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ABSTRACT
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE),
which often progresses to end-stage renal disease (ESRD) and ultimately leads to death.
At present, there are no definitive therapies towards LN, so that illuminating the
molecular mechanism behind the disease has become an urgent task for researchers.
Bioinformatics has become a widely utilized method for exploring genes related to
disease. This study set out to conduct weighted gene co-expression network analysis
(WGCNA) and screen the hub gene of LN. We performed WGCNA on the microarray
expression profile dataset of GSE104948 from the Gene Expression Omnibus (GEO)
database with 18 normal and 21 LN samples of glomerulus. A total of 5,942 genes
were divided into 5 co-expression modules, one of which was significantly correlated
to LN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were conducted on the LN-related module, and the module was
proved to be associated mainly with the activation of inflammation, immune response,
cytokines, and immune cells. Genes in themost significant GO terms were extracted for
sub-networks of WGNCA. We evaluated the centrality of genes in the sub-networks by
Maximal Clique Centrality (MCC) method and CD36 was ultimately screened out as a
hub candidate gene of the pathogenesis of LN. The result was verified by its differentially
expressed level between normal and LN in GSE104948 and the other three multi-
microarray datasets of GEO. Moreover, we further demonstrated that the expression
level of CD36 is related to theWHO Lupus Nephritis Class of LN patients with the help
of Nephroseq database. The current study proposed CD36 as a vital candidate gene in
LN for the first time and CD36 may perform as a brand-new biomarker or therapeutic
target of LN in the future.

Subjects Bioinformatics, Molecular Biology, Nephrology, Data Mining and Machine Learning
Keywords CD36, Weighted gene co-expression network analysis, Hub gene, Lupus nephritis

INTRODUCTION
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease
characterized by autoantibody production, complement activation and immune complex
deposition. The incidence of SLE ranges from 0.03h to 2.32h person-years worldwide
(Rees et al., 2017).

Lupus nephritis (LN) is one of the most frequent and severe organ manifestations
in patients with SLE, the hallmark of which is often glomerulonephritis. Approximately
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50% of SLE patients develop clinically evident renal disease, up to 11% of whom develop
end-stage renal disease (ESRD) at 5 years (Tektonidou, Dasgupta & Ward, 2016; Almaani,
Meara & Rovin, 2017). LN is an important cause of ESRD and mortality. The initial and
subsequent therapy of LN mainly consists of immunosuppressants and glucocorticoids,
which means there are little efficient and specific therapies. Thus, it is a pressing task to
clarify molecular mechanisms involved in LN.

LN is characterized by its complicated physiopathologic mechanism. In LN patients,
the formation of immune complexes in different glomerular compartments, the activation
of innate immune signal pathways, the infiltration of immune cells and proinflammatory
mediators can harm glomerular cells through various approaches (Devarapu et al., 2017).
Although many studies have determined certain pathological mechanisms of LN, the
pathogenesis is still far from clear.

With the development of gene microarray and high-throughput next-generation
sequencing, bioinformatics analysis of gene expression profiling has been broadly applied
to explore the mechanism underlying diseases and potential diagnostic biomarkers or
treatment targets. Among diverse means aiming to investigate altered molecular elements
based on comparison between groups of different states, weighted gene co-expression
network analysis (WGCNA) is a powerful tool utilized for describing the correlation
patterns among genes and exploring hub genes related to certain traits (Van Dam et al.,
2018; Langfelder & Horvath, 2008). WGCNA constructs a co-expression network between
genes, and then, genes are divided into several co-expression modules by clustering
techniques. Genes in certain module are deemed to share similar biological function and
biological process. At last, after relating modules to clinical traits, modules with high
correlation to disease are further analyzed and hub genes of pivotal importance to disease
are identified. WGCNA has been broadly used for studying of diseases such as cancer
(Jardim-Perassi et al., 2019), neuropsychiatric disorder (Huggett & Stallings, 2019), chronic
disease (Morrow et al., 2015) and proved to be quite useful.

