A new istiodactylid pterosaur from the Early Cretaceous Jiufotang Formation of Chaoyang City, Liaoning Province; and comments on the group (#37231)

First submission

Guidance from your Editor

Please submit by **27 May 2019** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the <u>materials page</u>.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 6 Figure file(s)
- 1 Raw data file(s)
- 1 Other file(s)

New species checks

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

criticism, and avoid personal opinions

Please provide constructive

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

A new istiodactylid pterosaur from the Early Cretaceous Jiufotang Formation of Chaoyang City, Liaoning Province; and comments on the group

Xuanyu Zhou Corresp., 1, 2, Rodrigo V. Pêgas Corresp., 3, Maria E. C. Leal 4, 5, Niels Bonde 5, 6

Corresponding Authors: Xuanyu Zhou, Rodrigo V. Pêgas Email address: zhouxy2017@yeah.net, rodrigo.pegas@hotmail.com

We present a new istiodactylid pterosaur, *Nurhachius luei* sp. nov., based on a complete skull and some cervical vertebrae from the lower Jiufotang Formation at Chaoyang city, western Liaoning. The specimen preserves some three-dimensional structure, especially regarding the dentition. In this paper, we also comment on the in-group and stem-group Istiodactylidae, including a new definition of the genus *Nurhachius* which was previously limited to its type-species, *Nurhachius ignaciobritoi* from the upper Jiufotang Formation. The new species we described adds to the current knowledge on istiodactylid diversity, including some features previously not reported for the group such as the presence of a dorsal deflection of the palate in *Nurhachius*, in homoplasy with Anhangueria and *Cimoliopterus*.

¹ Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China

² China University of Geosciences, Beijing, China

³ Laboratory of Vertebrate Paleontology and Animal Behavior, Universidade Federal do ABC, São Bernardo, São Paulo, Brazil

⁴ Departamento de Geologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil

⁵ Zoological Museum (SNM), Copenhagen University, Copenhagen, Denmark

Fur Museum (Museum Saling), Fur, Denmark

- 1 A new istiodactylid pterosaur from the Early Cretaceous Jiufotang Formation
- of Chaoyang City, Liaoning Province; and comments on the group

- 4 Xuanyu Zhou ^{1,2}, Rodrigo Vargas Pêgas³, Maria Eduarda de Castro Leal^{4,5}, Niels Bonde⁵
- 5 1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China
- 6 2. China University of Geosciences, Beijing, China
- 7 3. Laboratory of Vertebrate Paleontology and Animal Behavior, Universidade Federal do ABC, São
- 8 Bernardo, São Paulo, Brazil
- 9 4. Departamento de Geologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
- 10 5. Zoological Museum (SNM), Copenhagen University, Copenhagen, Denmark

11

- 12 Corresponding Author:
- 13 Xuanyu Zhou
- 14 Baiwanzhuang Street 26, Beijing, Beijing, 100037, China
- Email address: zhouxy2017@yeah.net
- 16 Rodrigo Vargas Pêgas
- 17 Alameda da Universidade, s/n Anchieta, São Bernardo do Campo SP, 09606-045, Brazil
- 18 Email address: rodrigo.pegas@hotmail.com

19

- 20 **Abstract:** We present a new istiodactylid pterosaur, *Nurhachius luei* sp. nov., based on a complete
- 21 skull and some cervical vertebrae from the lower Jiufotang Formation at Chaoyang city, western
- 22 Liaoning. The specimen preserves some three-dimensional structure, especially regarding the
- dentition. In this paper, we also comment on the in-group and stem-group Istiodactylidae, including
- 24 a new definition of the genus *Nurhachius* which was previously limited to its type-species,
- 25 Nurhachius ignaciobritoi from the upper Jiufotang Formation. The new species we described adds
- to the current knowledge on istiodactylid diversity, including some features previously not reported
- 27 for the group such as the presence of a dorsal deflection of the palate in *Nurhachius*, in homoplasy
- with Anhangueria and Cimoliopterus.

29	
30	Keywords: Istiodactylidae, Jiufotang Formation, Systematics, Taxonomy, Three-dimensional
31	Preservation =
32	
33	Introduction
34	Istiodactylid pterosaurs are characterized by the rhombic and lancet-shaped teeth, long skull with
35	short rostrum, and nasoantorbital fenestra constituting over 50 percent skull length and height
36	(Howse et al., 2001; Andres & Ji, 2006; Lü, et al., 2013). At present, 4 genera and 5 species of
37	istiodactylid pterosaurs (Istiodactylus latidens, I. sinensis Liaoxipterus brachyognathus,
38	Nurhachius ignaciobritoi, Longchengpterus zhaoi) and 3 genera and species of proposed stem-
39	group isuodactylids (Haopterus gracilis, Hongshanopterus lacustris, Archaeoistiodactylus
40	linglongtaensis) have been reported (Lü et al., 2013). However, Longchengpterus zhaoi has been
41	interpreted by Lü et al. (2008) as a junior synonym of Nurhachius ignaciobritoi, a view that is
42	followed here. In this way, Nurhachius ignaciobritoi would be the only Chinese istiodactylid
43	species represented by two specimens so far. All istiodactylid pterosaurs are from the Jiufotang
44	Formation of northeastern China to the exception of Istiodactylus latidens (from the Vectis
45	Formation of the Wealden on Isle of Wight, Southern England). Proposed stem-group
46	istiodactylids come from Northeastern China and surrounding area: Haopterus gracilis from the
47	Yixian Formation, Hongshanopterus lacustris from Jiufotang Formation, and
48	Archaeoistiodactylus linglongtaensis from Tiaojishan Formation (Middle Jurassic). Apart from the
49	latter, these Chinese pterosaurs are all from the Jehol Biotas (see Chang et al. 2003). Still, the stem-
50	istiodactylid nature of Archaeoistiodactylus linglongtaensis has been questioned by Sullivan et al.
51	(2014).

- 52 The Jiufotang Formation is known worldwide for its large quantity of fossils, some showing very
- 53 good preservation. A lot of plants, insects, fishes, mammals, birds, non-avian dinosaurs and
- 54 pterosaurs wa scovered in Jiufotang Formation (Wang X, 2018; Meng et al., 2011; Wang M and
- Zhou, 2019; Yao et al., 2019, mainly from the lower part, Boluochi Beds (see Chang et al. 2003).
- 56 By the end of 2016 species of pterosaurs from Jiufotang Formation have been reported (Andres
- 57 & Ji, 2006; Dong & Lü, 2005; Dong et al., 2005; Jiang et al., 2016; Rodrigues et al., 2015; Li et


```
al.,2003; Lü & Ji, 2005a; Lü & Yuan, 2005; Lü et al., 2006b, 2007, 2008a; Wang L et al., 2006;
58
     Wang X L & Zhou, 2003a, 2003b; Wang X L et al., 2005, 2008a, 2008b, 2012, 2014b). In this
59
     paper we describe another species of istiodactylid pterosaur from the Jiufotang Formation. The
60
     material consists of the three-dimensional skall and some vivial vertebrae (fig. pp. 81-82 in Lü
61
     et al. 2013, where it is called an unnamed istiodactylid) from the basal part of Jiufotang Fm.
62
     collected in Huanghuatan village, Dapingfang town, Chaoyang city, western Liaoning province.
63
     The age of the Jiufotang Fm is now considered Aptian (according to Gradstein et al. 2004 being
64
65
     112 – 125 Ma old) as the basalts overlying the formation in Inner Mongolia (or rather intruding
     according to He et al. 2004) have been dated ca. 110 Ma (according to Chang et al. [2003 - that is
66
67
     Early Albian]). The lower part of Jiufotang Fm., called Beluochi Bed (or Member), is very rich in
     fossils, especially birds, fishes and insects, and is often characterized as Jinanichthys – Cathayornis
68
69
     fauna, that also comprises small feathered dinosaurs like the four-winged Microraptor (Xu et al.
70
     2003) and several pterosaurs (Chang et al., 2003; Zhou et al., 2003). This part has been dated ca
71
     120 Ma by He et al. (2004), that is Early Aptian. And Wang et al. (2001) dated the lowermost part
     of Yixian Fm. as 128.4 Ma, implying that Yixian Fm. with four fossil rich levels covers about 8-9
72
     Ma., from E. Barremian to E. Aptian, and its thickness according to Chang et al. (2003) is 800 –
73
     1400 m. But of this only 2-300 m are sediments with ashlayers, as basalts and lavas cover as much
74
     as 550 – 1200 m. The Jiufotang Fm. according to Chang et al. (2003, fig 12) is 800 – 1200 m thick,
75
     but comprises no basalts nor lavas, only sandstones, shales and tuffs like the sediments of Yixian
76
     Fm.
77
     Jinanicthys (Zhang et al. 1994 for Lycoptera longicephalus) in Jiufotang Fm. has replaced another
     small osteoglossomorph (bony tongue) teleostean fish, Lycoptera, that is extremely common with
79
     many species in the Yixian Fm. below, and in northern Asia generally (Chang & Jin 1996 on China,
80
     Zhang & Jin 2003 on Asia). These two formations traditionally constitute the Jehol Group with the
81
82
     famous Jehol biotas., that occur also in four rich levels from basis to top in Yixian Fm. (Chang et
     al. 2003). The Jehol biotas are often characterized as Eoestheria-Ephemopteris (now
83
84
     Epicharmeropsis)-Lycoptera assemblages (Chang et al. 2003), and the most famous birds in these
     faunas are species of Confuciusornis, the early bird with beak and without teeth (see also Hou,
85
86
     1995). The most common dinosaur is the small, primitive ceratopsian Psittacosaurus (Xu & Wang
     1998 - and also its nests with many babies), and also the bird Jeholornis. Reviews also by Wang
87
```


- 88 et al. (2000) and Zhou et al. (2003).
- More recently the Dabeigou Fm. of Hebei Provins with ages 131 and 134 Ma has been suggested
- as the basal formation in the Jehol Group with the lowermost Jehol Biota (He et al., 2006), so that
- 91 the Jehol Group and biotas would then cover at least Hauterivian, Barremian and some of Aptian,
- about 15-20 Ma or more in the middle part of Early Cretaceous. Meaning there are developing
- ecosystems (Zhou et al., 2003), but no such thing as a general "Jehol fauna" with a characteristic
- 94 diversity, but a sequence of rich and quite different biotas, only two of which are very rich in
- pterosaurs (in the early part of both formations see Chang et al. 2003 and Unwin et al. 2000).
- It is important to note, if the above is correct, that the sediments of Jiufotang Fm. are much thicker
- 97 than those of Yixian Fm, that covers about 9 Ma. So Jiufotang Fm. may cover well over 10 Ma.
- And the new species reported herein is from the basal part, while the type species of the genus is
- 99 from upper part of Jiufotang Fm. 10 Ma or more apart.
- 100 The new species we describe here allows us to report on new features within the Istiodactylidae,
- increasing current knowledge on their morphological diversity and providing new information on
- interspecific relationships of the group.

