram (EEG), electrocardiogram (ECG), and 

50 respiratory signals) during sleep (Bloch 1997; Song et al. 2016) in a hospital, and requires the 

51 patient to wear a number of electrodes and wires while an expert monitors the whole examination 

52 process. This complicated and uncomfortable examination experience has limited the application 

53 of PSG in clinical practice. To this end, several methods using a single channel signal (i.e. ECG 

54 (Penzel et al. 2003), SaQ2 (Hornero et al. 2007), and respiratory sound (Azarbarzin & Moussavi 

55 2013)) for SA diagnosis have been proposed (Song et al. 2016) to reduce costs and to be more 

56 easily implemented. Among these, using an ECG signal has been the most popular method because 

57 it is one of the most physiologically relevant signals of SA occurrence and can be easily recorded 

58 using a wearable device.

59 For example, Song et al. developed a Hidden Markov Model (HMM) SA detection method using 

60 the frequency domain and time domain features extracted from EDR signals and ECG signals, and 

61 their model achieved an accuracy of 86.2% in per-segment SA detection (Song et al. 2016). Sharam 

62 et al. proposed an RBF kernel LS-SVM for the per-segment SA detection based on features 

63 extracted from RR intervals by the hermit basic function, and the accuracy of their model was 

64 83.8% (Sharma & Sharma 2016). Existing methods mainly use frequency domain, time domain, 

65 and some nonlinear features acquired from ECG and its derived signals to construct the model. 

66 This requires researchers to have a wealth of relevant domain knowledge and experience, 

67 researchers with sufficient experience are uncommon. Recently, Li et al. proposed an SA detection 

68 method that uses stacked SAE to automatically extract features (Li et al. 2018). Their method 

69 avoids over-reliance on ECG domain knowledge, and achieved an accuracy of 84.7% in per-

70 segment classification. However, stacked SAE is essentially an unsupervised feature 
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71 transformation that cannot extract features effectively (Kang et al. 2017). 

72 A convolutional neural network (CNN) is a deep neural network that simulates the deep hierarchal 

73 structure of human vision (Matsugu et al. 2003). Compared to traditional machine learning 

74 methods, a CNN does not require hand-crafted features, and can automatically extract effective 

75 features through hierarchical layers. It has been successfully applied in speech recognition (Abdel-

76 Hamid et al. 2012; Palaz & Collobert 2015), image classification (Sharif Razavian et al. 2014; Wei 

77 et al. 2016), signal analysis (Kwon et al. 2018; Sedighi et al. 2015) and other fields. LeNet-5 is 

78 one CNN implementation with relatively few parameters and good performance (El-Sawy et al. 

79 2016; LeCun 2015; Wen et al. 2018). It is worth noting that in a CNN, many parameters are prone 

80 to overfitting when training small data (i.e. the data used in this study), increasing the difficulty of 

81 this task. Therefore, the main objective of this study is to detect SA by automatically extracting 

82 features from RR intervals and amplitudes using LeNet-5. Previous studies (De Chazal et al. 2000; 

83 Maier et al. 2000; Yadollahi & Moussavi 2009) have shown that adjacent segments offer useful 

84 information for SA detection. Additionally, we combine adjacent segments into our proposed 

85 method. Experimental results in the PhysioNet Apnea-ECG and UCD datasets show that our 

86 proposed method is robust, and its performance has been improved further since, promoting the 

87 clinical application of a single-lead ECG SA detection method.

88 Materials & Methods

89 Datasets

90 To ensure reliable results, two separate datasets were used in this study. A brief description of the 

91 two datasets is provided below.

