
Submitted 22 May 2019
Accepted 19 August 2019
Published 17 September 2019

Corresponding authors
Shuaibin Lian,
shuai_lian@xynu.edu.cn,
shuai_lian@qq.com
Lei Wang, wangleibio@126.com

Academic editor
Giulia Piaggio

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.7696

Copyright
2019 Lian et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

The co-expression networks of
differentially expressed RBPs with TFs
and LncRNAs related to clinical TNM
stages of cancers
Shuaibin Lian1,*, Liansheng Li2,*, Yongjie Zhou1, Zixiao Liu1 and Lei Wang2

1College of Physics and Electronic Engineering, XinYang Normal University, Xinyang, HeNan, China
2College of Life Sciences, XinYang Normal University, Xinyang, HeNan, China
*These authors contributed equally to this work.

ABSTRACT
Background. RNA-binding proteins (RBPs) play important roles in cellular homeosta-
sis by regulating the expression of thousands of transcripts, which have been reported
to be involved in human tumorigenesis. Despite previous reports of the dysregulation
of RBPs in cancers, the degree of dysregulation of RBPs in cancers and the intrinsic
relevance between dysregulatedRBPs and clinical TNM information remains unknown.
Furthermore, the co-expressed networks of dysregulated RBPs with transcriptional
factors and lncRNAs also require further investigation.
Results. Here, we firstly analyzed the deviations of expression levels of 1,542 RBPs from
20 cancer types and found that (1) RBPs are dysregulated in almost all 20 cancer types,
especially in BLCA, COAD, READ, STAD, LUAD, LUSC and GBM with proportion
of deviation larger than 300% compared with non-RBPs in normal tissues. (2) Up-
and down-regulated RBPs also show opposed patterns of differential expression in
cancers and normal tissues. In addition, down-regulated RBPs show a greater degree of
dysregulated expression than up-regulated RBPs do. Secondly, we analyzed the intrinsic
relevance between dysregulated RBPs and clinical TNM information and found that
(3) Clinical TNM information for two cancer types—CHOL and KICH—is shown
to be closely related to patterns of differentially expressed RBPs (DE RBPs) by co-
expression cluster analysis. Thirdly, we identified ten key RBPs (seven down-regulated
and three up-regulated) in CHOL and seven key RBPs (five down-regulated and two
up-regulated) in KICH by analyzing co-expression correlation networks. Fourthly, we
constructed the co-expression networks of key RBPs between 1,570 TFs and 4,147
lncRNAs for CHOL and KICH, respectively.
Conclusions. These results may provide an insight into the understanding of the
functions of RBPs in human carcinogenesis. Furthermore, key RBPs and the co-
expressed networks offer useful information for potential prognostic biomarkers and
therapeutic targets for patients with cancers at the N andM stages in two cancer types
CHOL and KICH.
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INTRODUCTION
Recent research has highlighted the importance of changes in RNA metabolism in the
mechanisms of carcinogenesis, including long non-coding RNAs (lncRNAs). RNA
transcription, maturation, transportation, stabilization, degradation, and translation
are molecular processes that regulate the cell cycle, as well as cell survival. The keys
to regulating RNA metabolism are a group of proteins called RNA-binding proteins
(RBPs), which participate in many steps at the post-transcriptional regulation level, and
thereby determine the fate and function of each transcriptional transcript in the cell (Fu
& Ares, 2014; Stefanie, Markus & Thomas, 2014; Moore & Proudfoot, 2009). Furthermore,
dysregulated expression of some RBPs can lead to disease, including neurological disorders
and cancers (Wang et al., 2018; Kechavarzi & Janga, 2014). For instance, PAIP1 is proposed
as a novel prognostic biomarker by affecting breast cancer cell growth (Piao et al., 2018).
TRNAU1AP has been confirmed to play an important role in the regulation of cell
proliferation and migration via the PI3K/Akt signaling pathway (Hu et al., 2018). SRPR
is reported to regulate keratinocyte proliferation by affecting cell cycle progression and
tend to show high expression in epidermal keratinocytes (Kim et al., 2016). RBMS3 has
been found to inhibit breast cancer cell proliferation and tumorigenesis by inactivating the
Wnt/β-catenin signaling pathway (Yang, Quan & Ling, 2018). In addition, overexpression
of RPL34 is suggested to promote malignant proliferation of non-small cell lung cancer
(NSCLC) (Yang et al., 2016). Silencing RPL34 plays a blocking role in cell proliferation
and metastasis, but promoting cell apoptosis of oral squamous cell carcinomas (OSCCs)
(Dai & Wei, 2017; Liu et al., 2015). Moreover, the splicing regulator PTBP2 is suggested
to control a network of genes involved in germ cell adhesion, migration, and polarity
and is also very essential for neuronal maturation (Qin et al., 2014; Molly, Leah & Donny,
2017; Leah, Sarah & Thomas, 2015). However, some RBPs can act as tumor suppressors.
For example, ZNFX1-AS1 is reported to suppress HCC progression via regulating the
methylation of miR-9 (Wang et al., 2016). In addition, the silencing of SRSF7 affects the
expression of osteopontin splice variants and decreases the proliferation rate of renal cancer
cells (Boguslawska et al., 2016). Finally, RPL22/eL22, as a cancer-mutated RBP, tend to be
anti-cancer via regulation of the MDM2-p53 feedback loop (Cao et al., 2017a; Cao et al.,
2017b).

Consequently, improving our understanding of the characteristics of RBPs and non-
RNA-binding proteins (non-RBPs) is an essential step for understanding their roles
in tumorigenesis. Even though recent studies have shown that RBPs are predominantly
dysregulated in cancers relative to normal tissues (Wang et al., 2018; Bobak & Sarath, 2014).
But, the intensity of dysregulation of RBPs in different cancers is still need to be investigated.
Furthermore, cancer is a complex genetic disease. The different developmental stages of
cancer indicate different degrees of severity. The early detection of cancer is linked to
improved survivorship. The tumor-node-metastases (TNM) system, formed by the Union
for International Cancer Control (UICC) and the American Joint Committee on Cancer
(AJCC), is the most widely used cancer staging system (Sobin, Gospodarowicz & Wittekind,
1992; American Joint Committee on Cancer, 2010). The TNM system provides information
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about the prognosis of the disease of patient based on pathologist evaluations of resected
specimens. This information is also generally used to plan cancer treatment regimens. Due
to the dysregulation of RBPs in many cancers, it is also interesting to determine whether
there is an intrinsic relevance between RBP dysregulation and the developmental stages of
cancers.

Transcription factors (TFs) perform the first step in interpreting the genome by
recognizing specific DNA sequences to control transcription and gene expression (Lambert
et al., 2018). As the unique gene class, TFs represent the proteins whose binding sites are
affected by various regulatory variants in DNA. An accumulating genome-wide association
study (GWAS) shows that the mutations of TFs or TF-binding sites are closely related to
many human cancers (reviewed in Deplancke, Alpern & Gardeux, 2016), such as gastric
cancer (Yin et al., 2017), liver cancer (Cao et al., 2017a; Cao et al., 2017b), prostate cancer,
colorectal cancer (Saijo et al., 2016) and breast (Humphries et al., 2017) cancer. Several
studies have emerged to identified the regulatory mechanisms and interactions (Drissi
et al., 2015; Zhang, Shen & Cui, 2019). Yet, in most cases, we still do not know how to
interpret the regulatory interactions between RBPs and TFs. Furthermore, long non-coding
RNAs (lncRNAs)-transcripts of greater than 200 nucleotides are of vital importance in
transcriptional and post-transcriptional levels (Ishizuka et al., 2014). Several evidences have
demonstrated that the expression of lncRNAs is closely related to human diseases (Yuan
et al., 2017; Vergara et al., 2012), such as viral infections, neurological disease and cancers
(Gibb, Brown & Lam, 2011). In particular, the expression levels of lncRNAs in tumor
tissues are significantly different compared with the normal tissues (Gloss & Dinger, 2015).
Moreover, lncRNAs have merged as the novel biomarkers in several diseases diagnosis and
targets for therapeutics (Zhou et al., 2013). It is well established that transcription factors
and long non-coding RNA have played a central role in the genetics of human diseases
(St. Laurent, Wahlestedt & Kapranov, 2015). Yet, up to now, we are far from being able to
know the regulatory interactions and mechanisms of RNA-binding proteins (RBPs) with
TFs and lncRNAs. For example, whether there is an interaction between RBPs and TFs in
the process of carcinomatosis and what types of TFs affect the regulatory interaction most?
In which stage of cancers do RBPs affect the expression of lncRNA the most?