104

Material and Methods

- The phylogenetic analysis we perform here is based on a data matrix modified from Holgado *et al.*
- 106 (2019), with the inclusion of characters by Lü et al. (2008), Witton (2012) and Andres et al. (2014),
- as well as of the following taxa: Archaeoistiodactylus linglongtaensis, Kunpengopterus sinensis,
- 108 Liaoxipterus brachyognathus and Nurhachius luei sp. nov. (see Supplementary Material). The
- analysis was conducted on TNT (Goloboff et al., 2008) using Traditional Search, 10000
- replications, random seed = 0 and collapsing trees after search. A text file with our character list
- and a TNT file with our data matrix are available as Supplementary Material.
- The electronic version of this article in Portable Document Format (PDF) will represent a published
- work according to the International Commission on Zoological Nomenclature (ICZN), and hence
- the new names contained in the electronic version are effectively published under that Code from
- the electronic edition alone. This published work and the nomenclatural acts it contains have been
- registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life

117	Science Identifiers) can be resolved and the associated information viewed through any standard	
118	web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this	
119	publication is: urn:lsid:zoobank.org:pub:03EF173E-4AB5-4C74-B80C-A6AAFA65E61C. The	
120	online version of this work is archived and available from the following digital repositories: PeerJ,	
121	PubMed Central and CLOCKSS.	
122		
123	Results	
124		
125	Systematic Paleontology	
126	Pterosauria Kaup, 1834	
127	Pterodactyloidea Plieninger,1901	
128	Istiodactylidae Howse et al., 2001	
129	Nurhachius Wang et al., 2005	
130	Type species. Nurhachius ignaciobritoi Wang et al., 2005	
131	Synonym. Longchengpterus zhaoi Wang et al., 2006	
132	Emended Diagnosis. Istiodactylids that share the following combination of features:	
133	(synapomorphies marked with an asterisk): slight dorsal deflection of the palate present*; orbit	
134	piriform*; craniomandibular joint located under the anterior margin of the orbit*; lower temporal	
135	fenestra slit-like; dentary symphysis about one third the length of the mandible; dentary symphysis	
136	with gradual taper of the lateral margins; triangular, laterally compressed teeth lacking carinae;	
137	anteriormost teeth relatively longer than others; crowns with both labial and mesial slight	
138	concavities*.	
139		
140	Nurhachius luei sp. nov.	
141	ZooBank LSID for species. urn:lsid:zoobank.org:act:6F93DC7F-20A7-4CBC-8A38-	
142	1D6C802A1906.	

- Etymology. The specific name honors the late Prof. Junchang Lü, who has made great contributions to the study of pterosaurs.
- 145 Holotype. Skull d some cervical vertebrae prescived (BPMC-0204). The specimen is
- 146 permanently deposited and available for researchers at the Beipiao Pterosaur Museum of China
- 147 (Fig. 1).
- 148 **Type Locality and Horizon.** Huanghuatian Village, Dapingfang Town, Chaoyang City, Liaoning
- 149 Province (Fig. 2); lower part of the Jiufotang Formation.

- Diagnosis. The new species can be diagnosed based on the following combination of features:

 quadrate inclined at 150°; medial process of the pterygoid expanded, plate-like; dentary sulcus
- extending until the first pair of dentary teeth; odontoid process lacking foramina; odontoid process
- with a smooth occlusal surface; odontoid process vertical; hyoid accounting for 60% of mandibular
- length; 12 tooth positions in each side of the upper jaw; 11 tooth positions in each side of the lower
- iaw; dentary teeth extending beyond the dentary symphysis.

157

158

Description

- 159 **Skull generalities.** The skull is exposed in right lateral view, with some palatal elements visible
- in dorsal view and the mandible lying in an oblique dorsolateral view. It is 300 mm long from the
- squamosal to the premaxillary tip, and 74 mm high at its greatest height, which is at the level of
- the occiput. The nasoantorbital fenestra is elongated, corresponding to 45% of total skull length
- (premaxilla to squamosal) and 55% of total jaw length (craniomandibular joint to premaxilla).
- Anterior to it, the rostrum exhibits a slight dorsal inclination of its long axis, similarly to other
- 165 istiodactylids (Wang et al., 2005; Andres & Ji, 2006; Lü et al., 2008; Witton, 2012), as well as
- 166 Ikrandraco avatar and anhanguerians (e.g. Kellner & Tomida, 2000; Wang et al., 2014; 2015;
- Holgado et al., 2016) but unlike boreopterids (Lü & Ji, 2005; Lü, 2010; Jiang et al., 2014). The
- palate exhibits a strong palatal keel extending from prenarial rostrum until the anterior region of
- the nasoantorbital fenestra. The craniomandibular joint levels with the anterior margin of the orbit.
- similarly to Nurhachius ignaciobritoi (both specimens: its holotype plus former holotype of
- 171 "Longchengpterus zhaoi"), Anhanguera spp. and Linlongopterus jennyae but unlike Istiodactylus

in which it is located anterior to the orbit, as well as *Ikrandraco avatar*, *Hamipterus tianshanensis* 172 and Ludodactylus sibbicki where the joint is located under the middle of the orbit (Kellner & 173 Tomida, 2000; Frey et al., 2003; Wang et al., 2005; 2014; 2015; Andres & Ji, 2006; Lü et al., 2008; 174 Witton, 2012; Rodrigues et al., 2015; Holgado et al., 2019). The orbit is piriform, with the thinnest 175 region being the ventral region, without any suborbital vacuity. This is similar to the condition seen 176 in Nurhachius ignaciobritoi (as seen in second specimen) and different from the rounded orbit of 177 Istiodactylus with a suborbital vacuity (see Andres & Ji, 2006; Lü et al., 2008; Witton, 2012). The 178 infratemporal fenestra is elliptical and shorter than the orbit. The supratemporal fenestra is poorly 179 preserved. 180 **Premaxilla and Maxilla.** The premaxilla is a long, slender bone that forms almost the entire dorsal 181 margin of the skull, overlying the maxilla and the nasoantorbital fenestra. The maxilla is a long, 182 narrow bone has been lateral. The premaxilla and maxilla are fused to such a degree that the suture 183 between the two is not discernable. It is not known how much each constitutes the tooth row. There 184 185 is no premaxillary crest, as in other istiodactylids and *Haopterus*. Nasal and Lacrimal. The nasal and lacrimal are fused, forming a nasolacrimal that forms the 186 upper anterior margin of the orbit and the posterodorsal margin of the nasoantorbital fenestra. The 187 anterior limit of the nasolacrimal coincides with the highest point of the nasoantorbital fenestra, as 188 in Nurhachius ignaciobritoi (both specimens) and also Ikrandraco (Wang X. et al., 2005; Wang 189 L. et al., 2006; Andres & Ji, 2006; Lü et al., 2008; Wang et al., 2015), but differently from 190 Istiodactylus latidens and most anhanguerians such as Anhanguera, Tropeognathus and 191 Hamipterus, except for Ludodactylus, in which the highest point is posterior to the anterior limit 192 of the nasolacrimal (Kellner & Campos, 1985; Wellnhofer, 1987; Kellner & Tomida, 2000; Wang 193 et al., 2014; Frey et al., 2003). A nasal descending process cannot be seen in the new specimen, 194 195 being possibly obliterated by matrix. There are no traces of an orbital process of the lacrimal invading the orbit, but the posterior margin of the bone is slightly damaged and a small process 196 similar to the one seen in *Nurhachius ignaciobritoi* (holotype) could have been possibly present 197 and lost (see Wang X. et al., 2005; Wang L. et al., 2006; Andres & Ji, 2006; Lü et al., 2008). The 198 199 lacrimal contacts the lacrimal process of the jugal at about the mid-height of the posterior margin of the nasoantorbital fenestra, and the nasolacrimal is bordered dorsally by the premaxilla. 200 Posteriorly, it contacts the prefrontal. 201

- **Jugal and Quadratojugal.** The jugal is only partially preserved, missing part of the maxillary 202 process and the base of the lacrimal process. The jugal also forms a postorbital process contacting 203 the squamosal, separating the orbit and the infratemporal fenestra. Posteriorly, the jugal contacts 204 the quadratojugal, which forms the ventral margin of the infratemporal fenestra. Posteroventrally, 205 the jugal can also be seen contacting a small portion of the incompletely preserved quadrate on the 206 207 lateral surface of the skull, ventral to the quadratojugal, as in *Nurhachius ignaciobritoi* (holotype), Istiodactylus sinensis and Ikrandraco avatar (Wang et al., 2005; Andres & Ji, 2006; Wang et al., 208 2015). In contrast, the quadratojugal separates the quadrate from the jugal in the lateral skull 209 surface in other forms such as anhanguerians (e.g. Kellner & Tomida, 2000; Frey et al., 2003; 210 Wang et al., 2014) and pteranodontians (Bennett, 2001; Frey et al., 2006). 211
- Quadrate. The quadrate is incompletely preserved. The ventral region of the bone is present, contacting the jugal ventral to the quadratojugal. It is unclear if the articulation with the lower jaw is helical or not. The mid-region of the quadrate is lost, and the dorsal portion can be seen contacting the quadratojugal anteriorly and the squamosal dorsally. The quadrate is posteriorly inclined at an angle of 150°, unlike *Nurhachius ignaciobritoi* (both specimens) in which is inclines at 160° (Wang X. *et al.*, 2006; Wang L. *et al.*, 2006).
- Prefrontal. The prefrontal is a small bone that takes part in the anterodorsal margin of the orbit, contacting the nasolacrimal anteriorly. A suture between these two bones can be seen anteroventrally, but the dorsal and posterior limits of the bone cannot be identified.
- Frontal. The frontal seems to be fused to the premaxilla and parietal, with no visible sutures. However, a round suture between the frontal and postorbital can be seen. It is unclear if the posterodorsal extension forms a blunt, low frontoparietal crest as in *Anhanguera* (see Kellner & Tomida, 2000) or not.
- Parietal and Squamosal. The parietal and squamosal are badly preserved, especially the latter for which its limits cannot be properly identified. The parietal preserves in its surface a fossa that accounts for the medial wall of the supratemporal fenestra, which dorsal limits level with the orbit and extend ventrally until being limited by the region of contact between squamosal and postorbital.
- 230 **Postorbital.** The postorbital in the new specimen is very slender and does not exhibit the same