92 PhysioNet Apnea-ECG dataset

93 The first dataset was the PhysioNet Apnea-ECG dataset provided by Philipps University 

94 (Goldberger et al. 2000; Penzel et al. 2000). It contains a total of 70 single-lead ECG signal 

95 recordings (released set: 35 recordings, withheld set: 35 recordings), which were sampled at 100 

96 Hz and ranged between 401 and 587 minutes. For each 1-minute ECG signal recording segment, 

97 the dataset provided an expert annotation (if there was an apnea event within this minute, it was 

98 labeled as SA; otherwise, normal). It was notable that there was no difference between hypopnea 

99 and apnea in the provided annotation file, and all events were either obstructive or mixed (central 

100 was not included). Additionally, these recordings were classified as Class A, Class B and Class C 

101 according to the Apnea–Hypopnea Index (AHI) value. Class A meant that the recording contained 

102 10 or more SA segments per hour ( ) and the entire recording had at least 100 SA segments. 𝐴𝐻𝐼 ≥ 10

103 Class B meant that the recording included five or more SA segments per hour ( ) and the 𝐴𝐻𝐼 ≥ 5
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104 entire recording contained five to 99 SA segments. Class C (or Normal) meant that the recording 

105 had less than five segments of SA per hour ( ).𝐴𝐻𝐼 < 5
106 UCD dataset

107 The UCD dataset was the second dataset, which was collected by the University College Dublin, 

108 and can be downloaded from the PhysioNet website 

109 (https://physionet.org/physiobank/database/ucddb/). This dataset recorded the complete overnight 

110 PSG recordings of 25 (4 females and 21 males) suspected sleep disordered breathing patients, each 

111 contained 5.9 to 7.7 hours of ECG signal as well as an annotation of the start time and the duration 

112 of every apnea/hypopnea event. Considering that this study primarily performed SA detection on 

113 1-minute ECG signal segments, we converted continuous ECG data to 1-minute intervals which 

114 we correlated with annotations for normal and apnea events. According to the definition of apnea, 

115 an event should last at least 10s. However, an apnea event lasting 10s may be separated over two 

116 adjacent minutes, each having a smaller amount of apnea event time (Mostafa et al. 2018; Xie & 

117 Minn 2012). In the case of apnea or hypopnea lasting 5 or more consecutive seconds, the minute 

118 is considered to be an apnea. Additionally, each recording was classified as Class A, Class B or 

119 Class C by the Apnea–Hypopnea Index (AHI) value.

120 Preprocessing

121 A method for automatically extracting features from RR intervals and amplitudes was developed 

122 in this study, and a preprocessing scheme was needed in order to obtain the RR intervals and 

123 amplitudes. Since several studies (De Chazal et al. 2000; Maier et al. 2000; Yadollahi & Moussavi 

124 2009) have shown that adjacent segment information is helpful for per-segment SA detection, the 

125 labeled segment and its surrounding ±2 segments of the ECG signal (five 1-minute segments in 

126 total) were all extracted for processing. We first used the Hamilton algorithm (Hamilton 2002) to 

127 find the R-peaks, then used the position of the R-peaks to calculate the RR intervals (distance 

128 between R-peaks) and extract the values of the R-peaks (amplitudes). Considering that the 

129 extracted RR intervals had some physiologically uninterpretable points, the median filter proposed 

130 by Chen et al. (Chen et al. 2015) was employed. Since the obtained RR intervals and amplitudes 

131 were not equal time intervals, which was required by our proposed method, cubic interpolation 

132 was further employed, and 900 points of RR intervals and 900 points of amplitudes over 5-minute 

133 segments were obtained. The detailed preprocessing scheme is shown in Figure 1.

134 Convolutional Neural Network 

135 In recent years, a CNN has been used as a research hotspot in the field of artificial intelligence 

136 (AI). It is a deep neural network method that simulates the deep hierarchal structure of human 
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137 vision and has been successfully applied in image classification, natural language processing 

138 (NLP) and speech recognition (Palaz & Collobert 2015; Sharif Razavian et al. 2014; Yin et al. 

139 2017). Due to its proficiency in automatic feature extraction, CNN is also used to design advanced 

140 signal analysis methods (Kwon et al. 2018; Sedighi et al. 2015). For example, (Kiranyaz et al. 

141 2015) used CNN for ECG classification. Here, we used a simple and effective CNN 

142 implementation, LeNet-5, to construct our SA detection model. In the following section, we will 

143 introduce both the standard LeNet-5 and our modified LeNet-5.