To comprehensively characterize intensity of dysregulated RBPs from many human
cancers (Wang et al., 2018) and construct their interactive networks with TFs and lncRNAs
related to TNM stages, we first assessed the deviations of gene expression levels of RBPs and
non-RBPs in 20 types of cancerous and normal (control) tissues, respectively (Chang et
al., 2013) and analyzed the biological and molecular functions of dysregulated RBPs.
Second, we analyzed the relationship between RBP dysregulation and TNM system
clinical data of 5,093 patients across 13 types of cancers. We found out two types of
cancers—cholangiocarcinoma (CHOL) and kidney chromophobe (KICH)—show a
significant relationship between RBP dysregulation and TNM stage information. Third,
we constructed the interaction networks for dysregulated RBPs related to TNM stage
information and TFs of CHOL and KICH, respectively. Fourth, we constructed the
interaction networks for key RBPs related to metastases (M) stage and lncRNAs for CHOL
and KICH, respectively (see Fig. 1, which outlines the computational workflow, and
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Figure 1 Workflow chart showing the different steps presented in this study. The flow chart shows the
acquisition and preparation of data (Pink box), differentially expressed genes analysis and module detec-
tion (light yellow box), networks construction and function analysis (pale green box). RBP, RNA-binding
protein; TCGA, The Cancer Genome Atlas; TF, transcription factor; lncRNA, long non-coding RNA.

Full-size DOI: 10.7717/peerj.7696/fig-1

Materials and Methods). This enabled us to identify the key regulatory RBPs for both
CHOL and KICH cancers.

MATERIALS & METHODS
Differential expression analysis
We downloaded the original data including count matrix, expression FPKM values and
clinical informationof 20 cancer types andpairednormal tissues fromTCGAdata base using
SangerBox tool (SangerBox, http://sangerbox.com/). Then, we applied edgeR (Robinson,
Mccarthy & Smyth, 2010) and DESeq2 (Anders, 2009) to select differentially expressed
genes (DEGs) from count matrix for each cancer type with parameter padj < 0.05, and
|log2FC|> 1. Thirdly, according 1,542RBP genes information (Stefanie, Markus & Thomas,
2014), we divided the DEGs into two types for each cancer types: RBPs and non-RBPs. The
expression FPKM values were used to compute the degree of dysregulation of DEGs and
construct the co-expression networks. Clinical TNM information for 5,093 patients were
used to co-expressed gene module detection. Our datasets contained 1,542 RBPs, 1,570 TFs
and 4,147 lncRNAs; data acquisition information was presented in the Data Availability
section. The ‘pheatmap’ package in R was used to generate a heatmap of differentially
expressed RBPs shared by 16 cancer types in six systems based on log2-fold change values.
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The Pearson coefficient (R) was used to judge the similarity of RBPs genes in different
cancers occurring at related tissues have similar expression patterns. The gene cluster with
R > 0.5 was considered as having the similar expression pattern. The gene ontology
categorization analysis tool DAVID (Huang, Sherman & Lempicki, 2009a; Huang, Sherman
& Lempicki, 2009b) was used to determine biological processes and molecular functions of
DE RBPs.

Standard deviation and proportion of dysregulation
In order to investigate the degree of dysregulation of RBPs, we computed the standard
deviation of differentially expressed genes listed in Table 1 using the ‘std’ function in
‘MATLAB’ version R2015b, respectively. In detail, we firstly computed the standard
deviation of differentially expressed RBPs in 20 cancers and paired normal tissues (Fig. 2A).
Similarly, we next computed the standard deviation of differentially expressed non-RBPs
in 20 cancers and paired normal tissues (Fig. 2B).

The definition of the standard deviation is as follows:

σ =
1
N

√√√√ N∑
i=1

(xi−µ)2.

Here, N is the number of genes, xi isthe expression FPKM value of the ith gene, µ is
the mean FPKM value of all N genes. Larger σ values represent gene expression values
that deviate from the mean value to a greater degree, which is indicative of greater gene
dysregulation. The standard deviation values for RBP expression data is presented in
Table S1.

In order to more clearly see the expression differences of RBPs and non-RBPs in cancers
and normal tissues, we further computed their relative deviations. In detail, we first
computed the relative deviation of RBPs in cancers and paired normal tissues, and then we
computed the relative deviation of non-RBPs in cancers and normal tissues (Fig. 2C). The
relative proportion of deviation is computed using the following function : p= σc

σn
. Here,

σc and σn are the standard deviations of the gene expressions in cancers and normal tissues
respectively.

Similarly, in order to investigate the expression differences of up- and down-regulated
RBPs, we also computed the standard deviation of them in cancers and normal tissues,
respectively (Figs. 2D, 2E). Finally, the mean expression values of up- and down-regulated
RBPs in 20 cancers and paired normal tissues were computed and presented in Figs. 2F &
2G.

Weighted co-expression network analysis
Weighted gene co-expression network analysis (WGCNA) (Peter & Steve, 2008) is a
comprehensive R package that summarizes and standardizes methods and functions
for co-expression network analysis. Module detection function of WGCNA was used
to detect the correlations between co-expression gene modules and the clinical TNM
information for 13 types of cancers with default settings one by one. Then, the threshold
of correlation coefficient R> 0.5 and statistical significance P < 0.05 was used to select
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Table 1 Differentially expressed RBPs and non-RBPs across 20 types of cancers in seven systems.

System Cancer Cancer type Total
DEG genes

Total
non-RBPs

Total
RBPs

Up-regulated
RBPs

Down-regulated
RBPs

Landular system PAAD Pancreatic adenocarcinoma 260 259 1 1 0
THCA Thyroid carcinoma 4,804 4,765 39 14 25
PRAD Prostate adenocarcinoma 4,777 4,722 55 34 21
HNSC Head and neck squamous cell carcinoma 7,421 7,335 86 32 54

Respiratory system LUSC Lung squamous cell carcinoma 12,235 11,972 263 54 209
LUAD Lung adenocarcinoma 9,004 8,859 145 35 110

Alimentary system READ Rectum adenocarcinoma 8,620 8,430 190 60 130
COAD Colon adenocarcinoma 8,954 8,773 181 44 137
STAD Stomach adenocarcinoma 9,037 8,932 105 39 66

Urinary system KICH Kidney chromophobe 9,926 9,758 168 76 92
KIRC Kidney renal clear cell carcinoma 11,478 11,370 108 37 71
KIRP Kidney renal papillary cell carcinoma 8,293 8,189 104 33 71
BLCA Bladder urothelial carcinoma 7,146 7,025 121 53 68

Reproductive system CESC Cervical squamous cell carcinoma and endocervical
adenocarcinoma

4,302 4,154 148 57 91

UCEC Uterine corpus endometrial carcinoma 9,046 8,869 177 64 113
BRCA Breast invasive carcinoma 7,426 7,298 128 36 92

Nervous system GBM Glioblastoma multiforme 11,946 11,628 318 118 200
PCPG Pheochromocytoma and paraganglioma 4,717 4,560 157 101 56

Liver and gall system LIHC Liver hepatocellular carcinoma 6,677 6,576 101 25 76
CHOL Cholangiocarcinoma 10,219 10,030 189 80 109
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Figure 2 The different expression patterns of RBPs and non-RBPs in cancers and normal tissues. (A)
The standard expression deviation of RBPs in 20 types of cancers and normal tissues. (B) The standard ex-
pression deviation of non-RBPs in 20 types of cancers and normal tissues. (C) The relative expression de-
viation of RBPs and non-RBPs. (D) The standard expression deviation of up- regulated RBPs in cancers
and normal tissues. (E) The standard expression deviation of down- regulated RBPs in cancers and normal
tissues. (F) The expression FPKM values of up- regulated RBPs in cancers and normal tissues. (G) The ex-
pression FPKM values of down- regulated RBPs in cancers and normal tissues. Significance values calcu-
lated from the Mann–Whitney U test are shown.