However, although researchers have conducted numerous bioinformatics studies about
LN and have got many achievements (Arazi et al., 2019; Panousis et al., 2019), WGCNA
has rarely been used for studies of LN (Sun et al., 2019). In our study, we constructed a
co-expression network of the expression profile of glomerulus tissue by WGCNA and
confirmed gene modules related to LN. After systematically analyzing the LN-related
co-expression module by series of bioinformatics methods, a hub gene associated with
LN was identified and verified. Depending on the potential roles of the hub gene in the
pathogenesis of LN, we expect to propose novel clues of the diagnosis and treatment of
LN.

MATERIALS & METHODS
Expression profile data collection
The overall procedures of our study are illustrated in the flow chart (Fig. 1). The gene
expression profile of GSE104948 was selected and obtained from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The raw data is available
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Figure 1 Flow chart of the whole procedures in this study.Data processing, analyses, hub gene identifi-
cation and validation.

Full-size DOI: 10.7717/peerj.7722/fig-1

in the GEO database. The dataset consists of microarray-based gene expression profiles of
32 LN samples and 18 normal samples of glomerular tissues from SLE patients and living
kidney transplant donors respectively. The glomerular tissues were microdissected and
verified with glomerular-selective transcripts (Grayson et al., 2018). The expression values
have already been log2 transformed.

Data preprocessing
The probe annotation was conducted under the Perl environment with the microarray
platform file. Probes matching with multiple genes were removed, and for genes
corresponding to multiple probes, the average values of probes were regarded as the
expression values of the genes. A total of 11,884 genes were left after the probe annotation.

Since non-varying genes are usually regarded as background noise, we filtered the genes
by variance and the top 50% (5,942 genes) with larger variance were chosen for subsequent
analyses.

Weighted co-expression network construction and module division
BeforeWGCNA, we excluded the outlier samples by sample clustering with the hierarchical
clustering method. The sample IDs and details of all samples included in our study are
available in Table S1. After that, we applied WGCNA with the expression profile by
using the WGCNA package (Langfelder & Horvath, 2008) in the R environment (version
3.5.3). Firstly, we calculated Pearson’s correlation for all pair-wise genes and constructed
a correlation matrix. Secondly, the correlation matrix was transformed to an adjacency
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matrix (also known as scale-free network) with an appropriate soft-thresholding value β. A
reasonable β value would emphasize strong correlations between genes and penalize weak
ones. We calculated the scale-free fit index and mean connectivity of each β value from 1
to 30 respectively, and when the scale-free fit index is up to 0.85, the β value with highest
mean connectivity is deemed as the most appropriate one. Then, the adjacency matrix was
converted to a topological overlap matrix (TOM) so that the indirect correlations between
genes are concerned. Finally, we used average linkage hierarchical clustering according
to the TOM-based dissimilarity measure to classify all genes into several co-expression
modules with a minimum size of 30 genes, thereby the genes with similar expression
patterns were divided into the same module. After defining the first principal component
of a given module as eigengene, we calculated Pearson’s correlations of the eigengenes,
and merged modules whose eigengenes were highly correlated (with Pearson’s correlation
higher than 0.75) into one module.

To verify the reliability of the division of modules, we plotted an adjacency heatmap
of all the 5,942 genes analyzed by WGCNA. Besides, we completed a cluster analysis of
module eigengenes and plotted an adjacency heatmap to find out the interactions among
modules.

Identification of clinically significant modules
The clinical traits of our samples included normal and LN, we calculated the correlation
between modules and traits. Modules of positive correlation with LN were considered as
playing roles in the pathogenesis of the disease. On the other hand, genes in modules of
positive correlation with normal trait are indispensable for maintaining normal biological
functions. Thus, we extracted gene modules of highest correlation with LN and normal for
subsequent studies.

Here, we introduced the definition of gene significance (GS) and module membership
(MM), which represent the correlation of a given gene with clinical trait and module
eigengene respectively. Genes in clinical-related modules should have high values and
preferable correlations of GS and MM.

GO and KEGG pathway enrichment analyses
To explore the involved signal pathways and biological characteristics of genes in clinical-
related modules, we conducted Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and visualized
the top 10 significant terms respectively with the clusterProfiler R package (Yu et al., 2012).
For both of GO and KEGG, enrichment terms arrived the cut-off criterion of p-value <0.01
and Benjamin-Hochberg adjusted p-value <0.01 were considered as significant ones.