144 Architecture of the standard LeNet-5

145 The standard LeNet-5 proposed by LeCun et al. (LeCun 2015) was designed to solve the problem 

146 of character recognition. It consisted of an input layer, two convolution layers, two fully connected 

147 layers, two pooling layers and an output layer -- in total, seven layers. The details of each layer are 

148 described in (LeCun 2015). Formally, a set of  images  are taken, where  is the original 𝑁 {𝑋𝑖,𝑦𝑖} 𝑁𝑖 = 1 𝑋𝑖
149 image data and  is a class category of the image (i.e. 0 and 1). The difference between the 𝑦𝑖
150 predicted label  and the real label  is calculated using the categorical cross entropy function, 𝑦𝑖 𝑦𝑖
151 defined as follows:

152 𝐽(𝜔,𝑏) ≜‒ 1𝑁 𝑁
∑𝑙 = 1𝑦𝑙1𝑙𝑜𝑔 𝑦𝑙1 + ⋯ + 𝑦𝑙𝐾𝑙𝑜𝑔 𝑦𝑙𝐾

153 where  and  represent the weights and biases of the standard LeNet-5 network layers, 𝜔 𝑏
154 respectively.  is the number of class category and  corresponds to the softmax value of the  𝐾 𝑦𝑙𝑘 𝑘'𝑡ℎ
155 class category, defined as:

156 𝑦𝑙𝑘 = softmax(𝑧𝑘)= 𝑒𝑧𝑘𝐾∑𝑖 = 1𝑒𝑧𝑖
157 where  is the result of the corresponding  class category of the last fully connected output. 𝑧𝑖 𝑖'𝑡ℎ
158 The weight and bias parameters of the convolutional operation and fully connected layers were 

159 learned by back-propagating (BP) the derivative of the loss with respect to parameters throughout 

160 the entire network (Zeiler & Fergus 2014).

161 Architecture of our modified LeNet-5

162 Unlike with character recognition, the time series used in this study had one-dimensional data, 

163 which is significantly different from two-dimensional character recognition problems. When 
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164 compared with the millions of training samples in the field of character or image classification, the 

165 data samples used in this study were smaller, which increases the risk of overfitting. Moreover, 

166 SA detection is a binary classification problem that differs from character recognition. The feature 

167 maps, convolution layer strides and fully-connected layer nodes in the standard LeNet-5 may not 

168 be suitable for this scene. Therefore, we adjusted LeNet-5 as follows: 1) using a one-dimensional 

169 convolution operation instead of a two-dimensional convolution operation to feature extraction 

170 (Kiranyaz et al. 2015) ; 2) adding a dropout layer between the convolution layer and fully 

171 connected layer to avoid over-fitting (Srivastava et al. 2014); 3) retaining only one fully connected 

172 layer to reduce network complexity (Ma et al. 2018); 4) modifying the size of the convolution 

173 layer strides and the number of fully-connected layer nodes. The architecture and details of our 

174 modified LeNet-5 are shown in Figure 2 and Table 1, respectively. Compared to the standard 

175 LeNet-5, all convolution layer strides of our modified LeNet-5 were changed to two, and the 

176 number of feature maps was increased layer by layer. In particular, a dropout layer with a drop 

177 rate of 0.8 was added between the convolution layer and the fully connected layer, and the number 

178 of output layer nodes was reduced from 10 to two for our binary classification problem.

179 Experiment settings

180 In the field of SA detection based on a single-lead ECG signal, existing methods mainly extract 

181 suitable features based on expert experience, and then construct a model using the extracted 

182 features (Sharma & Sharma 2016; Song et al. 2016; Varon et al. 2015), a process called feature 

183 engineering. In order to evaluate the performance of our proposed method, several popular feature 

184 engineering-based machine learning methods, including Support Vector Machine (SVM), K-

185 Nearest Neighbor (KNN), Logistic Regression (LR) and Multi-Layer Perception (MLP), were 

186 employed for comparison. Various features that might have provided useful information for SA 

187 detection had been built in previous studies, and here we employed the features (RR intervals: 12 

188 features, amplitudes: six features) that had an important effect on SA detection (De Chazal et al. 