Full-size DOI: 10.7717/peerj.7696/fig-2
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the cancer type whose TNM information related to co-expressed gene module. Genes with
same expression pattern were clustered into one module and marked with same color. And
then, the network construction module was used to construct co-expression networks for
RBPs with TFs and lncRNAs in the CHOL andKICH cancer types, respectively. The detailed
steps of constructing networks are as follows. Firstly, WGCAN network construction tool
was used to generate the nodes and edges of genes by computing correlations of expression
values. The nodes corresponded to genes, and the edges were determined by the pairwise
correlations between the expression levels of genes. The corresponding called function in
the R package was ‘blockwiseModules’ and the parameters were set as follows: ‘powers =
10, minModuleSize = 30, mergeCutHeight = 0.25’, other parameters we set to the default
setting. Secondly, nodes with correlation r < 0.5 and edges with weighted threshold <0.3
were removed. Finally, the Cytoscape (https://cytoscape.org/) tool was used to plot the
interactions using the nodes and edges of conserved genes.

Clinical TNM information processing
Clinical TNM information for 5,093 patients exhibiting 13 types of cancers downloaded
from the TCGA database presented in Table S4. Generally, in the TNM system, ‘T ’ refers
to a primary tumor, ‘T1∼T4’ represents the severity of primary cancer according to
the increase in tumor volume and the extent of involvement of adjacent tissues, and
‘T0’ indicates no primary tumor. ‘N’ represents the tumor spreading to regional lymph
nodes. ‘N1∼N3’ represents the degree of spreading according to the extent of lymph
node involvement. ‘M ’ refers to tumor metastasis. No distant metastasis is expressed by
‘M0’, and distant metastasis is expressed by ‘M1’. To investigate the correlation between
TNM information and gene expression values using WGCNA, we converted the TNM
information into a weighted matrix. For example, if TNM information for a patient was
‘T1-N3-M1’, the corresponding weighted array is [1 3 1].

Statistical methods
We used the Mann–Whitney U -test (function ‘ranksum’ in software‘MATLAB’ version
R2015b) to examine whether there is statistical significance between given two samples,
the default significance level is 0.05 (Lian et al., 2018).

RESULTS
The deviations of expression levels of RBPs between cancerous and
normal tissues
To investigate the degrees of dysregulation of RBPs in many human cancers, we computed
the standard deviations of gene expression levels of RBPs and non-RBPs in 20 types of
cancerous and normal (control) tissues, respectively. These results indicate that, relative
to normal tissue, RBPs show greater variation in expression in almost all types of cancer
(P < 0.05, Mann–Whitney U test, Fig. 2A). In contrast, non-RBPs show considerably less
variation in expression in cancers relative to normal tissues (P < 0.05, Mann–Whitney
U test, Fig. 2B). These results indicate that RBPs show a greater degree of dysregulated
expression than non-RBPs in almost 20 types of cancers. Furthermore, the degrees of
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dysregulation of RBPs in different cancer types are significantly different. In particular,
RBPs show severely dysregulated expression in eight types of cancers, including BLCA,
LUAD, STAD, READ, LUSC, GBM and COAD. For these cancers, the corresponding
relative proportions of dysregulation relative to normal tissues are 365.5%, 415.8%, 446.4%,
456.3%, 494.5%, 540.9% and 759.1%, respectively (Fig. 2C, Table S1). Interestingly, up-
regulated RBPs show a smaller standard deviation in expression in cancer tissue than
in normal tissue (P < 0.05, Mann–Whitney U test, Fig. 2D); However, down-regulated
RBPs show considerable differences in the standard deviation of their expression in cancer
tissue relative to normal tissues, especially in KICH, KIRC, KIRP, COAD, LUSC, CESC,
UCEC, and GBM (P < 0.05, Mann–Whitney U test, Fig. 2E). This may indicate that
down-regulated RBPs are more dysregulated in cancers than are up-regulated RPBs.
Finally, biological process enrichment analyzing indicates both up- and down-regulated
RBPs were highly enriched in the processes, such as rRNAmetabolism, nuclear-transcribed
mRNA catabolism, and ncRNA processing (Fig. S1). In addition, up-regulated RBPs were
also enriched in mitochondrial gene expression and in the regulation of mRNA metabolic
processes, while down-regulated RBPs were enriched in ribosome biogenesis and rRNA
processing.

Up- and down-regulated RBPs show opposite expression patterns in
cancer and normal tissue
To investigate cancer-specific differences in RBP expression, we analyzed the standard
deviations and mean expression values of up-regulated and down-regulated RBPs in 20
types of cancers and in normal tissues (see methods and materials). Our results for all
20 cancer types suggests that, compared to normal tissues, up- and down-regulated RBPs
show opposite patterns of expression in almost all cancers; what’s more, down-regulated
RBPs tend to show the larger expression deviations in cancers than up-regulated RBPs
(P < 0.05,Mann–WhitneyU test, Figs. 2D, 2D). In particular, in almost all types of cancers,
down-regulated RBPs show larger expression values than up-regulated RBPs. Furthermore,
the expression deviations of up-regulated RBPs in cancers are lower than in normal tissues.
However, the expression deviations of down-regulated RBPs are considerably greater
in cancer tissue than in normal tissue; this is especially true for BLCA, GBM, HNSC,
LUAD, LUSC, STAD, BRCA, KICH, READ, and UCSC (P < 0.05, Mann–Whitney U test,
Figs. 2E, 2G). These results suggest that down-regulated RBPs show a severer dysregulation
in cancers than up-regulated RBPs. Furthermore, the expression pattern of up- and
down-regulated RBPs in 20 types of cancers are the opposite of those found in normal
tissues; what’s more, molecular functions enrichment analyzing indicates that both up-
and down-regulated RBPs showed enrichment in: catalytic activity acting on RNA, mRNA
and mRNA 3′-UTR binding, nuclease and ribonuclease activity, and single-stranded RNA
binding. In addition, we found enrichment in translation factor activity and RNA binding
for up-regulated RBPs, and in catalytic activity acting on tRNAs for down-regulated RBPs
(Fig. S1). In addition, we also were able to identify which specific biological processes and
functions were regulated by up- and down-regulated RBPs, which may reveal how the
normal processes of cells can be altered in a way that leads to cell carcinomatosis. These

Lian et al. (2019), PeerJ, DOI 10.7717/peerj.7696 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.7696#supp-8
http://dx.doi.org/10.7717/peerj.7696#supp-1
http://dx.doi.org/10.7717/peerj.7696#supp-1
http://dx.doi.org/10.7717/peerj.7696


PCPG GBM KICH KIRC KIRP BLCACHOL LIHC STAD READ COAD BRCA UCEC CESCLUAD LUSC

Nervous system Urinary systemLiver and gall Alimentary system Reproductive systemRespiratory system

C1

C2

C3

C4

C1 C1C1C1

C1

C2
C2

C2C2

C2

C3

C3

C3

C3

C3

C4

C4C4

C4

C4

C5

C6

Log  (Fold Change)2

4

2
0

-2

-4

-1

-0.5

0

0.5

1
Pearson

(A) (B) (C) (D) (E) (F)
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results provide a new insight into understanding the roles of up- and down-regulated RBPs
in the process of cell carcinogenesis.