PeerJ

regular triangular shape that is seen in anhanguerids (e.g. Kellner & Tomida, 2000), instead being 231 more of a three-pointed star as in *Haopterus gracilis* and *Istiodacylus sinensis* (Wang & Lü, 2001; 232 Andres & Ji, 2006). The anterior region of the bone, including the frontal and jugal processes, is 233 very curved, concave and slender (anteroposteriorly compressed), with a round anterior margin 234 taking part in the border of the orbit. Posteriorly, the squamosal process of the postorbital separates 235 the supra and infratemporal fenestrae, being shorter than the other processes. There is no orbital 236 process of the postorbital invading the orbit, unlike Istiodactylus (Andres & Ji, 2006; Witton, 237 2012). 238 **Palatal elements.** Due to taphonomical crushing, some palatal elements are visible in dorsal view, 239 240 though not much details can be extracted. A long, slender vomer can be seen separating the two choanae, as in *Hongshanopterus* (see Wang et al., 2008). The medial process of the right pterygoid 241 242 can be seen. It is plate-like, well-developed and expanded, similar to the condition seen in Hongshanopterus (see Wang et al., 2008) and, to a lesser extent, anhanguerids (e.g. Campos & 243 244 Kellner, 1985; Frey et al., 2003), but differently from the slender condition seen in azhdarchoids (e.g. Pinheiro & Schultz, 2012; Kellner, 2013; Pêgas et al., 2018) or in Nurhachius ignaciobritoi 245 (referred specimen, see Wang et al., 2006; Lü et al., 2008) and Ikrandraco avatar (see Wang et 246 al., 2015). A small portion of the medial process of the ectopterygoid can be seen contacting the 247 248 medial process of the pterygoid, separating the subtemporal and postapalatinal fenestra, as can be seen in Hongshanopterus see Wang et al., 2008) and Nurhachius ignaciobritoi (Fig. 4). 249 Dentary. The two dentaries fuse anteriorly forming a symphysis that accounts for 36% of total 250 mandibular length. On the dorsal surface of the dentary symphysis, a deep and broad dentary sulcus 251 can be seen, extending anteriorly until the level of the first pair of alveoli. The anterior tip of the 252 dentary symphysis exhibits an odontoid process, located in between the first pair of teeth, that is 253 smaller than the teeth and dorsally curved odontoid process lacks any neurovascular foramina 254 piercing its surface, unlike the referred specimen of *Nurhachius ignaciobritoi* (Wang et al., 2006). 255 It is vertically oriented, as the one seen in *Istiodactylus latidens* and *Lonchodraco giganteus* 256 (Witton, 2012; Rodrigues & Kellner, 2013; Martill, 2014) and unlike the subhorizontal odontoids 257 seen in both specimens of Nurhachius ignaciobritoi (Wang X. et al., 2006; Wang L. et al., 2006), 258 and also in *Ikrandraco avatar* (see Wang et al., 2015). The symphysis houses 11 pairs of alveoli, 259 with two pairs of alveoli being present on the separated mandibular rami as well. 260

- Surangular, Articular and Angular. The lateral surface of the posterior region of the mandibular 261 rami is composed by the surangular, angular and articular. A long suture can be seen delineating 262 263 the anterior process of the surangular, dorsal to the dentary. Posteriorly, this bone becomes deeper and contacts the angular, where another suture can be seen. The limit between angular and dentary, 264 however, cannot be observed, nor between the angular and articular. The articular forms the 265 posterior region of the mandible, including the articulation surface for the quadrate and the 266 retroarticular process which is pointed and elongated.
- **Hyoid.** Only the right hyoid can be seen, disarticulated from the left hyoid. Only a small portion 268 269 of the posterior region is missing. It is a rod-like, elongated bone that is positioned from near the region of separation between the mandibular rami until the retroarticular process. 270
- 271 **Dentition.** The dentition comprises 12 tooth positions on each side of the upper jaw and 11 tooth positions on each side of the lower jaw, with the total teeth number being 46. 272
- In the upper jaw, the first two teeth are particularly procumbent. The first teeth forms an angle of 273 130° with the palatal plane, while the second forms and angle of 123°. The third tooth is also 274 slightly procumbent, forming an angle of 100° with the palatal plane. All subsequent teeth are 275 perpendicular to the palatal plane. The first two dentary teeth are also slightly procumbent. The 276 last two right upper alveoli are empty, and the last one is only slightly anterior to the level of the 277 nasoantorbital fenestra. All of the teeth crowns are triangular and laterally compressed, as typical 278 of the Istiodactylidae. They present a crown base mesiodistally inflated. The lingual surface of the 279 crown is concave with a well-marked longitudinal depression and a slight transversal convexity at 280 281 the base, forming a lingual cingulum. The labial surface is mostly convex with a slight concavity on the center of the crown base. No carinae are present. The same configuration can be found on 282 the crowns of the holotype of *Nurhachius ignaciobritoi*. 283
- The first nine pairs of teeth in the upper jaw are large and subequal in size, the length being about 284 285 1.2 cm, the teeth crown equals 0.7 cm, and the width of the socket is 0.4 cm. The minimum teeth measurement is 0.6 cm in length and 0.2 cm in width. All teeth are sharp. 286
- Nurhachius luei sp. nov. also exhibits an interesting pattern of teeth reposition. In the tenth 287 alveolous of the right dentary, two teeth are present: a large, well-developed one, and a reposition 288 289 tooth still growing. The reposition tooth is erupting anterolaterally to the larger one, instead of

290 posteromedially, as reported before for pterosaurs such as in Anhanguera (e.g. Kellner & Tomida,

291 2000; Fastnatch, 2001).

Cervical vertebrae. There are seven cervical vertebrae preserved, including the atlantoaxis which 292 is fused. They are preserved in articulation, except for the seventh which is disarticulated. The 293 294 third, fourth and fifth cervicals are of similar length, longer than the subsequent ones and the atlantoaxis. The neural spine is damaged in most cervicals, except for the fourth in which is 295 configuration can be assessed. In this vertebra, the neural spine is high and exhibits a peculiar 296 shape, with the anterior margin being anterior inclined. The dorsal margin is gently rounded. In all 297 preserved cervicals, the postzygapophyses are posterodorsally oriented, positioned dorsal to the 298 299 level of the prezygapophyses. The posterior cotyles extend further posteriorly than the postzygapophyses. Under the neural arch, on the posterior half of the centrum, a large pneumatic 300 301 foramen can be seen in cervicals 3 through 7.

302

303

Phylogenetic analysis results

- Our analysis produced 51 minimum-length trees with 358 steps, consistency index of 0.644 and
- retention index of 0.867. Under the topology of our strict consensus tree (Fig. 3), as suspected by
- Witton (2012), Hongshanopterus and Haopterus are closely related to the Istiodactylidae but fall
- outside of it. As phylogenetically defined by Andres et al. (2014), the Istiodactylidae refers to the
- 308 least inclusive clade comprising *Nurhachius* and *Istiodactylus*.
- 309 In the present analysis, such clade includes Nurhachius (with the type and the new species),
- 310 Liaoxipterus brachyognathus and the genus Istiodactylus. The species Nurhachius ignaciobritoi
- 311 and N. luei sp. nov. were recovered as sister-taxa, corroborating their congeneric status.
- 312 Istiodactylus latidens and Istiodactylus sinensis also formed sister-groups, with Liaoxipterus as a
- 313 sister-group to *Istiodactylus*.
- The genus *Istiodactylus* was recovered based on the following 5 synapomorphies: character 11(1),
- suborbital opening: present; 25(0), length of prenarial rostrum relative to the skull length: reduced,
- under 20%; 56(1), jugal, posterior process, orbital process: present; and 96(1), teeth, sharp carinae:
- present. This genus shares with *Liaoxipterus brachyognathus* characters: 24(1), jaws, lateral taper:
- subparallel; 77(1) mandibular rostral end, extension of the contact surface of opposing dentaries:

- shorter than 33% of mandible length; 78(0), mandibular rostral end, shape: rounded.
- 320 The genus *Nurhachius* is characterized by the following 3 synapomorphies: character 7(2), orbit,
- shape: piriform; 58(2), cranio-mandibular articulation, position relative to orbit: under anterior
- margin of orbit; and 102(1), palate, dorsal deflection: present. This character was recovered as a
- 323 homoplasy with Anhangueria + *Cimoliopterus*.
- 324 The Istiodactylidae, or Nurhachius + (Liaoxipterus + Istiodactylus), share the following 8
- 325 synapomorphies: 4(1), external naris and antorbital fenestra (or nasoantorbital fenestra), ventral
- margin length relative the skull length: longer than 40% of skull length; 10(1), orbit, position:
- reaching high in the skull, with the dorsal margin surpassing the dorsal margin of the nasoantorbital
- fenestra; 23(1), skull, height, exclusive of cranial crests: over 25% of jaw length; 54(2) jugal,
- lacrimal process, inclination: inclined posteriorly; 59(0), helical jaw-joint, absent; 71(3), palatal
- occlusal surface: strong palatal ridge confined to posterior portion of the palate; 86(3): teeth,
- position and presence: confined to about the anterior third of the jaws.
- 332 Hongshanopterus was recovered as the sister-group of the Istiodactylidae based on character 95(1),
- teeth, laterally compressed and triangular: present; and 97(0), teeth, anterior positions, relative
- 334 elongations: under twice as wide.
- 335 Haopterus gracilis was recovered as the next successive-sister group based on character 86(2),
- teeth, position and presence: confined to anterior half of the jaws.
- 337 All of these forms (Istiodactylidae, *Hongshanopterus* and *Haopterus*) are united with *Ikrandraco*
- based on characters 53(1), jugal, lacrimal process, width: narrow; 57(3), quadrate, inclination
- relative to ventral margin of skull: 150° or above; and 99(1), teeth, crown base, lingual cingulum:
- present. The last character is also present in *Lonchodraco*.

342 **Discussion**

341

- For over a century, *Istiodactylus latidens* has been the only known istiodactylid (Seeley, 1901;
- Witton, 2012). In the present century, in just a few years, a profusion of new istiodactylids have
- been reported from the Jiufotang Formation, with *Nurhachius ignaciobritoi*, described in 2005;
- 346 Istiodactylus sinensis and "Longchengpterus zhaoi", both described in 2006; and Liaoxipterus

brachyognathus, originally described in 2005 as a purported ctenochasmatid and later referred to the Istiodactylidae in 2008 (see Dong & Lü, 2005; Wang X. et al., 2005; Wang L. et al., 2006; 348 Andres & Ji, 2006; Lü et al., 2008). With a total of 6 proposed species of istiodactylids coming 349 from the Jiufotang Formation, their taxonomy has been entangled with a series of proposed 350 synonymies. 351 Lü et al. (2008) considered that "Longchengpterus zhaoi" and Nurhachius ignaciobritoi were 352 indistinguishable, sharing general skull shape and tooth morphology, and synonymized them. 353 Subsequently, Witton (2012) provisionally considered them as valid and distinct, mentioning that 354 355 these taxa had been coded differently in his analysis though without discussing it further. In the data matrix of Witton (2012), it can be seen that they were coded differently in tooth count and 356 spacing, with Nurhachius exhibiting more numerous and spaced teeth. However, both exhibit a 357 similar number of teeth (13 pairs in the holotype of N. ignaciobritoi and 12 pairs in "L. zhaoi") 358 and similar spacing (Fig. 4). Furthermore, we notice here that the holotypes of "Longchengpterus 359 zhaoi" and Nurhachius ignaciobritoi further share several traits that are unique within 360 istiodactylids (Fig. 4): the particularly high quadrate inclination (160°), the reduced medial process 361 362 of the pterygoid, the upper dentition extension (ending at the level of the nasoantorbital fenestra), the slight constriction between tooth crown and root, and the subhorizontal odontoid process. In 363 364 this way, we follow Lü et al. (2008) in considering these two taxa as synonyms. Nurhachius luei sp. nov. can be clearly identified as an istiodactylid based on the following 365 combination of features: external naris and antorbital fenestra longer than 40% of skull length, 366 dentary symphysis shorter than 33% of mandible length; and triangular, laterally compressed teeth. 367 Among istiodactylids, as mentioned above, it shares with *Nurhachius ignaciobritoi* the following 368 features: a piriform orbit; a dorsally deflected palate; and a cranio-mandibular articulation 369 370 positioned under the anterior margin of the orbit (Fig. 4). It must be noticed that all these features can be assessed in the holotype of *Nurhachius ignaciobritoi*, while only the first and third can be 371 seen in the referred specimen (the former holotype of "Longchengpterus zhaoi"). Of particular 372 note is the presence of a slight dorsal deflection of the palate, which can be seen in the holotype of 373 Nurhachius ignaciobritoi (see Fig. 5), despite not having been mentioned in the original 374 description (Wang et al., 2005), as well as in the holotype of the new species N. luei. This character 375 was utilized in a data matrix for the first time by Rodrigues & Kellner (2013), who proposed it as 376