189 2000; Song et al. 2016) as the input of feature engineering-based methods. Table 2 lists the details 

190 of these features. Since some methods are sensitive to feature scales (i.e. KNN), the min-max 

191 normalization was used to normalize all features, which is defined as follows:

192 𝑥 ∗
=

𝑥 ‒ 𝑥𝑚𝑖𝑛𝑥 ‒ 𝑥𝑚𝑎𝑥
193 where  is the feature to be normalized, and  and  are the maximum and minimum value 𝑥 𝑥𝑚𝑎𝑥 𝑥𝑚𝑖𝑛
194 in the features, respectively.

195 Evaluation
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196 By following (Song et al. 2016; Varon et al. 2015), the specificity (Sp), sensitivity (Sn), accuracy 

197 (Acc) and area under the curve (AUC) were employed to evaluate the performance of our proposed 

198 method, defined as follows:

199 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃
200 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁
201 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
202 where  and  stand for “false positive” and “true positive”, respectively.  and  represent 𝐹𝑃 𝑇𝑃 𝐹𝑁 𝑇𝑁
203 “false negative” and “true negative”, respectively.

204 Results & Discussion

205 In this study, two separate datasets were used to validate our proposed method. The PhysioNet 

206 Apnea-ECG dataset was used as benchmark data to evaluate our proposed method’s performance. 

207 The UCD dataset is an independent dataset we used to check the robustness of our proposed 

208 method against other datasets.

209 Per-segment SA detection

210 Accurately predicting the presence of SA by given ECG segment (minute-by-minute) is key in this 

211 field, as it provides a solid foundation for the diagnosis of suspected SA patients. Therefore, we 

212 compared our proposed method with traditional machine learning methods on per-segment SA 

213 detection. The overall performance of the withhold set, including its specificity, sensitivity, 

214 accuracy and AUC, was used for comparison, as displayed in Table 3. As can be seen from Table 

215 3, our modified LeNet-5 with automatic feature extraction performed well in all measurements 

216 with a specificity of 90.3%, sensitivity of 83.1%, accuracy of 87.6% and AUC of 0.950. Compared 

217 with the SVM that had the second highest accuracy, the overall performances were better by 6.0%, 

218 6.2%, 6.2% and 0.063, respectively. It can also be seen from the results that KNN had the lowest 

219 prediction accuracy among the five methods, probably because the features extracted from the 

220 ECG signal were less spatially correlated and were not suitable for this scene, similar to the 

221 findings in literature (Sharma & Sharma 2016). In summary, in per-segment SA detection, our 

222 proposed LeNet-5 with automatic feature extraction performed better than the commonly used 

223 feature engineering method.

224 Per-recording classification
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225 A recording consists of multiple one-minute ECG segments, and the classification of each 

226 recording refers to the overall SA diagnosis of these one-minute ECG segments, which is different 

227 from per-segment SA detection. Clinically, AHI is used to distinguish SA from normal recordings. 

228 Specifically, if the recording AHI is greater than 5, it is diagnosed as SA; otherwise it is considered 

229 to be normal. The recording AHI is calculated using the results of per-segment SA detection, which 

230 is defined as follows:

231 𝐴𝐻𝐼 = 60𝑇 ∗ 𝑛𝑢𝑚 𝑜𝑓 𝑂𝑆𝐴 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
232 Where  denotes the number of one-minute ECG segment signals, and  is the hour of the entire 𝑇 𝑇 60

233 recording. Therefore, AHI is employed here to diagnose the recording SA, and the above-

234 mentioned measurement’s accuracy, sensitivity, specificity and AUC are computed on the 

235 withheld set as listed in Table 4. It should be noted that the withheld set provided by the PhysioNet 

236 Apnea-ECG dataset had only 35 recordings, which may have resulted in low-precision per-

237 segment methods showing better per-recording performance. By following previous studies 

238 (Sharma & Sharma 2016; Song et al. 2016), the correlation value between the experimentally 

239 determined  and the actual  were also adopted to ensure the reliability of the comparison. 𝐴𝐻𝐼 𝐴𝐻𝐼
240 As shown in Table 4, when compared with SVM, LR, KNN and MLP, our modified LeNet-5 with 

241 an accuracy of 97.1%, sensitivity of 100%, specificity of 91.7% and AUC of 0.996 performed 

242 better in per-recording classification. The correlation value of our modified LeNet-5 further 

243 confirmed this result, which increased by 0.091 when compared to the second highest SVM 

244 method.