RBPs of different cancers in same system have a similar expression
profile
To gain clearer insight into RBP expression in cancerous tissues, we analyzed expression
heatmaps of 16 types of cancers, except four types of glandular cancer (PAAD, THCA,
PRAD, and HNSC). Because the number of DE RBPs in these four types of cancers are
too small (Table 1). We divided DE RBPs into six scale systems according to type (i.e.,
organization of canceration) and analyzed the expression profiles of 801 DE RPBs shared
by all 16 cancers by system. In each system, we divided RBPs into different types according
to their expression values and Pearson coefficient R. Gene clusters with R> 0.5 were
considered as having the similar expression pattern, which was shown in heatmaps. This
was true for all cancers except two cancers of the nervous system. The corresponding gene
lists of RBPs relevant for each system are presented in Table S2.

In the respiratory and liver and gall systems (Figs. 3A, 3B), two pairs of cancers in same
systems, LUAD and LUSC, CHOL and LIHC, show very similar RBP expression profiles.
Among these two cancer systems, C1 and C4 genes showed the co-expression patterns of
RBP for high expression and low expression respectively (R > 0.5). The proportions of
co-expressed RBPs in the respiratory and liver and gall systems were 88.8% and 76.8%,
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respectively. However, RBP expression in two cancers of the nervous system (PCPG
and GBM) showed opposite expression patterns (Fig. 3C). The proportions of highly
expressed RBPs in PCPG and GBM cancer tissue were 60.5% and 36.1%, respectively.
Highly expressed RBPs in PCPG showed a lower degree of expression in GBM, while
highly expressed RBPs in GBM showed lower expression in PCPG. The proportion of
RBPs showing opposing patterns of expression in PCPG and GBM was 68.2% (R < 0.5). In
systems containing three types of cancers (i.e., the alimentary and reproductive systems)
(Figs. 3D, 3E), the proportion of co-expressed RBPs decreased slightly, reaching 70.4%
and 71.5% (R > 0.5), respectively. In the urinary system, which was affected by four types
of cancers, the proportion of co-expressed RBPs reached its minimum value of 35.3%
(Fig. 3F). Of the cancers of the urinary system, two (KIRC and KIRP) showed the strongest
degree of RBP co-expression reaching 85.6% (R >0.5). Taken together, our results suggest
that RBP expression in different cancers in similar tissues have similar expression profiles.

Co-expressed gene regulatory networks correlate with clinical TNM
stage
Next, we investigated whether expression patterns are closely related to developmental
stages of different cancers and constructed the co-expression networks for DE RBPs and
non-RBPs using module detection and network construction tools of WGCNA (Peter &
Steve, 2008). Results showed that for two types of cancers—CHOL and KICH—clinical
TNM stage information was closely related to patterns of gene expression (Fig. 4). The
results for the other 11 cancer types did not satisfy the threshold (Methods and Material,
Figs. S2–S7).

In terms of module detection, we identified three modules (orange, green and red)
related to the cancer metastasis stage (M -stage), as well as two modules (royal blue
and red modules) closely related to the regional lymph node stage (N -stage) for CHOL
(Fig. 4A). The redmodule was consistently in both theM andN stages. The gene list for each
corresponding module is presented in Table S3. Furthermore, we found 10 differentially
expressed RBPs in these three modules. These included six RBPs (ACO1, PPARGC1A,
PUS7, KHDC1, ELAVL3, and BICC1) in the green module, two RBPs (PANBP17 and
HNRNPA1) in the royal blue module, and two RBPs (DCPS and C2orf15) in the red
module. For KICH, we found that the royal blue module was most closely related to
the M -stage, with a correlation coefficient of 0.96 (P < 4e−15), while the red and green
modules were closely related to the N -stage (Fig. 4B). The gene list for each corresponding
module is presented in Table S3. Furthermore, we found seven DE RBPs related to different
developmental stages of cancer. These included four RBPs (TNRC6A,MECP2, ZCCHC14,
and POLR2F) in the green module and three RBPs (TDRD1, TDRD9, and CELF4) in
the red module. The regulatory networks of CHOL (Fig. 4C) revealed that (1) in each
sub-network, one RBP interacts with almost all non-RBPs, suggesting that these RBPs are
key regulators for each module; (2) the RBPs in different sub-networks interact with each
other, indicating that they work together to regulate the corresponding developmental stage
of the cancer. (3) we found that most key RBPs are down-regulated, the proportion is 80%.
In addition, in the red module, two RBPs—including one down-regulated RBP (C2orf15)
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Figure 4 The co-expressionmodules detection of CHOL and KICH, respectively. (A) and (B) Co-
expression modules of CHOL and KICH correlated with their clinical TNM stage information, respec-
tively. Different color represents the gene modules with different expression pattern. The first, middle,
and last column are detected gene modules related toM, N, and T stages, respectively. The two num-
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Full-size DOI: 10.7717/peerj.7696/fig-4

and one up-regulated RBP (CDPS) also play such a regulatory role. For the regulatory
networks of KICH, we also identified three sub-networks that corresponded to the M -
and N -stages (Fig. 4D). First, we found that RBPs interacted with almost all non-RBPs
in each module, indicating that RBPs are key regulatory factors of the genes in these
modules. Second, we identified seven key RBPs in the three modules, of which five were
down-regulated and two were up-regulated. In the green module, we identified four key
RBPs—TNRC6A, MECP2, ZCCHC14, and POLR2F—all of which were down-regulated.
In the red module, we identified two key up-regulated RBPs (TDRD1 and TDRD9) and
one key down-regulated RBP, CELF4. These results suggest that dysregulated RBPs play a
key role in the regulation of the development of the CHOL and KICHM -stage, which may
provide a new perspective for potential prognostic biomarkers and therapeutic targets for
patients with cancers atM stages in two cancer types CHOL and KICH.
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Figure 5 The co-expression networks of key RBPs and lncRNAs. (A) The co-expression network of two
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work of three key RBPs (TDRD1, TDRD9 and CELF4) related toM stage and lncRNAs for KICH. Red and
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Full-size DOI: 10.7717/peerj.7696/fig-5

The networks of key RBPs and lncRNAs for CHOL and KICH
To infer the potential regulatory mechanisms of lncRNAs with key RBPs related to M
stages, we constructed the co-expression networks of key RBPs and differentially expressed
(DE) lncRNAs for CHOL and KICH respectively and performed Gene Ontology and
functional enrichment analyses.

Ten key RBPs and 2,943 DE lncRNAs were used to construct the co-expression network
for CHOL. The resulting co-expression network consisted of two key RBPs (down-
regulation C2orf15 and up-regulation DCPS) and 75 lncRNAs, which were grouped into
three clusters (Fig. 5A). There were 63 up-regulated lncRNAs, and the proportion of
up-regulated lncRNAs in three clusters was 86%, 75%, 83.3%, which probably suggest that
up-regulated lncRNAs have a greater interaction with RBPs in the process of metastasis
of CHOL cells. Functional enrichment analyzing demonstrated that cluster 1 and cluster
3 had similar functions and mainly enriched in functional categories involved in gene
silencing and negative regulation of translation, such as post transcriptional gene silencing,
negative regulation of translation and cellular amide metabolic process, cellular response
to dsRNA, miRNA metabolic process. Cluster 2 had some special functions and mainly
enriched in such as positive regulation of mRNA catabolic process, cellular response to
interleukin-1 and calcium ion, RNA destabilization.