a synapomorphy of Anhangueria + Cimoliopterus. In this way, in the present analysis, this feature 377 represents a homoplasy between *Nurhachius* and Anhangueria + *Cimoliopterus*. 378 The two species of the genus Nurhachius differ in that N. luei sp. nov. exhibits the following 379 features: quadrate inclined at 150°; medial process of the pterygoid expanded, plate-like; dentary 380 sulcus extending until the first pair of dentary teeth; odontoid process lacking foramina; odontoid 381 process with a smooth occlusal surface; odontoid process vertical; hyoid accounting for 60% of 382 mandibular length; and dentary teeth extending beyond the dentary symphysis. Nurhachius 383 ignaciobritoi, on the other hand, exhibits: quadrate inclined at 160°; medial process of the 384 pterygoid reduced, acntary sulcus extending until the sixth pair of dentary teeth; odontoid process 385 bearing foramina; odontoid process with a sharp occlusal surface; odontoid process subhorizontal; 386 hyoid accounting for 60% of mandibular length and dentary teeth confined to the dentary 387 symphysis (Fig. 4). 388 We note that both specimens of *Nurhachius ignaciobritoi* come from the upper part of the Jiufotang 389 390 Formation, while the holotype of the newly described species, N. luei, comes from the lowermost 391 part of the Jiufotang Formation. This stratigraphic segregation might be suggestive of an anagenetic link between them, similarly to what was proposed by Bennett (1994) for *Pteranodon* 392 longiceps (from the upper Niobrara Formation) and Pteranodon sternbergi (from the lower 393 Niobrara Formation), per see discussion on the taxonomy of the *Pteranodon*-complex (Kellner, 394 2010; 2017; Martin-Silverstone et al., 2017; Acorn et al., 2017). 395 Concerning other istiodactylids, Wang et al. (2008) were unable to differentiate Liaoxipterus 396 397 brachyognathus from "Longchengpterus zhaoi", both from the Jiufotang Formation, and suggested that they could thus represent synonyms (the former having priority). However, as observed by Lü 398 et al. (2008), the anterior terminus of the dentary symphysis is rounded in Liaoxipterus 399 brachyognathus (as is in Istiodactylus latidens) whilst it is triangular in "Longchengpterus zhaoi". 400 Furthermore, as coded by Andres et al. (2014), "Longchengpterus zhaoi" exhibits an attenuated 401 taper of the jaws, while in *Liaoxipterus brachyognathus* the lateral margins of the jaw are 402 403 subparallel (Fig. 6), as in *Istiodactylus latidens*. We further note that the dentary symphysis of Liaoxipterus brachvognathus is relatively shorter than that of "Longchengpterus zhaoi": their 404 length/width ratios are, respectively, 0.43 and 0.27. It should be noticed that, in the seventh figure 405 by Martill (2014) the dentary symphysis of "Longchengpterus zhaoi" is incorrectly illustrated, 406

depicted as much shorter, with the dentary sulcus having been mistaken for the separation of the 407 mandibular rami. The actual configuration can be clearly assessed in the description by Lü et al. 408 409 (2008) and in Fig. 4. In this way, we follow Lü et al. (2008) and Witton (2012) in considering Liaoxipterus brachyognathus as distinct from "Longchengpterus zhaoi", which we consider as 410 synonymous with Nurhachius ignaciobritoi following Lü et al. (2008) as expressed above. 411 412 Lü et al. (2008) and Witton (2012) noticed that comparisons between Liaoxipterus brachyognathus and Istiodactylus sinensis were very limited since the former is represented by a partial mandible 413 exposed in occlusal view, while the latter is a partially complete skeleton including a mandible 414 exposed in lateral view. However, according to Lü et al. (2008) and the dataset of Andres et al. 415 (2014), Liaoxipterus brachyognathus differs from the genus Istiodactylus in the lack of mesial 416 carinae. We thus follow these authors in considering *Liaoxipterus brachyognathus* as a valid taxon. 417 As expressed above in the Results section, *Istiodactylus* was recovered as monophyletic group 418 comprising I. latidens and I. sinensis, forming a sister-group to Liaoxipterus, followed by 419 420 Nurhachius, corroborating previous results by Longrich et al. (2018). In our analysis, inclusion of the newly reported species Nurhachius luei resulted in its recovery as the sister-group of 421 Nurhachius ignaciobritoi, supporting their congeneric status. In this way, the internal relationships 422 found herein for the Istiodactylidae are in accordance with those found by Andres et al. (2014), 423 with the addition of the new species. 424 Haopterus gracilis, from the Yixian Formation, was first described by Wang & Lü (2001) and 425 interpreted as a member of the Pterodactylidae. However, subsequently, Lü et al. (2008; 2009) 426 427 recognized its pterodactyloid nature and reinterpreted it as related to istiodactylids based on the similarities in tooth morphology. *Hongshanopterus lacustris*, from the Jiufotang Formation, was 428 described by Wang et al. (2008) and interpreted as a primitive istiodactylid. Witton (2012) 429 430 recovered a clade joining Istiodactylus, Liaoxipterus, Longchengpterus and Nurhachius to the exclusion of *Haopterus* and *Hongshanopterus*, and restricted the family to the former four taxa. 431 Haopterus and Hongshanopterus were recovered as indeterminate pteranodontoids, in a polytomy 432 with *Pteranodon* + *Coloborhynchus* + Istiodactylidae (Witton, 2012). 433 Subsequently, in the phylogenetic analysis of Andres et al. (2014), Haopterus gracilis was 434 recovered as a basal lophocratian and *Hongshanopterus* as a basal ornithocheiromorph, though the 435 placement of these taxa have not been the focus of their work nor been discussed. The 436

Istiodactylidae was phylogenetically defined by Andres et al. (2014) as the least inclusive clade 437 containing *Istiodactylus* and *Nurhachius*. More recently, Holgado et al. (2019), also not focusing 438 nor discussing these taxa, have nonetheless presented a phylogenetic analysis in which 439 Hongshanopterus appeared as the sister-group of the Istiodactylidae and Haopterus was recovered 440 as a basal ornithocheiraean. In turn, Archaeoistiodactylus linglongtaensis, described by Lü & 441 Fucha (2010) and interpreted as the basal-most stem-istiodactylid, has never been included in any 442 phylogenetic analysis so far, which is done here for the first time. 443 Our present analysis is based on that of Holgado et al. (2019), with the inclusion of characters (see 444 Supplementary Material) based on Lü et al. (2008), Witton (2012) and Andres et al. (2014). We 445 present a topology with further resolution that corroborates the interpretations of *Haopterus* and 446 Hongshanopterus as closely related to the Istiodactylidae, as defended by Lü et al. (2008) and 447 Wang et al. (2008), respectively. Under our new topology, Hongshanopterus is again recovered as 448 the sister-group of the Istiodactylidae, as in the analysis by Holgado et al. (2019), Hongshanopterus 449 450 lacustris shares with istiodactylids the presence of triangular, laterally compressed teeth in the rostrum. *Haopterus* is recovered as the sister-group of the Istiodactylidae + *Hongshanopterus*, 451 supported by a dentition restricted to the anterior half of the jaws. These taxa further share the 452 presence of a lingual cingulum, which is also shared with *Ikrandraco avatar* and *Lonchodraco* 453 454 giganteus. Ikrandraco avatar also shares with istiodactylids a narrow lacrimal process of the jugal and of a quadrate inclined at 150° or over (unknown in *Haopterus* and *Hongshanopterus*). It must 455 be further noted that at least *Haopterus* and *Ikrandraco* exhibit, at least on the posterior dentition, 456 a certain degree of lateral compression of the teeth (Lü & Wang, 2001; Wang et al., 2015), though 457 not to the same degree seen in istiodactylids or *Hongshanopterus*. The same seems to be true for 458 the last two mandibular alveoli preserved in the holotype of *Lonchodraco giganteus* (see Rodrigues 459 & Kellner, 2013), but the posterior region of the jaws are not preserved and further material would 460 be needed to confirm this feature for this taxon. We highlight that a close relationship between 461 Ikrandraco, Lonchodraco and istiodactylids is proposed here for the first time, and that further 462 data on the osteology of these forms are needed in order to corroborate this or not. In previous 463 phylogenetic analyses, *Ikrandraco* has been recovered in a polytomy involving Istiodactylidae, 464 Cimoliopterus and Anhangueria (Wang et al., 2015) and Lonchodraco outside of the Lanceodontia 465 (Longrich et al., 2018). 466