245 Effect of automatic feature extraction

246 In the previous parts, we discussed the overall performance of our proposed LeNet-5 in per-

247 recording classification and per-segment detection. The results showed that, when compared with 

248 the existing methods, our proposed method significantly improved the performance in both per-

249 recording classification and per-segment SA detection. Here, we will verify the power of the 

250 automatic feature extraction of our proposed method. Figure 3 displays the receiver operating 

251 characteristic (ROC) curves of our modified LeNet-5 and MLP in per-segment SA detection, since 

252 our modified LeNet-5 can be seen as a combination of convolutional neural networks (CNN) for 

253 feature extraction and full connection (FC, also known as MLP) as classifier (Bae et al. 1998; 

254 Ludermir et al. 2006), meaning that the effects of the automatic extraction features obtained by 

255 our proposed LeNet-5 and the features extracted by traditional feature engineering can be directly 

256 compared. As shown in Figure 3, the LeNet-5’s ROC curve is always above the MLP’s ROC 

257 curve. These results suggest that the effect of the features extracted by our proposed automatic 
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258 feature extraction method easily exceeded traditional feature engineering. Additionally, the 

259 measurements of the two methods in Table 3 also verify this result.

260 Robustness Evaluation

261 Ten-fold cross-validation

262 Validating a method with a single small-size test dataset may be biased or lead to incorrect results 

263 (Sharma & Sharma 2016; Song et al. 2016). To this end, we used ten-fold cross-validation to 

264 ensure that our proposed method was robust under different test datasets. The whole dataset (70 

265 recordings) was randomly split into 10 groups, of which nine were adopted to train the classifiers 

266 (SVM, LR, KNN, MLP and LeNet-5), and the remaining one was used for the test, taken 10 times. 

267 The accuracy of the per-segment SA detection calculated on 10 different test groups was drawn 

268 and is shown in Figure 4. As seen in Figure 4, the accuracies obtained using the SVM, LR, KNN, 

269 MLP and LeNet-5 ranged from 71.9% to 88.6% (mean ± standard deviation, 81.1% ± 5.50%), 

270 71.7% to 87.8% (mean ± standard deviation, 80.6% ± 5.47%), 72.5% to 84.8% (mean ± standard 

271 deviation, 79.3% ± 4.53%), 75.4% to 89.9% (mean ± standard deviation, 81.9% ± 4.98%) and 

272 84.2% to 93.7% (mean ± standard deviation, 88.7% ± 3.05%), respectively. These results suggest 

273 that our proposed LeNet-5 with automatic feature extraction was more robust, and could achieve 

274 consistent and significantly better performances in different test datasets.

275 Validation on UCD database

276 To ensure that our proposed method was robust in other datasets, we tested the performance of our 

277 modified LeNet-5 on an independent UCD dataset. Similar to the PhysioNet Apnea-ECG dataset, 

278 the dataset was divided into two parts, one for training and the other for verification. It is 

279 noteworthy that the original UCD dataset is continuously annotated based on the occurrence of 

280 events, which is different from the PhysioNet Apnea-ECG dataset, and we followed (Mostafa et 

281 al. 2018; Xie & Minn 2012) in converting them to 1-minute interval annotations. Table 5 shows 

282 the performance of our modified LeNet-5 and traditional machine learning methods in per-segment 

283 SA detection and per-recording classification. As shown in Table 5, the overall performance of 

284 different methods on the UCD dataset was worse than that of the PhysioNet dataset, caused by the 

285 small number of SA annotations on the UCD dataset. However, our modified LeNet-5 still had 

286 better or comparable performance to the traditional machine learning methods. For example, when 

287 compared with SVM in per-segment SA detection, the accuracy of our modified LeNet-5 was 

288 1.2% better. In per-recording classification, our modified LeNet-5 had the same accuracy as SVM, 

289 but the correlation increased by 0.373. In general, our modified LeNet-5 is useful for SA detection.