Seven key RBPs and 1,204 DE lncRNAs were used to construct the co-expression
network for KICH. The resulting co-expression network consisting of 3 key RBPs (up-
regulated TDRD1 and TDRD9, down-regulated CELF4) and 227 lncRNAs. There are 177
down-regulated lncRNAs in the network and were grouped into four clusters (Fig. 5B).
The corresponding proportion of down-regulated lncRNAs was 46.7%, 65.3%, 75% and
95%, which probably suggest that down-regulated lncRNAs play more important roles in
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interacting with key RBPs TDRD1, TDRD9 andCELF4 in the process of metastasis of KICH
cells. Functional enrichment analysis demonstrated that cluster 1 shared by three key RBPs
mainly enriched in dsRNA fragmentation and production of miRNAs involved in gene
silencing by miRNA. Cluster 2 regulated by TDRD9 mainly enriched in endoribonuclease
and exon-exon junction complex, cluster 3 regulated by TDRD1mainly enriched in mRNA
catabolic process and regulation of mRNAmetabolic process, cluster 4 regulated by CELF4
mainly enriched in transporting of RNA, mRNA and nucleic acids. Besides, cluster 1 and
cluster 2 have some similar functions, such as telomere maintenance, histone mRNA and
miRNAmetabolic process, dosage compensation. Cluster 3 and cluster 4 have some similar
functions, such as regulation of RNA stability, RNA localization and regulation of mRNA
catabolic process.

These results provide a new insight into the understanding of the interactions of key
RBPs with lncRNAs in the metastasis stage (M stage) of cancer cells.

The co-expression networks of DEG RBPs and TFs for CHOL and
KICH
To investigate the interactions of RBPs and TFs, we constructed the co-expression networks
of DEG RBPs and TFs for CHOL and KICH, respectively. The key regulatory RBPs were
those (ten for CHOL and seven for KICH) detected in above section.

The co-expression network of CHOL revealed two important insights. First, we found the
five largest transcription factor families, they areC2H2-ZF,Homeodomain,Nuclear receptor,
bHLH and bZIP, and the corresponding proportion is 37%, 17%, 9%, 9% and 9% (Figs. 6A,
6B), which interacted with almost all differentially expressed RBPs. This result indicates
that these transcription factors tend to show a co-expression pattern with DEG RBPs,
which further suggest that they play a major regulatory role in RBP post-regulatory levels
for CHOL. Second,we also identified several special TFs related to up- or down-regulated
RBPs for CHOL. For example, Grainyhead, MADF, HMG-Sox and SAND are specific
transcription factors associated with down-regulated RBPs and GTF2I-like, Myb-SANT,
MADS box and CENPB are specific transcription factors associated with up-regulated RBPs
for CHOL. The co-expression network for KICH also revealed the following insights. First,
we found that the four largest transcription factor families, they are bHLH, bZIP, C2H2-ZF
and Nuclear receptor, the proportion is 54%, 9%, 7% and 7% (Figs. 6C, 6D). Notably,
transcription factor bHLH interact with all RBPs and it accounts for more than half of all
interacted transcription factors, which indicate that bHLH transcription factor probably
involved in regulation of all differentially expressed RBPs for KICH. Second, the proportion
of up- and down-regulated RBPs co-expressed with TFs is 57% and 43% respectively. But,
the up-regulated RBPs tend to show more interactions with TFs (Fig. 6C). These results
provide insights into understanding the mechanism of interaction between transcription
factors and RBPs.

DISCUSSION
RNA-binding proteins have been shown to be the key units to regulating RNA metabolism
(Fu & Ares, 2014; Stefanie, Markus & Thomas, 2014; Moore & Proudfoot, 2009) and
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Figure 6 The co-expression networks of DE RBPs and TFs. (A) and (C) The co-expression networks
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RBPs identified by module detection, circle dot represents other DE RBPs.
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dynamically interactwith both coding andnoncodingRNA (Kim et al., 2016). Furthermore,
recent studies have shown that RBPs are down-regulated in cancers (Wang et al., 2018),
but the study of 16 tissues from 80 healthy individuals indicated that RBPs show the
higher expression than non-RBPs (Bobak & Sarath, 2014). Consequently, we investigated
the comprehensive expression differences of RBPs and non-RBPs simultaneously in
cancers and normal tissues. Results indicate that RBPs are significantly dysregulated in
cancers. In particular, recent studies have confirmed that RBPs show severely dysregulated
expression in BLCA (Kato et al., 2012), LUAD (Dong et al., 2018), STAD (Hapkova et
al., 2013), READ, LUSC (Shi et al., 2017), GBM (Pavlyukov et al., 2018) and COAD
(Saki et al., 2016). Furthermore, up- and down-regulated RBPs tend to show opposite
patterns of differential expression in cancers and normal tissues (Figs. 2D, 2E). Up-
regulated RBPs show higher expression in normal tissues than down-regulated RBPs,
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which is consistent with the results in Bobak & Sarath (2014), but down-regulated RBPs
show the significantly higher expression in cancers than up-regulated RBPs (Figs. 2F, 2G),
which is consistent with results in (Wang et al., 2018). These results probably suggest a
mechanism of RBPs in the process of carcinomatosis by which the up-regulated RBPs
tend to show lower expression but down-regulated RBPs tend to show higher expression.
Carcinogenesis is probably caused by the combined actions of the low expression of
up-regulated RBPs and the high expression of down-regulated RBPs. This mechanism may
be useful for understanding the roles of RPBs and the design of targeted drugs for cancer
therapy.

We found 10 key regulated RBPs for CHOL (Seven down-regulated RBPs, HNRNPA1,
PANBP17, PUS7, KHDC1, ELAVL3, BICC1 and C2orf15; Three up-regulated RBPs, ACO1
PPARGC1A and DCPS) and seven key regulated RBPs for KICH (Six down-regulated
RBPs, TNRC6A, MECP2, ZCCHC14, CELF4 and POLR2F; Two up-regulated RBPs,
TDRD1 and TDRD9), respectively. Notably, recent studies have shown the importance
of these key RBPs. For instance, multiple PPARGC1A transcripts are more abundant and
CNS-specific in Parkinson’s disease (PD) (Soyal et al., 2019). KHDC1A is highly expressed
in oocytes and induces endoplasmic reticulum apoptosis (Cai et al., 2012). Elavl3 is closely
related to neurodegenerative diseases and play an important role in maintaining the
axonal homeostasis of neurons (Ogawa et al., 2018).HNRNPA1, regulated by miR-503 and
miR-424, is associated with breast cancer cell proliferation (Otsuka, Yamamoto & Ochiya,
2018). DCPS is very essential for acute myeloid leukemia cell survival by interacting with
pre-mRNA (Yamauchi et al., 2018). CELF4 plays an important role in brain development,
the haploinsufficiency of CELF4 is associated with autism disorders (Barone et al., 2017).
POLR2F is significantly high expression in colorectal carcinomas (Antonacopoulou et al.,
2008) and potential molecule in carcinogenesis.TDRD1 is over-expressed inmajority of 131
primary prostate tumors patients (Xiao et al., 2016). In all, these results have demonstrated
that the key RBPs have played the important roles in other types of cell carcinomatosis and
provide a new perspective for potential prognostic biomarkers and therapeutic targets for
patients with cancers at the N andM stages in two cancer types CHOL and KICH.