Archaeoistiodactylus linglongtaensis is a taxon based on a single, holotypic specimen comprising 467 fragments of skull bones and one displaced maxillary tooth, a partial lower jaw in dorsal view with 468 two teeth in place, an almost complete wing lacking scapulocoracoid, a femur and a tibia. It comes 469 from the Tiaojishan Formation (Bathonian-Oxfordian, Middle Jurassic), having been described by 470 Lü & Fucha (2010). These authors interpreted it as the most primitive stem-istiodactylid. Lü & 471 Fucha (2010) noted that the specimen shared with istiodactylids teeth with triangular crowns, as 472 well as an odontoid process on the lower jaw. It should be noticed that this odontoid process was 473 mistaken for a mid-line, unpaired tooth by Sullivan et al. (2014), but that it was explicitly described 474 as a bony process by Lü & Fucha (2010). They further noted that the single preserved maxillary 475 tooth is recurved, as in *Hongshanopterus* (see Lü & Fucha, 2010), and also reported on a warped 476 deltopectoral crest, which is diagnostic of the Pteranodontoidea (Kellner, 2003). Still, they noted 477 that the new taxon differed from istiodactylids in exhibiting a relatively short fourth metacarpal 478 and subequal tibia, second and third phalanges of the wing digit. If indeed a stem-istiodactylid, this 479 taxon would represent one of the oldest occurrences of the Pterodactyloidea, possibly older than 480 the Callovian-Oxfordian basalmost pterodactyloid Kryptodrakon progenitor (see Andres et al., 481 482 2014). Subsequently, this identification was disputed by Martill & Etches (2013), who affirmed, though 483 484 without presenting any justifications, that the specimen was probably a badly preserved specimen of Darwinopterus. Later, Sullivan et al. (2014) considered that the short fourth-metacarpal could 485 486 be indicative of a non-pterodactyloid nature, as well as the long humerus and short first wing phalanx, all of which are typical of non-pterodactyloid pterosaurs (Kellner, 2003; Unwin, 2003; 487 488 Andres et al., 2010). This, allied to the presence of a confluent nasoantorbital fenestra, led Sullivan et al. (2014) to interpret Archaeoistiodactylus as a basal monofenestratan. Basal monofenestratans 489 comprise the Darwinoptera, which encompass, from the Tiaojishan Formation or Daohugou Beds, 490 the wukongopterids Wukongopterus, Darwinopterus and Kunpengopterus (see Wang et al., 2009; 491 2010; Lü et al., 2009; 2011), the non-wukongopterid darwinopteran Pterorhynchus (Czerkas & Ji, 492 2002; Andres et al., 2014), and possibly also Changchengopterus (Wang et al., 2010; but see 493 Andres et al., 2014); and the possible wukongopterid Cuspicephalus scarfi from the Brittish 494 Kimmeridge Clay Formation (Martill & Etches, 2013). 495

The results of our phylogenetic analysis corroborate the interpretation of Sullivan et al. (2014). An

496

following pterodactyloid features; humerus length under 1.5 times metacarpal IV length; ulna 498 499 under double the length of metacarpal IV; and femur subequal to or shorter than metacarpal IV. The humerus of Archaeoistiodactylus is crushed and the original orientation of the deltopectoral 500 crest cannot be assessed, but it can be seen that it is confined to the proximal region of the humerus, 501 differently from pterodactyloids (e.g. Wang et al., 2009). Archaeoistiodactylus linglongtaensis 502 also lacks pneumatic foramina on the centrum of the mid-cervical vertebrae, which is a diagnostic 503 feature of the Dsungaripteroidea (the least inclusive clade containing Nyctosaurus and 504 Quetzalcoatlus, which includes the Istiodactylidae; Kellner, 2003; Andres et al., 2014). 505 Furthermore, Archaeoistiodactylus exhibits low neural spines, similarly to wukongopterids (see 506 Wang et al. 2009; 2010; Lü et al., 2009; 2011; Cheng et al., 2017) and differently from 507 istiodactylids (see Wang et al., 2006; Lü et al., 2008). For these reasons, Archaeoistiodactylus can 508 be placed outside of the Pterodactyloidea. 509 510 The dentition of Archaeoistiodactylus is indeed reminiscent of the Istiodactylidae due to the triangular aspect in lateral view (Lü & Fucha, 2010), but this feature is also present in the 511 512 wukongopterids Wukongopterus lii, Darwinopterus robustodens, Darwinopterus linglongtaensis and Kunpengopterus sinensis, though not in Darwinopterus modularis (see Wang et al. 2009; 513 514 2010; Lü et al., 2009; 2011; Cheng et al., 2017). Furthermore, in Archaeoistiodactylus the alveoli are circular (Lü & Fucha, 2010), implying in the presence of conical teeth (as in wukongopterids), 515 and not labiolingually compressed triangular teeth (as in istiodactylids). The presence/absence of 516 an odontoid process in the lower jaw cannot be confidently assessed in Wukongopterus or 517 Darwinopterus, but can be seen in a specimen referred to Kunpengopterus sinensis (see Cheng et 518 al., 2017), in convergence with istiodactylids. Finally, we further notice that Archaeoistiodactylus 519

istiodactylid nature for Archaeoistiodactylus linglongtaensis is not supported due to the lack of the

shares with *Darwinopterus* and *Kunpengopterus* (but not *Wukongopterus*) the subequal second and

third phalanges of the wing digit. In this way, we regard Archaeoistiodactylus linglongtaensis to

represent a wukongopterid closely related to Darwinopterus or Kunpengopterus. However, it must

be noted that we were unable to access the specimen first-hand and further scrutiny is desirable in

order to confirm, or not, these interpretations.

525

526

521

522

523

Conclusions

528

529

530

531532

533

534

535

536

537

538

The new specimen we describe here represents a second species for the genus Nurhachius,
previously restricted to its type-species Nurhachius ignaciobritoi (=Longchenpterus zhaoi). Of
particular note is the presence of a slight dorsal deflection of the palate, as a synapomorphy of the
genus, previously thought to be restricted to Anhangueria and Cimoliopterus. The holotype of
Nurhachius luei sp. nov. also show a novel feature for pterosaurs, which is the growing of
reposition tooth in an anterolateral position relative to the older tooth. The new species shows that
the morphological diversity within istiodactylids is higher than previously thought. Furthermore,
we corroborate here the position of Hongshanopterus and Haopterus as stem-istiodactylids, further
proposing that Ikrandraco and Lonchodraco are probably more related to them than to other
lanceodontians. We also corroborate the recent reinterpretation of Archaeoistiodactylus
linglongtaensis as a non-pterodactyloid monofenestratan, and more specifically as a
wukongopterid.

539

540

Acknowledgements

- We thank Shu'an Ji (IG-CAGS, Institute of Geology, Chinese Academy of Geological Sciences)
- and Xuefang Wei (IG-CAGS) for assisting us in the whole process. XZ was funded by the National
- Natural Science Foundation of China (grant no. 41672019, 41688103). RVP thanks Kamila
- Bandeira, Lucy Souza and Natan Brilhante (Museu Nacional/UFRJ) for technical help with image
- softwares. Thanks to Cunyu Liu (Beipiao Pterosaur Museum of China), Dongyu Hu (Shenyang
- 546 Normal University), Xiaolin Wang (IVPP, Institute of Vertebrate Paleontology and
- Paleoanthropology), and Shunxing Jiang (IVPP) for access to specimens under their care.

548

549

References

- Acorn, J. H., Martin-Silverstone, E., Glasier, J. R., Mohr, S., & Currie, P. J. (2017). Response to
- Kellner (2017) 'Rebuttal of Martin-Silverstone, E., JRN Glasier, JH Acorn, S. Mohr, and PJ
- 552 Currie, 2017'. Vertebrate Anatomy Morphology Palaeontology, 3, 90-92.
- Andres B, Ji Q. 2006. A new species of Istiodactylus (Pterosauria, Pterodactyloidea) from the
- Lower Cretaceous of Liaoning, China. *Journal of Vertebrate Paleontology*, 26(1), 70-78.

- Andres, B., Clark, J. M., & Xing, X. (2010). A new rhamphorhynchid pterosaur from the Upper
- Jurassic of Xinjiang, China, and the phylogenetic relationships of basal pterosaurs. *Journal of*
- *Vertebrate Paleontology*, 30(1), 163-187.
- Andres, B., Clark, J., & Xu, X. (2014). The earliest pterodactyloid and the origin of the
- group. Current Biology, 24(9), 1011-1016.
- Bennett, C. S. (1994). Taxonomy and systematics of the late Cretaceous pterosaur Pteranodon
- (Pterasauria, Pterodactyloidea). Occasional papers of the Naturtal history museum/The Univ.
- *of Kansas* (169): 1-70.
- Bennett, S. C. (2001). The osteology and functional morphology of the Late Cretaceous pterosaur
- Pteranodon Part I. General description of osteology. *Palaeontographica Abteilung A*, 1-112.
- 565 Campos, D.A., Kellner, A. W. A. (1985). Panorama of the flying reptiles study in Brazil and South
- America. *Anais da Academia Brasileira de Ciências* 57: 453–466.
- 567 Chang, M. M. & Jin, F. (1996) Mesozoic fish faunas of China. Pp. 461-478 in Arratia, G. & G.
- Viohl (eds.) Mesozioc Fishes Systematics and Paleoecology. Verlag Dr. F. Pfeil, Munich,
- 569 Germany
- 570 Chang, M. M., Chen, P. J., Wang, Y. Q., Wang, Y., Miao, D. S. eds. (2003). The Jehol Biota.
- 571 Shanghai Sci. Tech. Publ. 208 pp.
- 572 Cheng, X., Jiang, S., Wang, X., & Kellner, A. W. (2017). Premaxillary crest variation within the
- Wukongopteridae (Reptilia, Pterosauria) and comments on cranial structures in
- pterosaurs. *Anais da Academia Brasileira de Ciências*, 89(1), 119-130.
- 575 Czerkas, S. A., & Ji, Q. I. A. N. G. (2002). A new rhamphorhynchoid with a headcrest and complex
- integumentary structures. Feathered dinosaurs and the origin of flight, 1, 15-41.
- 577 Dong Z M, Lü J C. (2005). A new ctenochasmatid pterosaur from the Early Cretaceous of Liaoning
- 578 Province. *Acta Geologica Sinica*, 79(2), 164-167.
- 579 Dong Z M, Sun Y W, Wu S Y. (2003). On a New Pterosaur from the Lower Cretaceous of
- Chaoyang Basin, Western Liaoning, China. *Global Geology*, 22(1), 1-8.
- Fastnacht, M. (2001). First record of *Coloborhynchus* (Pterosauria) from the Santana Formation

- (Lower Cretaceous) of the Chapada do Araripe, Brazil. *PalZ*, 75(1), 23.
- 583 Frey, E., Martill, D. M., & Buchy, M. C. (2003). A new crested ornithocheirid from the Lower
- Cretaceous of northeastern Brazil and the unusual death of an unusual pterosaur. *Geological*
- Society, London, Special Publications, 217(1), 55-63.
- 586 Frey, E., Buchy, M. C., Stinnesbeck, W., Gonzalez, A. G., & Di Stefano, A. (2006).
- Muzquizopteryx coahuilensis ng, n. sp., a nyctosaurid pterosaur with soft tissue preservation
- from the Coniacian (Late Cretaceous) of northeast Mexico (Coahuila). *Oryctos*, 6, 19-40.
- Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic
- analysis. *Cladistics*, 24(5), 774-786.
- 691 Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., & Lourens, L. J. (2004). A new geologic
- time scale, with special reference to Precambrian and Neogene. *Episodes*, 27(2), 83-100.
- 593 He, H. Y., Wang, X. L., Zhou, Z. H., Wang, F., Boven, A., Shi, G. H., & Zhu, R. X. (2004). Timing
- of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its
- implications. *Geophysical Research Letters*, 31(12), 1-4.
- 596 He, H. Y., Wang, X. L., Jin, F., Zhou, Z. H., Wang, F., Yang, L. K., ... & Zhu, R. X. (2006). The
- 597 40Ar/39Ar dating of the early Jehol biota from Fengning, Hebei Province, northern
- 598 China. Geochemistry, Geophysics, Geosystems, 7(4), 1-8.
- Holgado, B., Pêgas, R. V., Canudo, J. I., Fortuny, J., Rodrigues, T., Company, J., & Kellner, A.
- W. (2019). On a new crested pterodactyloid from the Early Cretaceous of the Iberian Peninsula
- and the radiation of the clade Anhangueria. Scientific reports, 9(1), 4940.
- Hou, L., Zhou, Z., Martin, L. D. & Feduccia, A. (1995). A beaked bird from the Jurassic of China.
- 603 Nature 377, 616–618.
- Howse S C B, Milner A R., Martill D M. (2001). "Pterosaurs". In Martill D M, Naish D. Dinosaurs
- of the Isle of Wight. *The Palaeontological Association*. pp. 324–335
- Jiang, S. X., Wang, X. L., Meng, X., & Cheng, X. (2014). A new boreopterid pterosaur from the
- Lower Cretaceous of western Liaoning, China, with a reassessment of the phylogenetic
- relationships of the Boreopteridae. *Journal of Paleontology*, 88(4), 823-828.
- Jiang S X, Cheng X, Ma Y X, Wang X L. (2016). A new archaeopterodactyloid pterosaur from the