290 Comparison with existing works
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291 So far, several works on SA detection based on a single-lead ECG signal have been published in 

292 the literature, and these works are mainly focused on feature engineering. Here, we compared our 

293 proposed method with relevant work that used both withheld sets and released sets of the 

294 PhysioNet Apnea-ECG dataset. However, a direct comparison was not available, due to the 

295 different samples sizes (Li et al. 2018). Table 6 shows the relevant work and performance of using 

296 the same dataset for per-segment detection. The released set was used for training, and the withheld 

297 set was used for validation. As shown, the classification accuracy of existing works ranged from 

298 83.4% to 86.2%, which is lower than our proposed method (with an accuracy of 87.6%). It should 

299 be noted that Li el al. obtained the best sensitivity since their work is based on sensitivity 

300 optimization, while other works have focused on optimizing total classification accuracy (Li et al. 

301 2018). Table 7 lists the relevant pre-recording classification work and performance in which the 

302 same dataset is employed. It is noteworthy that, as we mentioned above, using traditional 

303 measurements to evaluate performance is not very accurate due to relatively small sample size 

304 (only 35 recordings in the withheld dataset), and the best method is to take the correlation value 

305 between the experimentally determined  and the actual  together, but not all works provide 𝐴𝐻𝐼 𝐴𝐻𝐼
306 the correlation value. Nonetheless, our proposed method, with an accuracy of 97.1%, provides 

307 better or comparable performance than these works presented in the literature.

308 Conclusions

309 In this study, we developed an SA detection method based on modified LeNet-5 and adjacent ECG 

310 segments. Experimental results showed that our proposed method is useful for SA detection, and 

311 the performance of our method is better than both traditional machine learning methods and 

312 existing works. Due to the high precision requirements of clinical applications, further 

313 improvements in our proposed method will accelerate the development of ECG-based SA 

314 detection devices in clinical practice. Furthermore, since only a single-lead ECG signal is used, 

315 our proposed method can also be used to develop SA detection for home healthcare services using 

316 wearable devices. However, our proposed method has some limitations. Because the Apnea-ECG 

317 dataset is labeled in 1-minute segments, an apnea/hypopnea event could occur in the middle of two 

318 1-minute segments and a 1-minute segment could contain more than one apnea/hypopnea event. 

319 Additionally, the dataset does not separately label hypopnea and apnea events in the provided 

320 annotation file, and all events are either obstructive or mixed (central is not included). This could 

321 mean our proposed method cannot distinguish between hypopnea and apnea, and cannot detect 

322 central events. In future research, we will include other datasets to solve the above problems. 
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Table 1(on next page)

Details of our modified LeNet-5 convolutional neural network
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Layer Parameter Output Shape Numbera

Input — (None, 900, 2) 0

Conv1 32×5×2, stride 2, pad 0 (None, 448, 32) 352

Max pooling2 3, stride 3, pad 0 (None, 149, 32) 0

Conv3 64×5×2, stride 2, pad 0 (None, 73, 64) 10304

Max pooling4 3, stride 3, pad 0 (None, 24, 64) 0

Dropout5 0.8 rate (None, 24, 64) 0

FC6 32, relu (None, 32) 49184

Output 2, softmax (None, 2) 66

1 a The number of parameters generated by the corresponding operation.

2
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Table 2(on next page)

Feature set extracted based on previous studies
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Derived fromName

RRa Amplb

Details

RMSSD × Square root of the average of the squared difference 

between adjacent RR intervals.

SDNN × Standard deviation of the difference between adjacent 

RR intervals.

NN50 × Number of adjacent RR intervals exceeds 50 ms.

pNN50 × NN50 divides by the number of RR intervals.

Mean RR × Mean of RR intervals.

Mean HR × Mean of heart rate (HR), which is derived from RR 

intervals.

Normalized VLF × × Normalized very low frequency (VLF) component of the 

corresponding signal.

Normalized LF × × Normalized Low frequency (LF) component of the 

corresponding signal.

