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ABSTRACT
Background. Soil respiration (RS) plays an important role in the concentration of
atmospheric CO2 and thus in global climate patterns. Due to the feedback between RS
and climate, it is important to investigate RS responses to climate warming.
Methods. A soil warming experiment was conducted to explore RS responses and
temperature sensitivity (Q10) to climate warming in subtropical forests in Southwestern
China, and infrared radiators were used to simulate climate warming.
Results. Warming treatment increased the soil temperature and RS value by 1.4 ◦C
and 7.3%, respectively, and decreased the soil water level by 4.2% (%/%). Both one-
and two-factor regressions showed that warming increased the Q10 values by 89.1%
and 67.4%, respectively. The effects of water on Q10 show a parabolic relationship to
the soil water sensitivity coefficient. Both RS and Q10 show no acclimation to climate
warming, suggesting that global warming will accelerate soil carbon release.

Subjects Soil Science
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INTRODUCTION
Soil is the largest pool of organic carbon in the terrestrial ecosystem, playing a crucial role in
the global carbon cycle. RS serves as a significant source of atmospheric CO2 (Friedlingstein
et al., 2006; Bond-Lamberty & Thomson, 2010) and is regulated by temperature (Giardina
et al., 2014). Therefore, slight changes in RS due to global warming will increase levels of
atmospheric CO2 and thereby be feed back into the global climate system.

Numerous studies have shown that RS rates typically increase over the course of short-
term soil warming experiments (Gonzalez-Meler et al., 2017; Xue & Tang, 2018; Zhao et al.,
2018) and long-term warming experiments (Noh et al., 2016; Zhou et al., 2016) and likely
due to the promotion of soil microbial activity and a lack of restrictions on soil organic
matter during warming treatment periods. Some studies also report that warming decreases
RS levels during long-term warming experiments (Melillo et al., 2002; Marañón Jiménez
et al., 2017; García-Palacios et al., 2018) and mainly due to the excessive consumption of
carbon pools. Some studies show that short-term warming treatment can also decrease
RS levels (Schindlbacher et al., 2012; Liu et al., 2016) due to droughts caused by climate
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warming. Warming treatment also has no significant effect on RS (Wang et al., 2017).
Therefore, RS responses to warming remain unclear and must be studied further.

The Q10 of RS is an important parameter of how RS responds to warming. Some studies
show that warming treatment reduces the Q10 value (Boone et al., 1998; Luo et al., 2001;
Wang et al., 2016; Noh et al., 2017) due to soil microorganism adaptation to warming.
This adaptation may be due to a decrease in soil microbial carbon utilization and enzyme
activity (Allison, Wallenstein & Bradford, 2010) and to changes in soil microbial community
structures (Ziegler et al., 2013). Simultaneously, the Q10 level exhibits no adaptive response
to climate warming (Reth et al., 2009) and even increases under warming conditions (Cao
et al., 2018; Zhao et al., 2018).

Acclimatization has been found to decrease for RS and Q10 under warming conditions
(Luo et al., 2001; Melillo et al., 2002). However, a previous study shows that heterotrophic
respiration in subtropical forests of Southwestern China show no acclimation to warming
(Wu et al., 2016). While it is important to identify effects of warming on subtropical forests
(Wu et al., 2016), RS and Q10 responses to warming in such forests remain unclear. We
hypothesized that RS and Q10 show no acclimation to warming in the forests. To test this
hypothesis, we conducted control and warming experiments on subtropical forests of the
Ailao Mountains to identify the effects of warming on RS and Q10 levels in these forests.

MATERIALS & METHODS
Site description
The experimental field is located at site of the Ailaoshan Station for Subtropical Forest
Ecosystem Studies (24◦32′N, 101◦01′E; 2,480 m above sea level) of the Chinese Ecological
Research Network. According to monitoring data for 2002 to 2011, the annual average air
temperature was 11.3 ◦C; the maximum air temperature was 15.6 ◦C (July); the minimum
temperature was 5.7 ◦C (January); the annual average precipitation level was 1,778 mm,
and rainfall levels reached close to 85% of total annual rainfall for the rainy season
(May–October) (Wu et al., 2014). The main type of soil found in the area yellowish-brown
with a pH value of 4.5; soil organic carbon levels reach 303.8 g kg−1 and total nitrogen levels
reach 18.38 g kg−1 in the humus horizon (Chan et al., 2006). The main species found in
the area include Lithocarpus hancei, Castanopsis wattii, Schima noronhae, and Lithocarpus
xylocarpus (Wu et al., 2014).