- Jiufotang Formation of western Liaoning, China, with a comparison of sterna in
- Pterodactylomorpha. *Journal of Vertebrate Paleontology*, 36 (6), e1212058.
- Kaup, S. S. (1834). Versuch einer Eintheilung der Säaugethiere in 6 Stäamme und der Amphibien
- in 6 Ordnungen. *Isis von Oken*, 1834, cols. 311–315.
- Kellner, A. W. (2003). Pterosaur phylogeny and comments on the evolutionary history of the
- group. Geological Society, London, Special Publications, 217(1), 105-137.
- Kellner, A. W. (2010). Comments on the Pteranodontidae (Pterosauria, Pterodactyloidea) with the
- description of two new species. *Anais da Academia Brasileira de Ciências*, 82(4), 1063-1084.
- Kellner, A. W. (2013). A new unusual tapejarid (Pterosauria, Pterodactyloidea) from the Early
- 619 Cretaceous Romualdo Formation, Araripe Basin, Brazil. Earth and Environmental Science
- *Transactions of the Royal Society of Edinburgh*, 103(3-4), 409-421.
- Kellner, A. (2017). Rebuttal of Martin-Silverstone et al. 2017, 'Reassessment of *Dawndraco*
- *kanzai* Kellner 2010 and reassignment of the type specimen to Pteranodon sternbergi Harksen,
- 623 1966'. Vertebrate Anatomy Morphology Palaeontology, 3, 81-89.
- 624 Kellner, A. W. A., Tomida, Y. (2000). Description of a new species of Anhangueridae
- 625 (Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation
- 626 (Aptian–Albian), northeastern Brazil. Tokyo, National Science Museum (National Science
- 627 *Museum Monographs*, 17). ix-137.
- 628 Li, J. J., Lü, J. C., Zhang, B. K. (2003). A new Lower Cretaceous sinopterid pterosaur from the
- western Liaoning, China. *Acta Palacontologica Sinica*, 42(3), 442-447.
- 630 Longrich, N.R., Martill, D.M., Andres, B. (2018). Late Maastrichtian pterosaurs from North Africa
- and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary. *PLoS Biology*
- 632 *16*(3): e2001663.
- 633 Lü, J. & Fucha, X. (2010). A new pterosaur (Pterosauria) from Middle Jurassic Tiaojishan
- Formation of western Liaoning, China. *Global Geology*, 13 (3/4): 113–118.
- 635 Lü J C, Ji Q. (2005). New azhdarchid pterosaur from the Early Cretaceous of western Liaoning.
- 636 *Acta Geologica Sinica*, 79 (3), 301–307.

- 637 Lü J C, Yuan C X. (2005). New tapejarid pterosaur from western Liaoning, china. Acta Geologica
- 638 Sinica, 79(4), 453-458.
- 639 Lü J C, Jin X S, Unwin D M, Zhao L J, Azuma Y, Ji Q. (2006). A new species of Huaxiapterus
- (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of western Liaoning, China with
- comments on the systematics of tapejarid pterosaurs. *Acta Geologica Sinica*, 80 (3), 315–326.
- 642 Lü J C, Xu L, Ji Q. (2008). Restudy of *Liaoxipterus* (Isyiodactylidae:Pterosauria), with comments
- on the Chinese istiodactylid pterosaurs. Zitteliana, B28, 229-241
- 644 Lü, J. (2010). A new boreopterid pterodactyloid pterosaur from the Early Cretaceous Yixian
- Formation of Liaoning Province, northeastern China. Acta Geologica Sinica-English
- 646 Edition, 84(2), 241-246.
- Lü, J., Unwin, D. M., Jin, X., Liu, Y., & Ji, Q. (2009). Evidence for modular evolution in a long-
- tailed pterosaur with a pterodactyloid skull. Proceedings of the Royal Society B: Biological
- 649 Sciences, 277(1680), 383-389.
- 650 Lü, J., Xu, L., Chang, H., & Zhang, X. (2011). A new darwinopterid pterosaur from the Middle
- Jurassic of western Liaoning, northeastern China and its ecological implications. Acta
- *Geologica Sinica-English Edition*, 85(3), 507-514.
- Lü J C, Jin X S, Gao C L, Du T M, Ding M, Sheng Y M, Wei X F. (2013). Dragons of the Skies
- (Recent advances on the study of pterosaurs from China). Zhejiang Science & Technology
- 655 Press . 127 pp.
- 656 Martill, D. M. (2014). A functional odontoid in the dentary of the Early Cretaceous pterosaur
- Istiodactylus latidens: Implications for feeding. Cretaceous Research, 47, 56-65.
- 658 Martill, D. M., & Etches, S. (2012). A new monofenestratan pterosaur from the Kimmeridge Clay
- Formation (Kimmeridgian, Upper Jurassic) of Dorset, England. Acta Palaeontologica
- 660 *Polonica*, 58(2), 285-295.
- 661 Martin-Silverstone, E. (2017). Redescription of Dawndraco kanzai Kellner, 2010 and
- reassignment of the type specimen to Pteranodon sternbergi Harksen, 1966. Vertebrate
- *Anatomy Morphology Palaeontology*, *3*, 47-59.

PeerJ

- Meng J, Wang Y Q, Li C K. (2011). Transitional mammalian middle ear from a new Cretaceous
- Jehol eutriconodont. *Nature*. 472(7342), 181–185.
- Pêgas, R. V., Costa, F. R., & Kellner, A. W. (2018). New information on the osteology and a
- 667 taxonomic revision of the genus *Thalassodromeus* (Pterodactyloidea, Tapejaridae,
- Thalassodrominae). *Journal of Vertebrate Paleontology*, 38(2), e1443273.
- 669 Pinheiro, F. L., & Schultz, C. L. (2012). An unusual pterosaur specimen (Pterodactyloidea,?
- Azhdarchoidea) from the Early Cretaceous Romualdo Formation of Brazil, and the evolution
- of the pterodactyloid palate. *PloS one*, 7(11), e50088.
- Plieninger, F. (1901). Beiträage zur Kenntnis der Flugsaurier. *Palaeontographica* 48:65–90.
- Rodrigues, T., & Kellner, A. W. A. (2013). Taxonomic review of the *Ornithocheirus* complex
- (Pterosauria) from the Cretaceous of England. *ZooKeys*, (308), 1.
- Rodrigues T, Jiang S X, Cheng X, Wang X L, Kellner A W A. (2015). A new toothed
- pteranodontoid (Pterosauria: Pterodactyloidea) from the Jiufotang Formation (Lower
- 677 Cretaceous, Aptain) of China and comments on Liaoningopterus gui Wang and Zhou, 2003.
- 678 *Historical Biology*, 27(6), 782-795.
- 679 Seeley, H. G. (1901). Dragons of the air. Meuthuen and Co., London. 239 p.
- 680 Sullivan, C., Wang, Y., Hone, D. W., Wang, Y., Xu, X., & Zhang, F. (2014). The vertebrates of
- 681 the Jurassic Daohugou Biota of northeastern China. Journal of Vertebrate
- 682 *Paleontology*, 34(2), 243-280.
- 683 Unwin, D. M. (2003). On the phylogeny and evolutionary history of pterosaurs. Geological
- 684 Society, London, Special Publications, 217(1), 139-190.
- 685 Unwin, D. M., Lu, J. C., Bakhurina, N. N. (2000). On the systematic and stratigraphic significance
- of pterosaurs from the Lower Cretaceous Yixian Formation (Jehol Group) of Liaoning.
- Mitteilungen Museum Naturkunde Berlin, Geowissenschaflichen Reihe 3, 181-206.
- Wang L, Li L, Duan Y, Cheng S L. (2006). A new istiodactylid pterosaur from western Liaoning,
- 689 China. Geological Bulletin of China, 25(6), 737-740.
- 690 Wang M; Zhou Z H. (2019). A new enantiornithine (Aves: Ornithothoraces) with completely fused
- 691 premaxillae from the Early Cretaceous of China. *Journal of Systematic Palaeontology*. Online

- 692 edition: 1–14.
- Wang, S.S., Wang, Y.Q., Hu, H.G., Li, H.M. (2001). The existing time of Sihetun vertebrates in
- western Liaoning, China e evidence from U-Pb dating of zircon. Chinese Science Bulletin
- 695 46(9), 776-781.
- 696 Wang X. (2018). Background for the Plant Fossils. Pp. 47-59 in: The Dawn Angiosperms. Springer
- Geology. Springer, Cham. 334 Pp.
- 698 Wang X L, Campos D A, Zhou Z H, Kellner A W A. (2008a). A primitive istiodactylid pterosaur
- 699 (Pterodactyloidea) from the Jiufotang Formation (Early Cretaceous), northeast China.
- 700 Zootaxa, 1813, 1-18.
- Wang, X. L., & Lü, J. C (2001). Discovery of a pterodactylid pterosaur from the Yixian Formation
- of western Liaoning, China. *Chinese Science Bulletin*, 46(13), 1112-1117.
- 703 Wang X L, Kellner A W A, Zhou Z H, Campos D A. (2005). Pterosaur diversity and faunal
- turnover in Cretaceous terrestrial ecosystems in China. *Nature* 437, 875-879
- Wang X L, Campos D A, Zhou Z H, Kellner A W A. (2008a). A primitive istiodactylid pterosaur
- 706 (Pterodactyloidea) from the Jiufotang Formation (Early Cretaceous), northeast China.
- 707 Zootaxa, 1813, 1-18.
- Wang X L, Kellner A W A, Zhou Z, Campos D A. (2008b). Discovery of a rare arboreal forest-
- dwelling flying reptile (Pterosauria: Pterodactyloidea) from China. *Proceedings of the*
- 710 *National Academy of Sciences*, 105(6), 1983-1987
- 711 Wang, X. L., Kellner, A. W. A., Jiang, S., Cheng, X., Meng, X., & Rodrigues, T. (2010). New
- long-tailed pterosaurs (Wukongopteridae) from western Liaoning, China. *Anais da Academia*
- 713 *Brasileira de Ciências*, 82(4), 1045-1062.
- Wang X L, Kellner A W A, Jiang S X, Cheng X. (2012). New toothed flying reptile from Asia;
- close similarities between early Cretaceous pterosaurs faunas from China and Brazil.
- 716 *Naturwissenschaften*, 99(4), 249-257
- 717 Wang, X. L.?, Kellner, A. W. A., Jiang, S., Wang, Q., Ma, Y., Paidoula, Y., ... & Li, N. (2014).
- 718 Sexually dimorphic tridimensionally preserved pterosaurs and their eggs from China. *Current*

