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ABSTRACT
Chromatin contacts between regulatory elements are of crucial importance for the
interpretation of transcriptional regulation and the understanding of disease
mechanisms. However, existing computational methods mainly focus on the
prediction of interactions between enhancers and promoters, leaving enhancer-
enhancer (E-E) interactions not well explored. In this work, we develop a novel deep
learning approach, named Enhancer-enhancer contacts prediction (EnContact), to
predict E-E contacts using genomic sequences as input. We statistically demonstrated
the predicting ability of EnContact using training sets and testing sets derived from
HiChIP data of seven cell lines. We also show that our model significantly
outperforms other baseline methods. Besides, our model identifies finer-mapping
E-E interactions from region-based chromatin contacts, where each region contains
several enhancers. In addition, we identify a class of hub enhancers using the
predicted E-E interactions and find that hub enhancers tend to be active across cell
lines. We summarize that our EnContact model is capable of predicting
E-E interactions using features automatically learned from genomic sequences.

Subjects Bioinformatics, Computational Biology
Keywords Deep learning,HiChIP data, Attention-based RNN,Hub enhancers, Enhancer-enhancer
contacts

INTRODUCTION
Chromatin contacts between regulatory elements are widely studied to interpret the
regulation relationship of transcriptome and to understand the regulatory mechanism of
complex diseases. Chromosome conformation capture (3C)-based methods, including
4C and 5C, have been developed to detect physical contacts on a local scale (Dekker et al.,
2002; Simonis et al., 2006; Dostie et al., 2006). Chromatin Interaction Analysis by
Paired-End Tag Sequencing (ChIA-PET) captures chromatin interactions related to a
protein of interest (Fullwood et al., 2009). Recently, Hi-C, Capture Hi-C, and HiChIP
techniques allow genome-wide detection of interactions between all possible pairs of
regions (Rao et al., 2014; Mifsud et al., 2015; Mumbach et al., 2016), which provides the
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comprehensive landscape of three-dimension chromatin structure. However, all of these
techniques require an extremely deep sequencing depth to achieve high resolution,
which can hardly be applied to a large number of cell lines. Therefore, computational
approaches are needed to help with the identification of finer-mapping interactions.

In the past 5 years, a series of methods have been developed to predict promoter-related
interactions (Roy et al., 2015; Whalen, Truty & Pollard, 2016; Li, Wong & Jiang, 2019;
Cao et al., 2017; Schreiber et al., 2018; Singh et al., 2016). Roy et al. (2015) implemented
regulatory interaction prediction for promoters and long-range enhancers which integrates
published 3C data sets with a minimal set of regulatory genomic data sets to predict
enhancer-promoter interactions in a cell line-specific manner. Whalen, Truty & Pollard
(2016) proposed a computational method, TargetFinder, to predict promoter-enhancer
interactions from diverse features along the genome.With the understanding that there exist
enhancer-like promoters which can regulate distal genes (Diao et al., 2017; Gasperini et al.,
2017), Li, Wong & Jiang (2019) developed a deep learning model, DeepTACT, which
pays equal attention to the prediction of promoter-enhancer interactions and promoter-
promoter interactions. However, all of these methods only focused on the prediction of
promoter-enhancer interactions and promoter-promoter interactions.

Over the last decade, studies have demonstrated the importance of enhancer-enhancer
(E-E) interactions in the interpretation of gene regulation (Ghavi-Helm et al., 2014;
Ing-Simmons et al., 2015; Kumasaka, Knights & Gaffney, 2019; Mumbach et al., 2017).
Ghavi-Helm et al. (2014) generated a high-resolution map of enhancer 3D contacts during
Drosophila embryogenesis and found each enhancer contacts multiple enhancers and
promoters with similar expression, suggesting a role of co-regulation of enhancers.
Ing-Simmons et al. (2015) reported that ∼50% of deregulated genes in mouse thymocytes
reside in the vicinity of enhancer elements, suggesting that gene expression was regulated
through E-E interactions. Kumasaka, Knights & Gaffney (2019) detected frequent
long-range interactions between enhancers, which were further used to interpret gene
regulation and disease causality. Although studies have shown that E-E loops are closely related
to gene expression by co-regulation, to the best of our knowledge, hardly any computational
approach is specifically designed to provide a powerful prediction of E-E contacts.