Experimental design
In the subtropical forest, six plots of 1 m× 1mwere randomly selected, and two treatments
were established, including control and warming treatments with three replicates. A
carbonizing infrared radiator was applied as the heat radiation source for the warming
treatment, and a 200-watt carbon infrared radiant heating lamp (each lamp was 90 cm
long and each lampshade was 100 cm long, 15 cm wide, and 10 cm deep) was placed
approximately 1.0 m above the sample side of each plot. A continuous heating mode was
adopted from June 2016 to May 2017, supplying continuous power except during power
outages. In each plot, a PVC pipe (inner diameter of 20 cm and soil depth of two cm) was
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placed to directly couple with an external PVC pipe (outer diameter of 20 cm, upper seal
base opening and height of 20 cm) for further measurements of RS.

Data collection and calculations
Soil CO2 efflux was measured monthly using a gas analyser (Li-820; Li-Cor, Lincoln, NE,
USA) between 9:00 and 11:00 AM (Beijing Time) to measure RS levels. Soil temperatures
(T, ◦C) were measured with a digital thermometer (6310; Spectrum, Illinois, USA), and
soil water content (W, %) was measured via time domain reflectometry (MP-KIT; Beijing
Channel, Beijing, China) at a depth of 50 mm. The RS rate was calculated as follows:

RS=
V ·P

R ·S ·Ta
·
dc
dt

(1)

whereRS is the soil CO2 efflux value (µmolm−2 s−1);V is the chamber volume (m3); S is the
chamber area (m2); R is the gas constant (8.314 Pa m3 k−1 mol−1); T a is air temperature
(K); P is air pressure (Pa), and dc/dt is the slope of variations in CO2 concentrations
overtime for the measurement period.

We used a one-factor regression to determine the relationship between RS and T and
a two-factor regression to determine relationships of RS with T and W. The regression
equations applied are as follows (Xu & Qi, 2001a; Liu et al., 2018):

RS= a ·ebT (2)

RS= a ·ebT ·W c . (3)

Where a, b and c are estimated from the regressions; b is the soil Q10 coefficient, and c
is the soil water sensitivity coefficient.

Q10 is calculated using the following equation (Luo et al., 2001):

Q10= e10b. (4)

Where b is derived from Eqs. (2) and (3).
DifferentQ10 values derived from the one- and two-factor regressions are attributable to

soil water effects, and the effect onQ10 (WEQ10) was calculated with the following equation:

WEQ10=
Q10−one−factor−Q10−two−factor

Q10−two−factor
×100% (5)

The parameters were estimated from the models listed above using the nonlinear
regression dynamic fit wizard, and t tests were used to test differences in the RS, T,W, and
Q10 values of the control and warming treatments (Version 12; Systat Software, Inc., Point
Richmond, California, USA).
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RESULTS
Effect of warming on soil environment factors
Thewarming treatment increased the soil temperature but did not change seasonal variation
patterns (Fig. 1A). Mean annual soil temperatures measured from the control and warming
treatments were recorded as 11.1 ± 0.1 ◦C and 12.5 ± 0.1 ◦C, respectively, and warming
significantly increased the soil temperature by 1.4 ◦C (Fig. 1B). During the measurement
period, the warming treatment significantly affected soil temperatures during both the dry
and rainy seasons (Fig. 1B). However, warming did not change soil water content levels,
and in terms of seasonal variations, we found no significant differences between dry season,
rainy season and yearly trends (Figs. 1C & 1D). Mean annual soil water levels measured
from the control and warming treatments were recorded as 30.3 ± 3.0% (v/v) and 29.0 ±
2.8% (v/v), respectively, reduced by 4.2% (%/%) (Fig. 1D).