Differentially expressed genes analysis
To investigate the difference of the expression profiles between normal and LN samples of
genes in clinical-related modules, we applied differentially expressed genes (DEGs) analysis
based on Empirical Bayes test with the limma R package (Ritchie et al., 2015). The cut-off
criterion was set as follow: |log2fold change (logFC)|>1; p-value <0.01; false discovery rate
(FDR) <0.001. The results were visualized with the heatmap R package (Galili et al., 2018).
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Identification of hub gene
Hub gene of the LN-related module should have high connectivity with the whole module
and LN trait, which may play critical roles in the molecular mechanism of LN. For
identifying the hub gene related with LN, we extracted gene clusters that enriched in certain
GO terms from the WGCNA network to construct sub-networks after GO enrichment
analysis of the LN-related module. Then, we utilized the Cytoscape software and its plug-in
cytohubba to seek out the hub gene from sub-networks (Shannon et al., 2003). After
calculating the Maximal Clique Centrality (MCC) value of each gene, those with high
MCC values was regarded as hub genes (Chin et al., 2014). The results were exhibited with
the Cytoscape software. We then surveyed the GS value, MM value and logFC value of the
selected hub gene to validate its reasonability.

Validation of hub gene with the other GEO datasets
To further verify the differential expression level of the hub gene between normal and LN
tissues, we analyzed the logFC value of the hub gene with data from the other three GEO
datasets (GSE32591, GSE99339 and GSE113342). The GEO IDs and details of the datasets
were given in Table S1.

Validation of the clinical significance of hub gene by Nephroseq
database
To assess the relationship between the expression level of the hub gene and the activity or
grade of LN, we visited the Nephroseq database (http://v5.nephroseq.org), which provides
unique access to datasets from the Applied Systems Biology Core at the University of
Michigan, incorporating clinical data which is often difficult to collect from public sources.
We then analyzed the difference of the expression level of hub gene between patients
in different WHO Lupus Nephritis Class (Weening et al., 2004) based on two datasets
(the dataset of Peterson Lupus Glom and the dataset of Berthier Lupus Glom) from the
Nephroseq database (details available in Document S4). We performed unpaired t test
for comparisons between groups and set the criterion of two-tailed value of p <0.05 as
statistically significant.

RESULTS
Data preprocessing
After data preprocessing, 5,942 genes were selected for subsequent analyses. Sample
clustering excluded the outlier samples and a total of 18 normal samples and 21 LN
samples were left. The final result of sample clustering is shown in Fig. 2A, revealing
satisfactory intra-group consistency and distinct difference between groups. The GEO IDs
and details about the source of the samples are available in Table S1.

Weighted co-expression network construction and module division
In the current study, taking both scale-free fit index and mean connectivity as reference,
the soft-thresholding was determined as 10 (Figs. 2B and 2C). Accordingly, the correlation
matrix was transformed to an adjacency matrix and then converted to a topological overlap
matrix. Based on average linkage hierarchical clustering and module merging, the genes
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Figure 2 Sample cluster dendrogram and soft-thresholding values (β) estimation. (A) Sample cluster
dendrogram and clinical trait heatmap of 18 normal samples and 21 LN samples based on their expression
profile. (B) Analysis of scale-free fit index of each β value from 1 to 30. (C) Analysis of mean connectivity
of each β value from 1 to 30. β = 10 was chosen for subsequent analyses as it has the biggest mean connec-
tivity when the scale-free fit index is up to 0.85.

Full-size DOI: 10.7717/peerj.7722/fig-2

were divided into six modules and were displayed with different colors (Fig. 3A), including
the black, blue, brown, magenta, pink, and grey modules, containing 220, 2,881, 777, 465,
770, and 829 genes, respectively. Genes in the grey module were those couldn‘t be divided
into any co-expression modules.