- 719 *Biology*, 24(12), 1323-1330.
- 720 Wang X L, Rodrigues T, Jiang S X, Cheng X, Kellner A W A. (2015). An Early Cretaceous
- 721 pterosaur with an unusual mandibular crest from China and a potential novel feeding strategy.
- 722 Scientific Reports, 4,6329.
- Wang X L, Zhou Z H. (2003a). A new pterosaur (Pterodactyloidea, Tapejaridae) from the Early
- 724 Cretaceous Jiufotang Formation of Western Liaoning, China and its implications for
- biostratigraphy. *Chinese Science Bulletin*, 48(1), 16-23
- 726 Wang X L, Zhou Z H. (2003b). Two new pterodactyloid pterosaurs from the Early Cretaceous
- Jiufotang Formation of Western Liaoning, China. *Vertebrata PalAsiatica*, 41 (1), 34–41.
- Witton, M. P. (2012). New insights into the skull of Istiodactylus latidens (Ornithocheiroidea,
- 729 Pterodactyloidea). *PloS one*, 7(3), e33170.
- 730 Xu, X, & Wang, X. L. (1998). New psittacosaur (Ornithischia, Ceratopsia) occurrence from Yixian
- Formation of Liaoning, China and its stratigraphical significance. Veertebrata PalAsiatica,
- 732 41(3), 195-202.
- 733 Xu, X, Zhou, Z. H., Wang, X. L., Kuang, X. W., Zhang, F. C. (2003). Four winged dinosaurs from
- 734 China. Nature, 421, 335-340
- Yao X, Liao C C, Sullivan C, Xu X. (2019). A new transitional therizinosaurian theropod from the
- Early Cretaceous Jehol Biota of China. *Scientific Reports*. 9 (5026), 1–12.
- 737 Zhang, J., Jin, F., & Zhou, Z. (1994). A review of Mesozoic osteoglossomorph fish Lycoptera
- 738 longicephalus. Vertebrata Pal Asiatica, 32(1), 41-59.
- 739 Zhang Jiangyong & Jin Fan (2003): Fishes. In: M. M. Chang, P. J. Chen, Y. Q. Wang & Y.
- Wang (Eds). The Jehol Biota; Shanghai (Shanghai Scientific And Technical Publishers), 69–
- 741 75.
- 742 Zhou, Z., Barrett, P. M., & Hilton, J. (2003). An exceptionally preserved Lower Cretaceous
- 743 ecosystem. *Nature*, 421(6925): 807.

- 744 Wang Xiaolin & Zhou Zhonghe (2003): Pterosaurs. In: M. M. Chang, P. J. Chen, Y. Q. Wang
- 8 Y. Wang (Eds), The Jehol Biota; Shanghai (Shanghai Scientific And Technical
- 746 Publishers), 99–108.
- 747 Wellnhofer, P. (1987). New crested pterosaurs from the Lower Cretaceous of Brazil. *Mitt Bayer*
- 748 Staatssg Paläontol Hist Geol 27: 175-186.

- 750 Figures
- Figure 1. Photograph and line drawing of holotype of *Nurhachius luei* sp. nov. Photo by Xuanyu
- 752 Zhou. Drawing by Maria Eduarda Leal. Scale bar in line drawing equals 50 mm. Abbreviations:
- an, angular; art, articular; ax, axis; ch, choana; cv, cervical vertebra; d, dentary; f, frontal; hy, hyoid;
- 754 j, jugal; la, lacrimal; m, maxilla; n, nasal; naof, nasoantorbital fenestra; or, orbit; pa, parietal; pf,
- prefrontal; po, postorbital; prid, palatal ridge; pty, pterygoid; q, quadrate; vo, vomer.
- 756 **Figure 2.** Map showing location of origin of the material herein described.
- 757 **Figure 3.** Strict consensus tree from our phylogenetic analysis. Red rectangle indicates the
- 758 Istiodactylidae and its stem-group.

= nd mandible

- 759 **Figure 4.** Photographs and line drawings. A) *Nurhachius luei* sp. nov. holotype, skull and mandible
- 760 in right lateral view. B) Nurhachius ignaciobritoi referred specimen (holotype of
- "Longchengpterus zhaoi"), skull and mandible in right lateral view. C) Nurhachius ignaciobritoi
- holotype, skull (mirrored) and mandible in right lateral view. Photographs by Xuanyu Zhou.
- 763 Drawings by Rodrigo V. Pêgas.
- **Figure 5.** Close view of the rostral tip in right lateral view of A) *Nurhachius luei* sp. nov. holotype
- and B) Nurhachius ignaciobritoi holotype, mirrored. C) and D), respective schematic drawings,
- showing the slight dorsal deflection of the palate (notice positions of first and second alveoli in
- both specimens). Scale bars equal 20 mm. Photos by Xuanyu Zhou. Drawings by Rodrigo V.
- 768 Pêgas.
- 769 **Figure 6.** A) *Liaoxipterus brachyognathus*, holotypic lower jaw in dorsal view. Anterior is to the
- 770 right. B) Haopterus gracilis, skull of the holotype in right lateral view. C) Hongshanopterus
- 771 *lacustris*, holotypic skull in ventral view. Anterior is to the left. All scale bars equal 50 mm. Photos

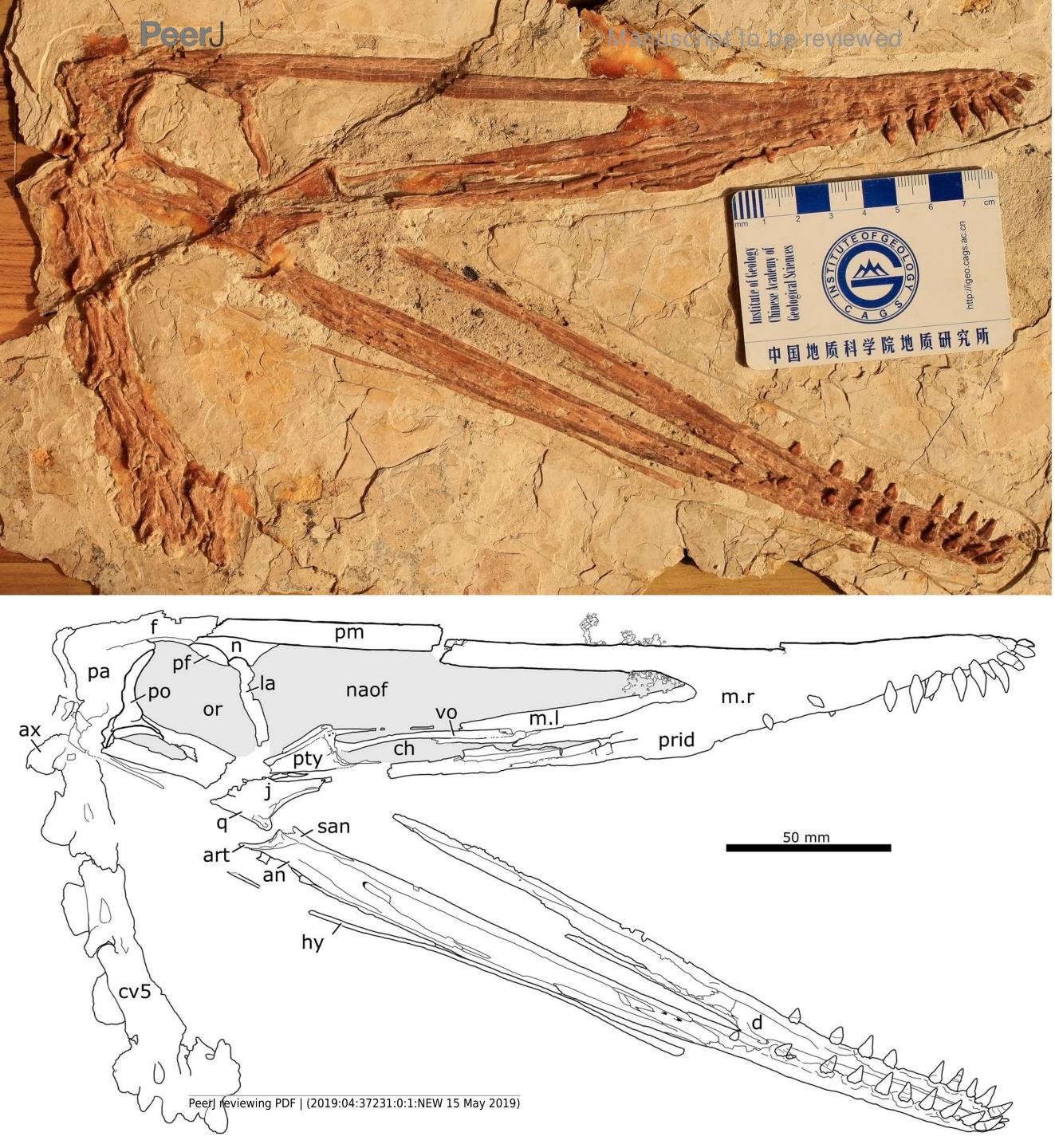

by Xuanyu Zhou.

Figure 1(on next page)

Photograph and line drawing of holotype of *Nurhachius luei* sp. nov.

Photo by Xuanyu Zhou. Scale bar in line drawing equals 50 mm. Abbreviations: an, angular; art, articular; ax, axis; ch, choana; cv, cervical vertebra; d, dentary; f, frontal; hy, hyoid; j, jugal; la, lacrimal; m, maxilla; n, nasal; naof, nasoantorbital fenestra; or, orbit; pa, parietal; pf, prefrontal; po, postorbital; prid, palatal ridge; pty, pterygoid; q, quadrate; vo, vomer.