Effect of warming on soil respiration
Soil warming increased RS levels in the rainy season but suppressed them in the dry season
(Fig. 2A). No significant differences in means of the control and warming treatments were
observed across dry season, rainy season, and annual period (Fig. 2B). In the dry season,
mean values of the two treatments were recorded as 2.68 ± 0.47 µmol m−2s−1 and 2.27
± 0.28 µmol m−2s−1, respectively, with the warming treatments showing a reduction of
15.0%. In the rainy season, mean values for the two treatments were recorded as 5.50± 0.79
µmol m−2s−1 and 6.50 ± 0.32 µmol m−2s−1, respectively, with the warming treatments
showing an increase of 18.1%. The mean annual RS for the two treatments was recorded as
4.09 ± 0.28 µmol m−2s−1 and 4.39 ± 0.25 µmol m−2s−1 where values increased by 7.3%
during the warming treatment.

Effect of warming on temperature sensitivity
From one-factor regression model results, the Q10 values of the control and warming
treatments were recorded as 2.6± 0.7 and 4.9± 0.3, respectively, and warming significantly
increased theQ10 value by 89.1%. According to two-factor regressionmodel results, theQ10

values reached 2.0 ± 0.5 and 3.3 ± 0.2, respectively, and warming significantly increased
the Q10 values by 67.4% (Fig. 3). One- and two-factor regression parameters are given in
Table 1. WEQ10 increased when the c values fell below 0.779 and decreased when the c
values exceeded 0.779 (Fig. 4).

DISCUSSION
Warming treatment can effectively increase soil temperatures (Wang et al., 2019; Li et al.,
2018) and thereby decrease soil water levels (Wang et al., 2014; Chen et al., 2018). In our
experiment, warming treatment resulted in higher soil temperatures than those observed
in the control treatment (Figs. 1A & 1B), and the soil water levels were found to be lower
than those of the control treatment (Figs. 1C & 1D). A number of previous studies show
that warming experiments significantly increase RS levels (Zheng et al., 2009; Zhao et al.,
2018; Zou et al., 2018). In our experiment, the warming treatment resulted in an increase
in the average RS by 7.3% due to soil warming of 1.4 ◦C. These findings are less significant
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Figure 1 Seasonal variations of soil temperature (A) and soil water content (C), and comparisons of
soil temperature (B) and soil water content (D) between control and warming treatment.

Full-size DOI: 10.7717/peerj.7721/fig-1

Figure 2 Seasonal variations (A) and comparison (B) of soil respiration between control and warming
treatment.

Full-size DOI: 10.7717/peerj.7721/fig-2

than others reported. For instance, RS has been found to increase by 32% with 4 ◦C of
warming (Noh et al., 2016), by 28% with 2.5 ◦C of warming (Bamminger, Poll & Marhan,
2018), and even by 7.1% with 0.47 ◦C of warming (Xia et al., 2009).Wu et al. (2016) found
the warming effects on soil carbon flux to be positively related to the warming effects on
soil temperature. The warming effects on soil temperature observed in the present study
are less significant (or stronger) than those reported above, leading to lesser (or stronger)
warming effects on RS. In the present study, warming treatment was found to have no
significant effect on RS, agreeing with the results found for another subtropical forest in
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Figure 3 Comparison of temperature sensitivity between control and warming treatment.
Full-size DOI: 10.7717/peerj.7721/fig-3

Table 1 Parameters of one-factor and two-factor regressions.

Treatments RS = aebTW c RS = aebT

a b c R2 p a b R2 p

0.0197 0.0864 1.2078 0.86 <0.001 0.9823 0.1212 0.61 <0.001
0.3139 0.0369 0.5743 0.55 <0.001 1.5024 0.0785 0.48 <0.001Control

1.4718 0.0724 0.0599 0.62 <0.001 1.6548 0.0793 0.62 <0.001
0.0370 0.1119 0.9139 0.96 <0.001 0.5697 0.1553 0.78 <0.001
0.1080 0.1191 0.5672 0.84 <0.001 0.4224 0.1664 0.80 <0.001Warming

0.3484 0.1251 0.2896 0.89 <0.001 0.6023 0.1542 0.87 <0.001

Guangxi, China (Wang et al., 2017). However, 1.7 ◦C warmer temperatures significantly
increase heterotrophic respiration in subtropical forests in Guangxi, China, corroborating
results reported for our study region (Wu et al., 2016). Therefore, our results showing no
significant effects are likely attributable to the fact that warming suppresses autotrophic
respiration (Wang et al., 2017).