Figure 3B depicts the topological overlap adjacency among all the 5,942 genes analyzed
by WGCNA, indicating that most genes have higher correlation with genes in the same
module and lower correlation with genes in other modules, which means the division of
the modules was accurate. The clustering dendrogram and adjacency heatmap of eigengene
are shown in Figs. 3C and 3D, meaning that the five modules were mainly separated into
two clusters.
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Figure 3 Division and validation of co-expressionmodules. (A) Dendrogram of all genes divided into
6 modules base on a dissimilarity measure (1-TOM). The modules labeled by color are indicated below
the dendrogram. The upper presents the original division by average linkage hierarchical clustering ac-
cording to the TOM-based dissimilarity measure and the under presents the modules merged according
to Pearson’s correlation of eigengenes. (B) Adjacency heatmap of the 5,942 genes analyzed by WGCNA.
The depth of the red color indicates the correlation between all pair-wise genes. The red color mainly dis-
tributes in the diagonal of the heatmap. (C) Clustering dendrogram of eigengenes. (D) Adjacency heatmap
of eigengenes. Red represented high adjacency (positive correlation) and blue represented low adjacency
(negative correlation).

Full-size DOI: 10.7717/peerj.7722/fig-3

Identification of clinically significant modules
We calculated the module-trait correlation coefficients and showed the results in Fig. 4A.
The results illuminated that the blue module displayed highest correlation with LN trait
(r = 0.91, p= 2e−15), while the brown module related best with normal trait (r = 0.66,
p= 4e−06). The GS and MM value of all member genes of the blue and brown modules
were shown in the scatterplots (Fig. 4B and Fig. 4C). The GS and MM value were of high
correlation in the two modules (cor = 0.89, p <1e−200, and cor = 0.73, p = 3.1e−130
respectively), suggesting that the genes in the twomodules were associate with their module
eigengenes and clinical traits synchronously and thus suitable for further analyses and hub
gene excavation. We then renamed the two modules as top LN module and top non-LN
module respectively.
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Figure 4 Identification and verification of clinical related modules. (A) Heatmap of module-trait cor-
relations. Each cell depicts the correlation coefficients and P-value. The cells are colored by the intensity of
correlation according to the color legend (red for positive correlation and blue for negative correlation).
The blue module (top LN module) and brown module (top non-LN module) were identified as trait-
related modules. (B) Scatter plot for correlation between the Gene significance (GS) and Module Mem-
bership (MM) in the top LN module. Correlation coefficients and P-value is labeled at the top. (C) Scatter
plot for correlation between the GS and MM in the top non-LN module.

Full-size DOI: 10.7717/peerj.7722/fig-4

DEGs analysis of trait-related modules
We applied DEGs analysis for the two trait-related modules. For the top LN module, 203
DEGs were screened in LN compare with normal, including 195 up-regulated genes and
8 down-regulated ones. While, the top non-LN module contained 78 DEGs, all of which
were down-regulated. The top 30 of up-regulated and down-regulated genes are displayed
in Fig. 5, respectively. The logFC value, p- value, and FDR of DEGs are given in Table S2.

GO and KEGG Enrichment analyses of trait-related modules
To confirm the biological themes of genes in the trait-related modules and find the
underlying biological pathways behind LN, we performed GO and KEGG enrichment
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Figure 5 DEGs analysis of two trait-related modules. The color of each cell represents the expression
level of a gene in a sample (red for high level and blue for low level). Only DEGs with top 30 logFC val-
ues are displayed. (A) Heatmap of DEGs in the top LN module. (B) Heatmap of DEGs in the top non-LN
module.

Full-size DOI: 10.7717/peerj.7722/fig-5

analyses towards the top LN and top non-LN modules and the top 10 significant terms of
GO and KEGG are exhibited in Figs. 6 and 7 respectively. The complete results of GO and
KEGG enrichment analyses were given in Table S3.