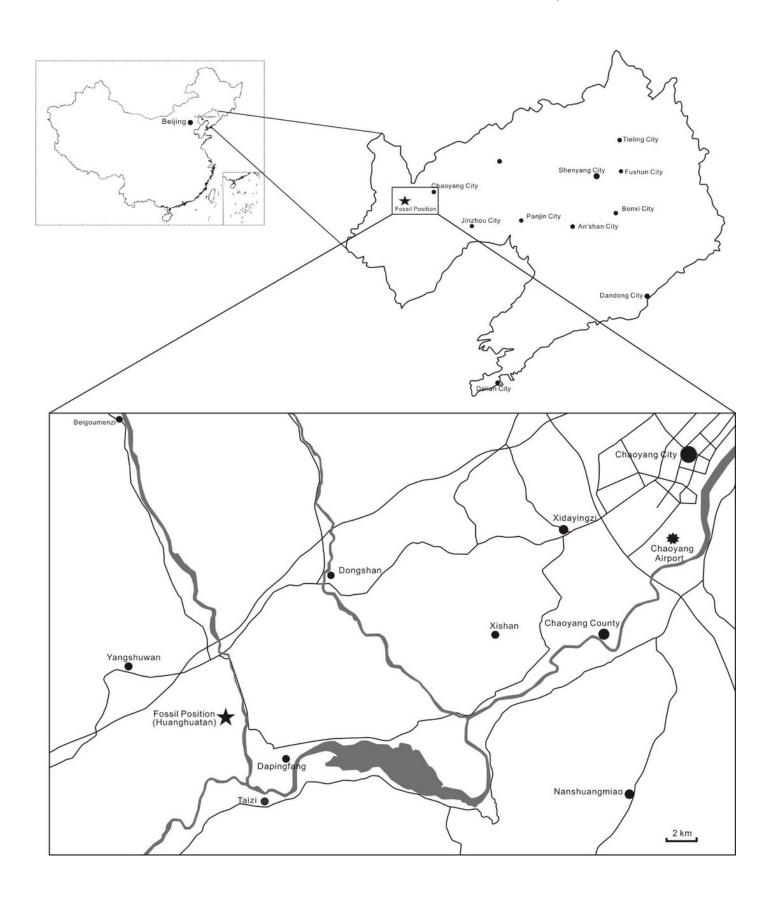


Figure 2

Map showing location of origin of the material herein described.

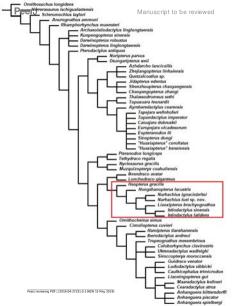


Figure 3(on next page)

Strict consensus tree from our phylogenetic analysis.

Red rectangle indicates the Istiodactylidae and its stem-group.

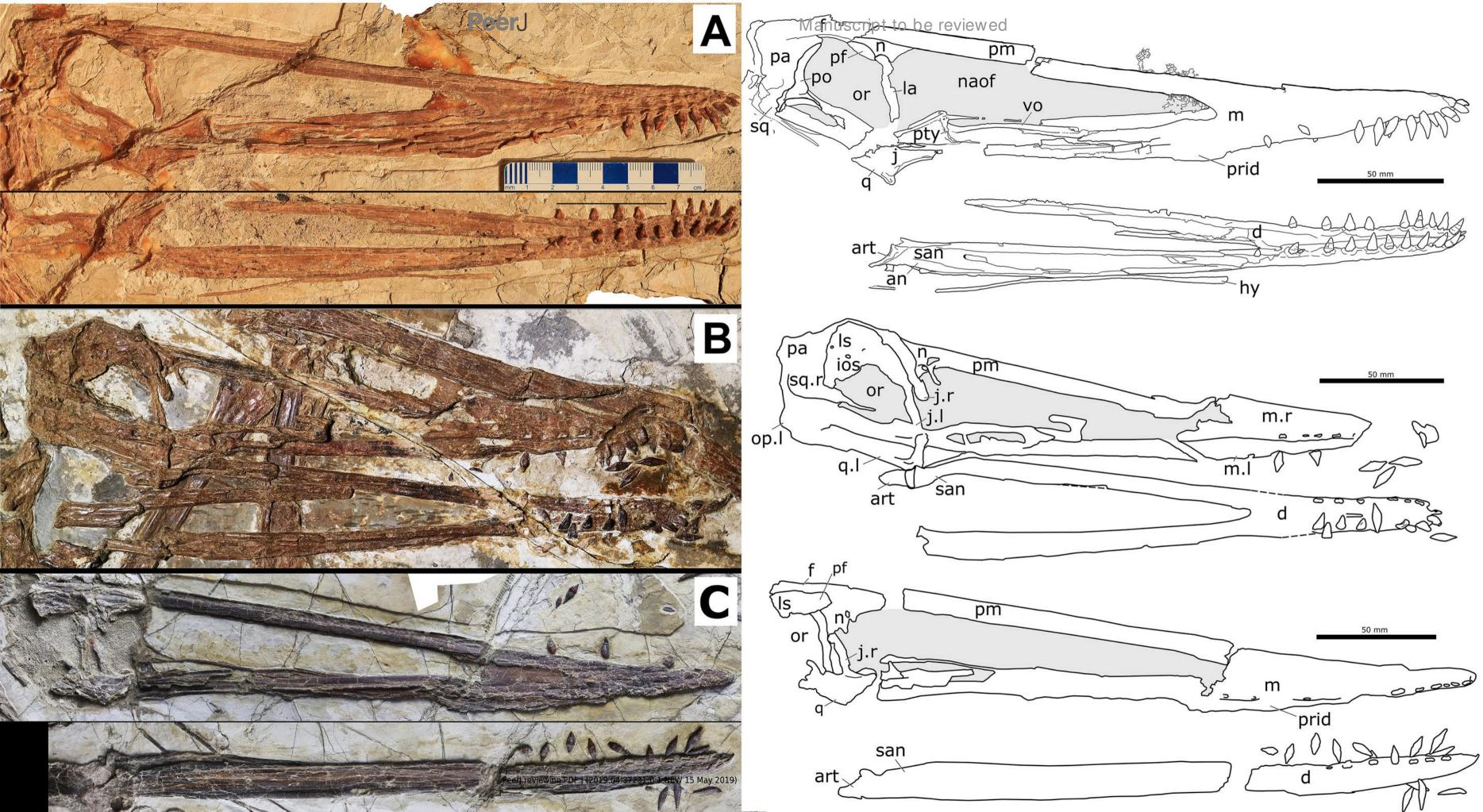


Figure 4(on next page)

Photographs and line drawings.

A) *Nurhachius luei* sp. nov. holotype, skull and mandible in right lateral view. B) *Nurhachius ignaciobritoi* referred specimen (holotype of "Longchengpterus zhaoi"), skull and mandible in right lateral view. C) *Nurhachius ignaciobritoi* holotype, skull (mirrored) and mandible in right lateral view. Photographs by Xuanyu Zhou.

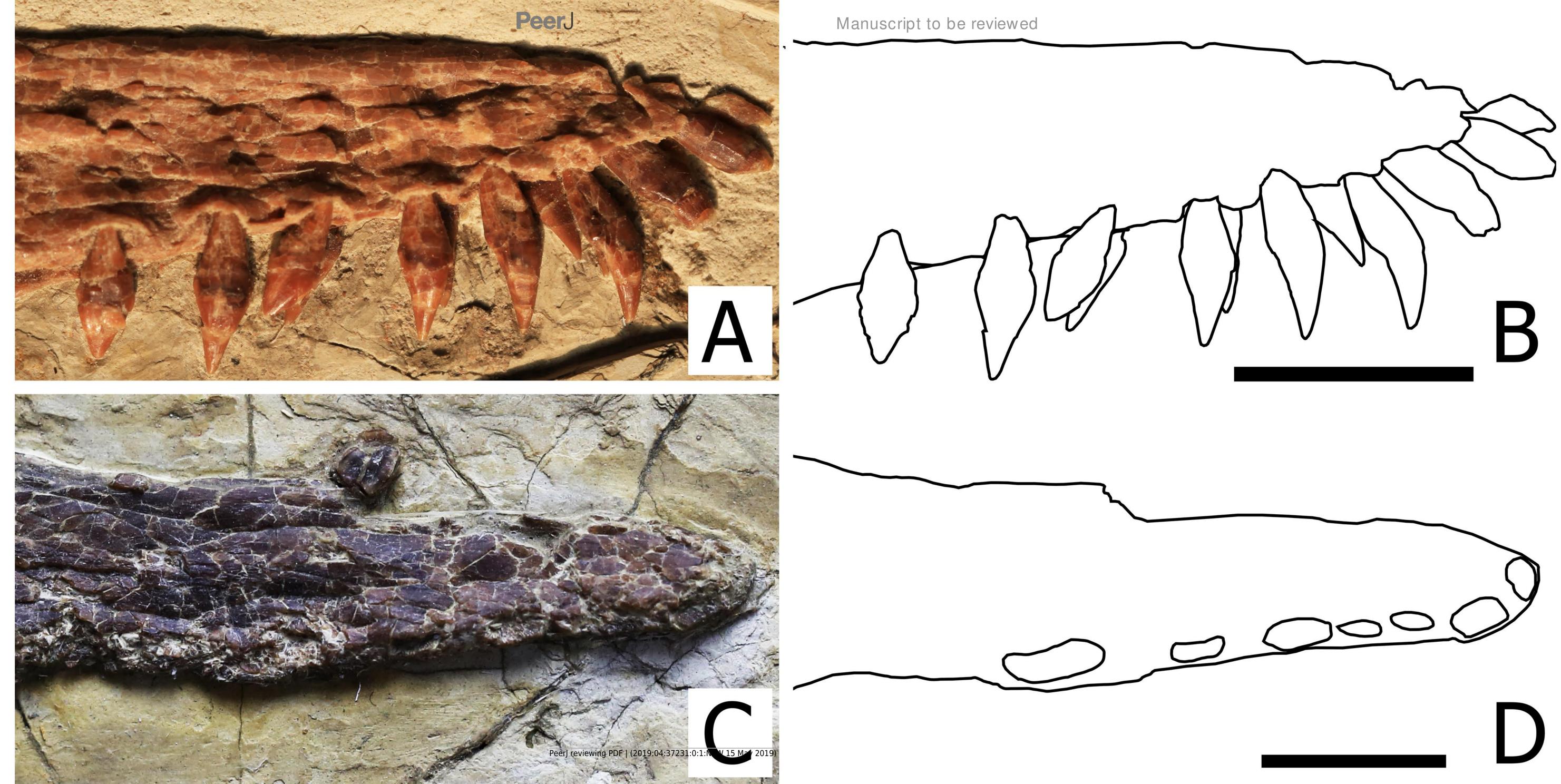


Figure 5(on next page)

Close view of the rostral tip in right lateral view of

A) *Nurhachius luei* sp. nov. holotype and B) *Nurhachius ignaciobritoi* holotype, mirrored. C) and D), respective schematic drawings, showing the slight dorsal deflection of the palate (notice positions of first and second alveoli in both specimens). Scale bars equal 20 mm. Photos by Xuanyu Zhou.

Figure 6(on next page)

Photographs of

A) Liaoxipterus brachyognathus, holotypic lower jaw in dorsal view. Anterior is to the right. B) Haopterus gracilis, skull of the holotype in right lateral view. C) Hongshanopterus lacustris, holotypic skull in ventral view. Anterior is to the left. All scale bars equal 50 mm. Photos by Xuanyu Zhou.