CONCLUSIONS
In this study, we analyzed detailed differences in the expression of RBPs and non-RBPs
across 20 types of cancers and constructed the co-expression networks of dysregulated RBPs
with TFs and lncRNAs for CHOL and KICH, respectively. Our results indicate that: (1)
RBPs are dysregulated in almost all 20 cancer types comparedwith normal tissues, especially
in BLCA, COAD, READ, STAD, LUAD, LUSC and GBM with proportion of deviation
larger than 300% compared with non-RBPs in normal tissues. (2) Up- and down-regulated
RBPs also show opposed patterns of differential expression in cancers and normal tissues.
In addition, down-regulated RBPs show a greater degree of dysregulated expression than
up-regulated RBPs do. (3) Clinical TNM information for two cancer types—CHOL and
KICH—is shown to be closely related to patterns of differentially expressed RBPs (DE
RBPs). (4) We constructed the co-expression networks of key RBPs between 1,570 TFs
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and 4,147 lncRNAs for CHOL and KICH, respectively. By analyzing these networks, we
identified ten key RBPs (of which seven were down-regulated and three up-regulated)
in CHOL and seven RBPs (of which five were down-regulated and two up-regulated) in
KICH. These key RBPs—and especially down-regulated RBPs—likely play important roles
in cell carcinomatosis. This study lays the foundation for further efforts to understand the
roles played by RBPs in human carcinogenesis and provides a new insight into identifying
the potential prognostic biomarkers and therapeutic targets for patients.

ACKNOWLEDGEMENTS
The authors thank three anonymous reviewers for their comments on the manuscript. The
linguistic editing and proofreading provided by TopEdit LLC during the preparation of
this manuscript are acknowledged.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China (Grant.
61501392) and the Nanhu Scholars Program for Young Scholars of XYNU (Xin Yang
Normal University). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 61501392.
Nanhu Scholars Program for Young Scholars of XYNU (Xin Yang Normal University).

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Shuaibin Lian conceived and designed the experiments, contributed reagents/material-
s/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
• Liansheng Li performed the experiments, analyzed the data, contributed reagents/mate-
rials/analysis tools, prepared figures and/or tables, approved the final draft.
• Yongjie Zhou analyzed the data, contributed reagents/materials/analysis tools, prepared
figures and/or tables, approved the final draft.
• Zixiao Liu analyzed the data, contributed reagents/materials/analysis tools, approved
the final draft.
• Lei Wang conceived and designed the experiments, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data is available in the Supplemental Files.

Lian et al. (2019), PeerJ, DOI 10.7717/peerj.7696 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.7696#supplemental-information
http://dx.doi.org/10.7717/peerj.7696


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.7696#supplemental-information.

REFERENCES
American Joint Committee on Cancer. 2010. Cancer staging manual. 7 edition. Chicago:

Springer, p649.
Anders S. 2009. Differential gene expression analysis based on the negative binomial

distribution. Journal of Marine Technology & Environment 2:Article 2.
Antonacopoulou AG, Grivas PD, Skarlas L, Kalofonos M, Scopa CD, Kalofonos

HP. 2008. POLR2F, ATP6V0A1 and PRNP expression in colorectal cancer: new
molecules with prognostic significance. Anticancer Research 28(2B):1221–1227
DOI 10.1245/s10434-007-9682-3.

Barone R, Fichera M, De Grandi M, Battaglia M, Lo Faro V, Mattina T, Rizzo R. 2017.
Familial 18q12.2 deletion supports the role of RNA-binding protein CELF4 in autism
spectrum disorders. American Journal of Medical Genetics A 173(6):1649–1655
DOI 10.1002/ajmg.a.38205.

Bobak K, Sarath CJ. 2014. Dissecting the expression landscape of RNA-binding proteins
in human cancers. Genome Biology 15:R14 DOI 10.1186/gb-2014-15-1-r14.

Boguslawska J, Sokol E, Rybicka B, Czubaty A, Rodzik K, Piekielko-Witkowska
A. 2016.MicroRNAs target SRSF7 splicing factor to modulate the expres-
sion of osteopontin splice variants in renal cancer cells. Gene 595(2):142–149
DOI 10.1016/j.gene.2016.09.031.

Cai C, Liu J, Wang C, Shen J. 2012. KHDC1A, a novel translational repressor, in-
duces endoplasmic reticulum-dependent apoptosis. DNA and Cell Biology
31(9):1447–1457 DOI 10.1089/dna.2012.1682.

Cao B, Fang Z, Liao P, Zhou X, Xiong J, Zeng S, Lu H. 2017b. Cancer-mutated ribosome
protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2
circuit. Oncotarget 8(53):90651–90661 DOI 10.18632/oncotarget.21544.

Cao TT, Lin SH, Fu L, Tang Z, Che CM, Zhang LY, Ming XY, Liu TF, Tang XM, Tan BB,
Xiang D, Li F, Chan OY, Xie D, Cai Z, Guan XY. 2017a. Eukaryotic translation ini-
tiation factor 5A2 promotes metabolic reprogramming in hepatocellular carcinoma
cells. Carcinogenesis 38(1):94–104 DOI 10.1093/carcin/bgw119.

Chang K, Creighton CJ, Davis C, Donehower L, Drummond J, Wheeler D. 2013. The
cancer genome atlas pan-cancer analysis project. Nature Genetics 45(10):1113–1120
DOI 10.1038/ng.2764.

Dai J, WeiW. 2017. Influence of the RPL34 gene on the growth and metastasis
of oral squamous cell carcinoma cells. Archives of Oral Biology 83:40–46
DOI 10.1016/j.archoralbio.2017.06.035.

Deplancke B, Alpern D, Gardeux V. 2016. The genetics of transcription factor DNA
binding variation. Cell 166(3):538–554 DOI 10.1016/j.cell.2016.07.012.

Lian et al. (2019), PeerJ, DOI 10.7717/peerj.7696 18/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.7696#supplemental-information
http://dx.doi.org/10.7717/peerj.7696#supplemental-information
http://dx.doi.org/10.1245/s10434-007-9682-3
http://dx.doi.org/10.1002/ajmg.a.38205
http://dx.doi.org/10.1186/gb-2014-15-1-r14
http://dx.doi.org/10.1016/j.gene.2016.09.031
http://dx.doi.org/10.1089/dna.2012.1682
http://dx.doi.org/10.18632/oncotarget.21544
http://dx.doi.org/10.1093/carcin/bgw119
http://dx.doi.org/10.1038/ng.2764
http://dx.doi.org/10.1016/j.archoralbio.2017.06.035
http://dx.doi.org/10.1016/j.cell.2016.07.012
http://dx.doi.org/10.7717/peerj.7696


Dong F, Li C,Wang P, Deng X, Luo Q, Tang X, Xu L. 2018. The RNA binding protein
tristetraprolin down-regulates autophagy in lung adenocarcinoma cells. Experimental
Cell Research 367(1):89–96 DOI 10.1016/j.yexcr.2018.03.028.

Drissi R, Dubois M-L, DouziechM, Boisvert F-M. 2015. Quantitative proteomics reveals
dynamic interactions of the minichromosome maintenance complex (mcm) in the
cellular response to etoposide induced dna damage.Molecular & Cellular Proteomics
14(7):2002–2013 DOI 10.1074/mcp.M115.048991.

Fu XD, Ares M. 2014. Context-dependent control of alternative splicing by RNA-binding
proteins. Nature Reviews Genetics 15:689–701 DOI 10.1038/nrg3778.

Gibb EA, Brown CJ, LamWL. 2011. The functional role of long non-coding RNA in hu-
man carcinomas.Molecular Cancer 10(1):Article 38 DOI 10.1186/1476-4598-10-38.

Gloss BS, Dinger ME. 2015. The specificity of long noncoding RNA expression. Biochim-
ica et Biophysica Acta 1859(1):16–22 DOI 10.1016/j.bbagrm.2015.08.005.

Hapkova I, Skarda J, Rouleau C, Thys A, Notarnicola C, JanikovaM, Bernex F, Rypka
M, Vanderwinden JM, Faure S, Vesely J, De Santa Barbara P. 2013.High expression
of the RNA-binding protein RBPMS2 in gastrointestinal stromal tumors. Experimen-
tal and Molecular Pathology 94(2):314–321 DOI 10.1016/j.yexmp.2012.12.004.