For the top LN module, enriched GO-BP terms were mainly about activation of
immune response, immune cells, cytokine production, and inflammation (Fig. 6A), such
as ‘‘neutrophil activation’’ (gene count= 178, p= 7.26e−301.52E-20), ‘‘positive regulation
of defense response’’ (gene count = 160, p = 9.14e−25), ‘‘activation of innate immune
response’’ (gene count = 107, p = 3.45e−18). Enriched GO-MF terms were mainly about
cytokine and their receptors (Fig. 6B), such as ‘‘cytokine binding’’ (gene count = 39,
p = 2.47e−8), ‘‘cytokine receptor activity’’ (gene count = 34, p = 5.3e−7), ‘‘cytokine
receptor binding’’ (gene count = 69, p= 2.98e−5). For GO-CC, enriched terms were
mainly involved in membrane and endocytic vesicle (Fig. 6C), such as ‘‘vesicle lumen’’
(gene count = 107, p = 4.13e−15), ‘‘cytoplasmic vesicle lumen’’ (gene count = 106, p =
8.99e−15), ‘‘membrane region’’ (gene count = 95, p = 2.33e−12). The results of KEGG
enrichment were similar to that of GO-BP, were mainly about immune and inflammation
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Figure 6 GO enrichment analyses of two trait-related modules. The depth of color is corresponded to
the enrichment significant of each term and the x-axis indicates the enriched gene count. (A) Top 10 sig-
nificantly enriched GO Biological Process (BP) terms of top LN module. (B) Top 10 significantly enriched
GOMolecular Function (MF) terms of top LN module. (C) Top 10 significantly enriched GO Cellular
Component (CC) terms of top LN module. (D) Top 10 significantly enriched GO Biological Process (BP)
terms of top non-LN module. (E) Top 10 significantly enriched GOMolecular Function (MF) terms of
top non-LN module. (F) Top 10 significantly enriched GO Cellular Component (CC) terms of top non-
LN module.

Full-size DOI: 10.7717/peerj.7722/fig-6

(Fig. 7A). The top KEGG terms included ‘‘Complement and coagulation cascades’’ (gene
count = 31, p = 6.55e−6), ‘‘Fc gamma R-mediated phagocytosis’’ (gene count = 34,
p = 1.90e−5), ‘‘Th1 and Th2 cell differentiation’’ (gene count = 33, p = 3.05e−5).
Meanwhile, several well-known pathways involved in LN were also included, such as Th17
cell differentiation.

On the other hand, for the top non-LNmodule, the GO-BP results were mainly involved
in the metabolism process of different kinds of molecule (Fig. 6D), for example, ‘‘small
molecule catabolic process’’ (gene count = 93, p = 3.27e−41), ‘‘organic acid catabolic
process’’ (gene count = 73, p = 3.97e−39), ‘‘carboxylic acid catabolic process’’ (gene
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Figure 7 KEGG enrichment analyses of two trait-related modules. The depth of color is corresponded
to the enrichment significant of each term and the size of the circle indicates the enriched gene count. (A)
Top 10 significantly enriched KEGG terms of top LN module. (B) Top 10 significantly enriched KEGG
terms of top non-LN module.

Full-size DOI: 10.7717/peerj.7722/fig-7

count = 73, p = 3.97e−39). The top 10 terms of GO-MF and GO-CC are also displayed
(Fig. 6E and Fig. 6F). Similarly, the top KEGG terms were mainly about metabolism process
(Fig. 7B).

Besides, we found that the magenta module also had high correlation with LN trait. The
results of enrichment analyses of magenta module are also given in Table S3.
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Figure 8 Sub-networks ofWGCNA based extracted based onmost significant GO terms. The nodes
represent the genes and the edges represent the weighted correlation. Only co-expression pairs with top
500 weighted correlations are included. The red and yellow nodes represent genes of top 10 MCC values
(red for a higher MCC value and yellow for lower). (A) Sub-network of the GO term ‘‘neutrophil activa-
tion’’. (B) Sub-network of the GO term ‘‘positive regulation of defense response’’.

Full-size DOI: 10.7717/peerj.7722/fig-8

Identification and validation of hub gene
We extracted the genes enriched in two of the top 10 significant GO-BP terms in top LN
module, namely ‘‘neutrophil activation’’ and ‘‘positive regulation of defense response’’,
and constructed two sub-networks of the weighted co-expression network respectively.
Co-expression pairs with top 500 weighted correlations in the sub-networks were selected
for hub gene excavation. After importing the gene co-expression pairs and their weighted
correlations into Cytoscape, we calculated the MCC value of genes and the most central
genes of the sub-network were screened out as shown in Fig. 8. In both sub-networks,
CD36 had the maximumMCC value among all, and was therefore deemed as the hub gene
under the pathogenesis of LN.