Normalized HF × × Normalized high frequency (HF) component of the 

corresponding signal.

LF/ HF × × The ratio of LF to HF of the corresponding signal.

LF/( LF+HF) × × The ratio of LF to LF+HF of the corresponding signal.

HF/( LF+HF) × × The ratio of HF to LF+HF of the corresponding signal.

1 a RR intervals of single-lead ECG signal.

2 b Amplitudes of single-lead ECG signal.

3
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Table 3(on next page)

The overall performance of our modified LeNet-5 and traditional machine learning
methods in per-segment SA detection
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Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

SVM 81.4 76.9 84.3 0.887

LR 80.8 75.7 84.0 0.884

KNN 77.5 68.1 83.4 0.826

MLP 81.1 71.3 87.2 0.898

LeNet-5 87.6 83.1 90.3 0.950

1
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Table 4(on next page)

The overall performance of our modified LeNet-5 and traditional machine learning
methods in per-recording classification
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Method Accuracy (%) Sensitivity (%) Specificity (%) AUC Corr.a

SVM 88.6 100.0 66.7 0.978 0.852

LR 88.6 100.0 66.7 0.982 0.841

KNN 82.9 100.0 50.0 0.986 0.845

MLP 85.7 95.7 66.7 0.949 0.814

LeNet-5 97.1 100.0 91.7 0.996 0.943

1 a The correlation value between the actual  and the experimentally determined .𝐴𝐻𝐼 𝐴𝐻𝐼
2
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Table 5(on next page)

The per-segment SA detection and per-recording classification performance in the
UCDDB database
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Per-segment Per-recording

Classifier
Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Corr

.

SVM 70.6 32.7 83.3 92.3 100.0 50.0 0.251

LR 69.6 34.7 81.3 84.6 90.9 50.0 0.107

KNN 66.1 38.1 75.4 84.6 100.0 0.0 0.373

MLP 67.2 38.5 76.8 92.3 100.0 50.0 0.263

LeNet-5 71.8 26.6 86.9 92.3 90.9 100.0 0.624

1
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Table 6(on next page)

Comparison between the per-segment SA detection performance of our modified
LeNet-5 and existing works
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Reference Features Classifier
Accuracy 

(%)

Sensitivit

y (%)

Specificity 

(%)

(Varon et al. 2015)
Feature 

Engineering
LS-SVM 84.7 84.7 84.7

(Song et al. 2016)
Feature 

Engineering

HMM-

SVM
86.2 82.6 88.4

(Sharma & Sharma 2016)
Feature 

Engineering
LS-SVM 83.4 79.5 88.4

(Li et al. 2018)
Auto 

encoder

Decision 

fusion
83.8 88.9 88.4

Our study CNN LeNet-5 87.6 83.1 90.3

1
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Table 7(on next page)

Comparison between the per-recording classification performance of our modified
LeNet-5 and existing works
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Reference Classifier
Accuracy 

(%)

Sensitivity 

(%)

Specificity 

(%)

Corr.

(Morillo & Gross 2013) PNN 93.8 92.4 95.9 —

(Sharma & Sharma 2016) LS-SVM 97.1 95.8 100 0.841

(Song et al. 2016) HMM-SVM 97.1 95.8 100 0.860

(Alvarez et al. 2010) LR 89.7 92.0 85.4 —

(Li et al. 2018)
Decision 

fusion
100 100 100

—

Our study LeNe-5t 97.1 100.0 91.7 0.943

1
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Figure 1
PhysioNet Apnea-ECG dataset preprocessing scheme. Note: In this study, the labeled
segment and its surrounding ±2 segments of the ECG signal (five 1-minute segments in
total) was extracted as a whole for processing.
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Figure 2
Architecture of our modified LeNet-5. It can be seen as a combination of convolutional
neural networks (CNN) for feature extraction and full connection (FC, also known as
MLP) as classifier
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Figure 3
Comparison of ROC curves of our modified LeNet-5 and MLP in per-segment SA
detection
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Figure 4
Comparison of the per-segment detection accuracy of five classifiers calculated on 10
different test groups
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