We also found the warming treatment to have different effects during the dry and rainy
seasons (Figs. 2A and 2B). The study area is located in amonsoon region where temperature
and humidity levels are synchronized and where RS is affected by effects of interactions
between soil temperature and soil water content (Table 1). In the rainy season, soil water
levels were high while decreases in soil water content due to warming were limited (3.2%,
%/%). Therefore, soil water content had no restrictive effects. However, in the dry season,
soil water levels and soil temperatures were both low and positive effects of soil warming
were less significant than negative effects of soil water content due to warming, as soil
drought due to warming can offset warming effects (Schindlbacher et al., 2012). Therefore,
RS levels were found to be lower under the warming treatment than under the control
treatment in the dry season.
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Figure 4 Relationship between soil water sensitivity and effect of soil water on temperature sensitivity.
Full-size DOI: 10.7717/peerj.7721/fig-4

While warming has been widely shown to decrease the Q10 values (Luo et al., 2001; Li
et al., 2016; Noh et al., 2017), we found warming to increase Q10 values consistent with
previous studies (Teramoto et al., 2018; Zhao et al., 2018). Warming treatment decreased
basal respiration in the dry season and increased respiration in the rainy season, thereby
increasing seasonal amplitudes (Fig. 2). However, warming did not change seasonal
amplitudes of soil temperature (Fig. 1A), leading to higher Q10 values from regression
models. Soil is intrinsically sensitive to temperature as determined by substrate properties
and initial temperature conditions (Davidson & Janssens, 2006). Q10 levels of RS calculated
from equation models show Q10 affected by intrinsic Q10 and environmental factors (e.g.,
soil water conditions) (Davidson & Janssens, 2006). RS is directly influenced by substrate
supplies, soil temperatures, and effects of soil temperature and soil water content on
substrate diffusion and availability (Davidson, Janssens & Luo, 2006). Therefore, both soil
temperature and soil water content affectQ10 values, explaining 93% of seasonal variations
in Q10 (Xu & Qi, 2001b).

In this study, two models (Eqs. (2) and (3)) were used to reflect the relationship between
RS and soil temperature and to calculate the Q10 values. GLM analysis suggests that both
the treatment and model had significant effects on theQ10 values (Table 2). The one-factor
model only considers relationship between RS and soil temperature, while the two-factor
model considers the effects of both soil temperature and soil water content on RS. As the
Q10values were calculated from these models, any factors affecting RS would affect them.
Therefore, soil water availability affects Q10 (Zhong, Shen & Fu, 2016). The Q10 values
derived from the one-factor model are significantly higher than those derived from the
two-factor model, as the Q10 value calculated from the one-factor model covers soil water
effects. In comparing the twomodels, we measured the effects of water onQ10 (WEQ10) and
found the relationship between WEQ10 and the soil water sensitivity coefficient (c value in
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Table 2 Result of GLM analysis on temperature sensitivity.

Source t value p value

Treatment 5.961 <0.01
Method −3.664 <0.01

Eq. (3)) (Fig. 4). WEQ10 exhibits a parabolic regression relationship with the c value (peak
value of 0.779).

Soil respiration is driven by soil microbial rhizosphere activities and is affected by
soil temperature and the soil water content. Therefore, warming effects on RS and Q10

are affected by the above factors. Warming treatment can change substrate supplies and
microbial activities or communities (Wang et al., 2019; Li et al., 2018). Therefore, soil
aggregate protection and microbial communities can also affect the Q10 values (Qin et al.,
2019). In the present study, we focused on warming effects on RS and Q10. More studies
on soil properties and microbial communities should be conducted.

CONCLUSIONS
In summary, our warming experiment increased the soil temperature by 1.4 ◦C, decreased
the soil water level by 4.2% (%/%), and increased the RS value by 7.3%. Both one- and
two-factor regressions show that warming increased the Q10 values by 89.1% and 67.4%,
respectively. Both RS and its Q10 show no acclimation to climate warming, suggesting that
global warming will accelerate soil carbon release.
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