The GS and MM value of CD36 were 0.772 and 0.833, revealing CD36 was significant
correlated with the top LN module and LN trait. The DEGs analysis showed that the
expression level of CD36 in LN was abnormally up-regulated compared with that of
normal. The logFC of CD36 was 2.298, which ranked 11th among all.

Validation of hub gene with the other GEO datasets
For verifying our conclusion in a broader range, we interrogated the GEOdatabase formore
datasets about LN. We downloaded the datasets of GSE32591, GSE99339 and GSE113342,
and then analyzed the differentially expressed level of CD36 between LN and normal
(Fig. 9). In the four different datasets, the expression level of CD36 was consistently
up-regulated in LN samples, illustrating a satisfactory reliability of the result.

Validation of hub gene by Nephroseq database
We analyzed the expression level of CD36 in glomerular tissues under different severity
of LN evaluated by WHO Lupus Nephritis Class. The result indicates that CD36 was
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Figure 9 Differentially expressed level of CD36 between LN and normal in different GEO datasets.
(A) Expression level of CD36 in dataset of GSE104948. (B) Expression level of CD36 in dataset of
GSE32591. (C) Expression level of CD36 in dataset of GSE99339. (D) Expression level of CD36 in dataset
of GSE113342.

Full-size DOI: 10.7717/peerj.7722/fig-9

significantly up-regulated with the aggravation of LN (Fig. 10); that is to say, CD36 plays
an important role in the development of LN.

DISCUSSION
In the current study, we used the expression profile of GSE104948 to screen the hub gene
involved in the pathogenesis of LN. We performed WGCNA and divided all genes into 5
co-expression modules. After relating the modules to clinical traits, we concluded that the
blue module was of highest correlation with LN and was suitable for hub gene excavating.
The brown module had the highest correlation with normal trait, and was also worthy
of subsequent analyses. GO and KEGG enrichment illuminated that genes in the top LN
module were mostly enriched in biological themes of the activation of inflammation,
immune response, cytokine, and immune cells, and the top non-LN module was mainly
about the metabolism process of various molecules. What’s more, DEGs analysis showed
that almost all DEGs in top LN module were abnormally up-regulated, revealing an
aberrant activated stage of inflammation and immune response in LN. On the other
hand, all DEGs in the top non-LN module were down-regulated, meaning a reduced
ability of material metabolism in LN. To achieve the ultimately purpose of finding out
the hub gene, we extracted genes enriched in the GO terms of ‘‘neutrophil activation’’
and ‘‘positive regulation of defense response’’ and constructed sub-networks accordingly.
Base on the MCC method, CD36 with maximum value of MCC in both sub-networks was
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Figure 10 Differentially expressed level of CD36 in glomerular tissues of differentWHO Lupus
Nephritis Class. (A) Differentially expressed level of CD36 in class II and class IV respectively (from
the dataset of Berthier Lupus Glom). (B) Differentially expressed level of CD36 in class III and class IV
respectively (from the dataset of Peterson Lupus Glom).

Full-size DOI: 10.7717/peerj.7722/fig-10

regarded as the hub gene behind the pathogenesis of LN. We investigated the GS, MM and
logFC of CD36 and validated its importance. We interrogated the GEO database and got
more datasets of LN, the obvious overexpression of CD36 was therefore further verified.
Moreover, the association between CD36 andWHO Lupus Nephritis Class showed directly
that the expression level of CD36 gradually up-regulates along with the development of LN
evaluated by WHO Lupus Nephritis Class, providing strong evidence that the abnormal
over-expression of CD36 is an important element in the pathogenesis of LN.

The CD36 gene is located on band q11.2 of chromosome 7 (Fernandez-Ruiz et al., 1993).
The protein encoded byCD36 is a kind of transmembrane protein (also known as scavenger
receptor B2) expresses on the surface of various kinds of cells. In the glomerulus of kidney,
CD36 expresses in podocyte (Hua et al., 2015), mesangial cells (Ruan et al., 1999) and
interstitial macrophages (Kennedy et al., 2013). Meanwhile, CD36 expresses in immunity
correlating cells such as monocytes and macrophages (Collot-Teixeira et al., 2007). With
multiple ligands, CD36 involves in complex biological process such as lipid homeostasis,
immune response and cell apoptosis.