HuX, Luo J, Lai H, Li M, Zheng X, Nie T, Li F, Li H. 2018. Knockdown of Trnau1ap
inhibits the proliferation and migration of NIH3T3, JEG-3 and Bewo cells via the
PI3K/Akt signaling pathway. Biochemical and Biophysical Research Communications
503(2):521–527 DOI 10.1016/j.bbrc.2018.05.065.

Huang DW, Sherman BT, Lempicki RA. 2009a. Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of large gene lists. Nucleic Acids
Research 37(1):1–13 DOI 10.1093/nar/gkn923.

Huang DW, Sherman BT, Lempicki RA. 2009b. Systematic and integrative analysis of
large gene lists using DAVID Bioinformatics Resources. Nature Protoc 4(1):44–57
DOI 10.1038/nprot.2008.211.

Humphries MP, Sundara Rajan S, Droop A, Suleman CAB, Carbone C, Nilsson C,
Honarpisheh H, Cserni G, Dent J, Fulford L, Jordan LB, Jones JL, Kanthan R,
LitwiniukM, Di Benedetto A, Mottolese M, Provenzano E, Shousha S, Stephens
M,Walker RA, Kulka J, Ellis IO, Jeffery M, Thygesen HH, Cappelletti V, Daidone
MG, Hedenfalk IA, FjällskogML, Melisi D, Stead LF, Shaaban AM, Speirs V. 2017.
A case-matched gender comparison transcriptomic screen identifies eif4e and eif5
as potential prognostic markers in male breast cancer. Clinical Cancer Research
23(10):2575–2583 DOI 10.1158/1078-0432.CCR-16-1952.

Ishizuka A, Hasegawa Y, Ishida K, Yanaka K, Nakagawa S. 2014. Formation of nuclear
bodies by the lncRNA Gomafu-associating proteins Celf3 and SF1. Genes to Cells
19(9):704–721 DOI 10.1111/gtc.12169.

KatoM,Wei M, Yamano S, Kakehashi A, Tamada S, Nakatani T,Wanibuchi H. 2012.
DDX 39 acts as a suppressor of invasion for bladder cancer. Cancer Science 103(7)
DOI 10.1111/j.1349-7006.2012.02298.x.

Kechavarzi B, Janga S. 2014. Dissecting the expression landscape of RNA-binding pro-
teins in human cancers. Genome Biology 15:R14, 1–6 DOI 10.1186/gb-2014-15-1-r14.

Lian et al. (2019), PeerJ, DOI 10.7717/peerj.7696 19/22

https://peerj.com
http://dx.doi.org/10.1016/j.yexcr.2018.03.028
http://dx.doi.org/10.1074/mcp.M115.048991
http://dx.doi.org/10.1038/nrg3778
http://dx.doi.org/10.1186/1476-4598-10-38
http://dx.doi.org/10.1016/j.bbagrm.2015.08.005
http://dx.doi.org/10.1016/j.yexmp.2012.12.004
http://dx.doi.org/10.1016/j.bbrc.2018.05.065
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1158/1078-0432.CCR-16-1952
http://dx.doi.org/10.1111/gtc.12169
http://dx.doi.org/10.1111/j.1349-7006.2012.02298.x
http://dx.doi.org/10.1186/gb-2014-15-1-r14
http://dx.doi.org/10.7717/peerj.7696


Kim BK, Yoo HI, Choi K, Lee AR, Yoon SK. 2016. Regulation of Srpr Expression by
miR-330-5p controls proliferation of mouse epidermal keratinocyte. PLOS ONE
11(10):e0164896 DOI 10.1371/journal.pone.0164896.

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, AlbuM, Chen X, Taipale J, Hughes
TR,WeirauchMT. 2018. The human transcription factors. Cell 172(4):650–665
DOI 10.1016/j.cell.2018.01.029.

Leah LZ, Sarah EG, Thomas J. 2015. Sweet, Molly M. Hannigan, R. Michael Sramkoski,
Qin Li, Donny D. Licatalosi. RNA Binding Protein Ptbp2 is essential for male
germ cell development.Molecular and Cellular Biology 35(23):4030–4042
DOI 10.1128/MCB.00676-15.

Lian S, Liu T, Jing S, Yuan H, Zhang Z, Cheng L. 2018. Intrachromosomal colocalization
strengthens co-expression, co-modification and evolutionary conservation of
neighboring genes. BMC Genomics 19(1):455 DOI 10.1186/s12864-018-4844-1.

Liu H, Liang S, Yang X, Ji Z, ZhaoW, Ye X, Rui J. 2015. RNAi-mediated RPL34
knockdown suppresses the growth of human gastric cancer cells. Oncology Reports
34(5):2267–2272 DOI 10.3892/or.2015.4219.

Molly MH, Leah LZ, Donny DL. 2017. Ptbp2 controls an alternative splicing network re-
quired for cell communication during spermatogenesis. Cell Rep 19(12):2598–2612
DOI 10.1016/j.celrep.2017.05.089.

MooreMJ, Proudfoot NJ. 2009. Pre-mRNA processing reaches back to transcription and
ahead to translation. Cell 136:688–700 DOI 10.1016/j.cell.2009.02.001.

Ogawa Y, Kakumoto K, Yoshida T, Kuwako KI, Miyazaki T, Yamaguchi J, Konno A,
Hata J, Uchiyama Y, Hirai H,WatanabeM, Darnell RB, Okano H, Okano HJ. 2018.
Elavl3 is essential for the maintenance of Purkinje neuron axons. Scientific Reports
8(1):2722 DOI 10.1038/s41598-018-21130-5.

Otsuka K, Yamamoto Y, Ochiya T. 2018. Regulatory role of resveratrol, a microRNA-
controlling compound, in HNRNPA1 expression, which is associated with poor
prognosis in breast cancer. Oncotarget 9(37):24718–24730
DOI 10.18632/oncotarget.25339.

PavlyukovMS, Yu H, Bastola S, Minata M, Shender VO, Lee Y, Zhang S, Wang J,
Komarova S, Wang J, Yamaguchi S, Alsheikh HA, Shi J, Chen D, Mohyeldin
A, Kim SH, Shin YJ, Anufrieva K, Evtushenko EG, Antipova NV, Arapidi GP,
Govorun V, Pestov NB, ShakhparonovMI, Lee LJ, NamDH, Nakano I. 2018.
Apoptotic cell-derived extracellular vesicles promote malignancy of glioblas-
toma via intercellular transfer of splicing factors. Cancer Cell 34(1):119–135
DOI 10.1016/j.ccell.2018.05.012.

Peter L, Steve H. 2008.WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics 9:559 DOI 10.1186/1471-2105-9-559.

Piao J, Chen L, Jin T, XuM, Quan C, Lin Z. 2018. Paip1 affects breast cancer cell
growth and represents a novel prognostic biomarker. Human Pathology 73:33–40
DOI 10.1016/j.humpath.2017.10.037.

Lian et al. (2019), PeerJ, DOI 10.7717/peerj.7696 20/22

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0164896
http://dx.doi.org/10.1016/j.cell.2018.01.029
http://dx.doi.org/10.1128/MCB.00676-15
http://dx.doi.org/10.1186/s12864-018-4844-1
http://dx.doi.org/10.3892/or.2015.4219
http://dx.doi.org/10.1016/j.celrep.2017.05.089
http://dx.doi.org/10.1016/j.cell.2009.02.001
http://dx.doi.org/10.1038/s41598-018-21130-5
http://dx.doi.org/10.18632/oncotarget.25339
http://dx.doi.org/10.1016/j.ccell.2018.05.012
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1016/j.humpath.2017.10.037
http://dx.doi.org/10.7717/peerj.7696


Qin L, Zheng S, Han A, Lin C-H, Stoilov P, Fu X-D, Black DL. 2014. The splicing
regulator PTBP2 controls a program of embryonic splicing required for neuronal
maturation. eLife 3:e01201 DOI 10.7554/eLife.01201.