There are no relative reports concerning the direct relationship between CD36 and
LN. Our results have shown that CD36 mainly participates in the function of neutrophil,
such as ‘‘neutrophil activation’’, ‘‘neutrophil activation involved in immune response’’,
‘‘neutrophil degranulation’’, ‘‘neutrophil mediated immunity’’, as well as the activation of
immune response, such as ‘‘positive regulation of defense response’’, ‘‘positive regulation
of innate immune response’’, ‘‘innate immune response-activating signal transduction’’,
‘‘positive regulation of immune effector process’’. Base on the results, we conclude that
CD36 performs important functions in the pathogenesis and development of LN through
affecting the function of neutrophil and innate immune response. Studies have proved
that deposited immune complexes (IC) could activate complement and attract neutrophils
and potentiate their responses, which will lead to intense glomerulonephritis, release
protease and Reactive Oxygen Species (ROS), and give rise to kidney involvement of SLE
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(Tsuboi et al., 2008). Besides, IC-induced activation of neutrophils can lead to the formation
of neutrophil extracellular traps (NETs), which can be pathogenic and promote the release
of type I interferon (Garcia-Romo et al., 2011). CD36 may candidate in the pathogenesis of
LN by the above-mentioned pathways.

Numerous studies have shown that CD36 participates in the pathogenesis of several
kinds of chronic kidney disease (CKD).

It has long been known that chronic inflammation is an important segment of the
progression of CKD. Studies have proved that the ligands signal via CD36 to promote
inflammatory response and the recruitment and activation ofmacrophage in the glomerulus
(Kennedy et al., 2013). A report of LN showed that renalmacrophage is associatedwith onset
of nephritis and indicates poor prognosis (Bethunaickan et al., 2011). Meanwhile, oxidant
stress plays a critical role in glomerular dysfunction. Along with chronic inflammation,
CD36 may facilitate the development of oxidant stress in LN (Hua et al., 2015; Kennedy et
al., 2013; Aliou et al., 2016).

Podocyte is most susceptible to injury among the component of the glomerulus and
its injury leads to glomerular dysfunction in various renal diseases including LN. Here,
we determined that podocyte functional markers were down-ragulated in LN glomerular
tissue, including WT1 (logFC = −0.273, p = 0.009) and NPHS1 (logFC = −0.306, p =
0.034), indicating the fact of podocyte injury. It is reported that in primary nephrotic
syndrome mouse, the overexpression of CD36 in the podocyte promotes its apoptosis
(Yang et al., 2018). There is probably similar pathogenesis in the progression of LN.

Ectopic lipid deposition in kidney may cause lipotoxicity and further affect the function
of the kidney (Lin et al., 2019).CD36 is amultifunctional protein function as a keymolecule
in the uptake of long-chain fatty acids, which is the main component of fatty acids uptake
system in the kidney and plays a critical rule in the development of CKD (Gai et al., 2019).
The expression level of CD36 is higher in kidney with acute or chronic damage, and lipid
disorders will stimulate the up-regulation of CD36. Furthermore, CD36 can promote the
uptake of lipid from plasma to tissue (Hua et al., 2015; Lin et al., 2019; Nosadini & Tonolo,
2011; Yang et al., 2017). Among our results, the top 10 GO terms of non-LN module
includes two terms about lipid metabolism: fatty acid catabolic process (p = 8.03e−22)
and fatty acid metabolic process (p = 2.62e−20), implying that lipid disorders exist in the
glomerular tissue, in which CD36 may take part.

Regrettably, as most reports on the relationship between CD36 and kidney diseases are
about the disorders of kidney in metabolic diseases, there is no study about the role CD36
plays in immune response, which is worthy of further study in LN.

CONCLUSIONS
In conclusion, through WGCNA and a series of comprehensive bioinformatics analyses,
CD36 was confirmed for the first time as a hub gene in the pathogenesis of LN. CD36 is
likely to become a new biomarker or therapeutic target of LN. Our work might provide a
new insight for exploring the molecular mechanisms of LN.
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