RobinsonM,Mccarthy D, Smyth GK. 2010. edgeR: differential expression analysis of
digital gene expression data. Journal of Hospice & Palliative Nursing 4(4):206–207
DOI 10.1093/bioinformatics/btp616.

Saijo S, Kuwano Y, Masuda K, Nishikawa T, Rokutan K, Nishida K. 2016. Serine/arginine-
rich splicing factor 7 regulates p21-dependent growth arrest in colon cancer cells.
The Journal of Medical Investigation 63(3.4):219–226 DOI 10.2152/jmi.63.219.

Saki S, Yuki K, Kiyoshi M, Tatsuya N, Kazuhito R, Kensei N. 2016. Serine/arginine-rich
splicing factor 7 regulates p21-dependent growth arrest in colon cancer cells. The
Journal of Medical Investigation 63(3.4):219–226 DOI 10.2152/jmi.63.219.

Shi R, Yu X,Wang Y, Sun J, Sun Q, XiaW. 2017. Expression profile, clinical signif-
icance, and biological function of insulin-like growth factor 2 messenger RNA-
binding proteins in non–small cell lung cancer. Tumor Biology 39(4):Article 4
DOI 10.1177/1010428317695928.

Sobin LH, Gospodarowicz MK,Wittekind C. 1992. TNM Classification of Malignant
Tumours, 7th Edition// TNM classification of malignant tumours. New York:
Springer-Verlag DOI 10.1057/9780230271357_47.

Soyal SM, Zara G, Ferger B, Felder TK, KwikM, Nofziger C, Dossena S, Schwien-
bacher C, Hicks AA, Pramstaller PP, Paulmichl M,Weis S, PatschW. 2019.
The PPARGC1A locus and CNS-specific PGC-1α isoforms are associated with
Parkinson’s Disease Neurobiology of Disease. Neurobiology of Disease 121:34–46
DOI 10.1016/j.nbd.2018.09.016.

St. Laurent G,Wahlestedt C, Kapranov P. 2015. The Landscape of long noncoding RNA
classification. Trends in Genetics 31(5):239–251 DOI 10.1016/j.tig.2015.03.007.

Stefanie G, Markus H, Thomas T. 2014. A census of human RNA-binding Proteins.
Nature Reviews Genetics 15:829–845 DOI 10.1038/nrg3813.

Vergara IA, Erho N, Triche TJ, Ghadessi M, Crisan A, Sierocinski T, Black PC,
Buerki C, Davicioni E. 2012. Genomic ‘‘Dark Matter’’ in prostate cancer: ex-
ploring the clinical utility of ncRNA as biomarkers. Frontiers in Genetics 3
DOI 10.3389/fgene.2012.00023.

Wang T, Ma S, Qi X, Tang X, Cui D,Wang Z, Chi J, Li P, Zhai B. 2016. Long non-
coding RNA ZNFX1-AS1 suppresses growth of hepatocellular carcinoma cells
by regulating the methylation of miR-9. OncoTargets and Therapy 9:5005–5014
DOI 10.2147/OTT.S103329.

Wang Z, Li B, Luo Y, Lin Q, Liu SR, Zhang XQ, Zhou H, Yang JH, Qu LH. 2018.
Comprehensive Genomic Characterization of RNA-Binding Proteins across Human
Cancers. Cell Reports 2:286–298 DOI 10.1016/j.celrep.2017.12.035.

Xiao L, Lanz RB, Frolov A, Castro PD, Zhang Z, Dong B, XueW, Jung SY, Lydon JP,
Edwards DP, Mancini MA, Feng Q, IttmannMM, He B. 2016. The germ cell gene
TDRD1 as an ERG target gene and a novel prostate cancer biomarker. Prostate Oct
76(14):1271–1284 DOI 10.1002/pros.23213.

Lian et al. (2019), PeerJ, DOI 10.7717/peerj.7696 21/22

https://peerj.com
http://dx.doi.org/10.7554/eLife.01201
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.2152/jmi.63.219
http://dx.doi.org/10.2152/jmi.63.219
http://dx.doi.org/10.1177/1010428317695928
http://dx.doi.org/10.1057/9780230271357_47
http://dx.doi.org/10.1016/j.nbd.2018.09.016
http://dx.doi.org/10.1016/j.tig.2015.03.007
http://dx.doi.org/10.1038/nrg3813
http://dx.doi.org/10.3389/fgene.2012.00023
http://dx.doi.org/10.2147/OTT.S103329
http://dx.doi.org/10.1016/j.celrep.2017.12.035
http://dx.doi.org/10.1002/pros.23213
http://dx.doi.org/10.7717/peerj.7696


Yamauchi T, Masuda T, Canver MC, Seiler M, Semba Y, Shboul M, Al-RaqadM,Maeda
M, Schoonenberg VAC, Cole MA, Macias-Trevino C, Ishikawa Y, Yao Q, Nakano
M, Arai F, Orkin SH, Reversade B, Buonamici S, Pinello L, Akashi K, Bauer DE,
Maeda T. 2018. Genome-wide CRISPR-Cas9 screen identifies leukemia-specific
dependence on a Pre-mRNA metabolic pathway regulated by DCPS. Cancer Cell
33(3):386–400 DOI 10.1016/j.ccell.2018.01.012.

Yang S, Cui J, Yang Y, Liu Z, Yan H, Tang C,Wang H, Qin H, Li X, Li J, WangW,
Huang Y, Gao H. 2016. Over-expressed RPL34 promotes malignant proliferation
of non-small cell lung cancer cells. Gene 576(1):421–428
DOI 10.1016/j.gene.2015.10.053.

Yang Y, Quan L, Ling Y. 2018. RBMS3 inhibits the proliferation and metastasis of breast
cancer cells. Oncology Research 26(1):9–15
DOI 10.3727/096504017X14871200709504.

Yin ZH, Jiang XW, ShiWB, Gui QL, Yu DF. 2017. Expression and clinical significance of
ILF2 in gastric cancer. Disease Markers 2017(1):1–9 DOI 10.1155/2017/4387081.

Yuan JH, Liu XN,Wang TT, PanW, Tao QF, ZhouW. 2017. The MBNL3 splicing
factor promotes hepatocellular carcinoma by increasing PXN expression through the
alternative splicing of lncRNA-PXN-AS1. Nature Cell Biology DOI 10.1038/ncb3538.

Zhang X, Shen B, Cui Y. 2019. Ago HITS-CLIP expands microRNA-mRNA interactions
in nucleus and cytoplasm of gastric cancer cells. BMC Cancer 19(1):Article 29
DOI 10.1186/s12885-018-5246-0.

Zhou D, Teng F, Roel GWV, Zhen S, Yong Z, Myles B, Yiwen C, Liu XS. 2013. Integra-
tive genomic analyses reveal clinically relevant long noncoding RNAs in human can-
cer. Nature Structural & Molecular Biology 20(7):908–913 DOI 10.1038/nsmb.2591.

Lian et al. (2019), PeerJ, DOI 10.7717/peerj.7696 22/22

https://peerj.com
http://dx.doi.org/10.1016/j.ccell.2018.01.012
http://dx.doi.org/10.1016/j.gene.2015.10.053
http://dx.doi.org/10.3727/096504017X14871200709504
http://dx.doi.org/10.1155/2017/4387081
http://dx.doi.org/10.1038/ncb3538
http://dx.doi.org/10.1186/s12885-018-5246-0
http://dx.doi.org/10.1038/nsmb.2591
http://dx.doi.org/10.7717/peerj.7696