In computational biology filed, genomic sequence information is widely used to extract
motif-like patterns to predict regulatory elements (e.g., enhancers) using various statistical
models (Le et al., 2019; Kleftogiannis, Ashoor & Bajic, 2018). Recently, deep learning
has shown impressive performance in pattern recognition and imaging field (Shen et al., 2017;
Wang, Sun & Wang, 2017). By formatting genomic sequences and other epigenomic
information into numeric vectors or matrix, deep learning models have achieved great success
in many biological problems such as the identification of transcription factor (TF) binding
sites, the recognition of regulatory regions, and the prediction of interacting pairs (Li, Wong &
Jiang, 2019; Kelley, Snoek & Rinn, 2016; Alipanahi et al., 2015; Park & Kellis, 2015; Le, Ho &
Ou, 2017, 2018; Le & Nguyen 2019). These applications demonstrate the ability of deep
learning models in capturing useful genomic features and accurately predicting biological
signals. This inspires us to design a deep learningmodel to predict E-E interactions by learning
motif-like feature patterns from genomic sequences using deep neuron networks.
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In this paper, we develop a deep learning approach, named Enhancer-enhancer
contacts prediction (EnContact), to predict E-E contacts only using genomic sequences.
Through a series of comprehensive experiments in seven cell lines, we demonstrate that
EnContact is able to learn context-specific features from genomic sequences and to predict
E-E interactions accurately. When applying the context-specific models to HiChIP
data, EnContact identifies finer-mapping E-E interactions from region-based chromatin
contacts, where each region contains several enhancers. In addition, EnContact identifies a
class of hub enhancers which are active across different cell lines. In summary,
EnContact achieves much better performance compared with traditional machine learning
methods and is capable of identifying E-E interactions from HiChIP data.

MATERIALS AND METHODS
Collection and processing of datasets
We collected chromatin contact matrix of seven cell lines (i.e., GM, K562, HCASMC,
MyLa, Naïve, Th17, and Treg) from HiChIP data of Mumbach et al. (2017). Permissive
enhancers were downloaded from FANTOM5 (Andersson et al., 2014) and then uniformly
extended to two kb based on their middle sites for more information in their surrounding
genomic sequence. In each cell line, we converted the contact matrix into chromatin
interactions and annotated each bait-level interaction with permissive enhancers, resulting
in a list of enhancer-related interactions. Then, those enhancer-related interactions
were divided into two subsets: a “1v1” set which contains interaction pairs with only one
enhancer in each end; a “mvm” set which consists of interaction pairs with more than one
enhancer in either end or both ends (Table 1).

Chromatin interaction analysis by paired-end tag sequencing data of different cell lines
were collected from Tang et al. (2015) and processed using a standard tool ChIA-PET2
(Li et al., 2017) with default settings, yielding 194,467 fragment-level interactions at a
q value threshold 0.05. Then, we annotated these fragment-level interactions with
enhancers using bedtools (Quinlan & Hall, 2010), resulting in a list of 37,894 E-E
interactions as a validation set. DNase-seq experiments of above seven cell lines and
ChIP-seq experiments of four histone marks (i.e., H3K4me3, H3K27ac, H3K4me2,
H3K9ac) and 579 TFs were downloaded from ENCODE (The ENCODE Project
Consortium, 2004). Detailed experimental information is shown in Tables S1–S3.

Table 1 Number of enhancer-enhancer interactions collected from HiChIP.

Cell type Acronym 1v1 mvm

GM12878 GM 143,810 144,380

K562 K562 158,058 142,131

Human coronary artery smooth muscle HCASMC 110,078 114,758

CD4+ T cell leukemia MyLa 124,858 123,163

Naïve CD4+ T cells Naive 128,450 146,308

T helper 17 cells Th17 145,706 178,600

T regulatory cells Treg 112,392 125,625

Total – 923,352 974,965
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Structure of EnContact
The structure of EnContact can be divided into three parts: two convolution neuron
networks (CNN) and a recurrent neural network (RNN). In each CNN, a convolution layer
is used to learn motif-like patterns from genomic sequences, together with a rectifier
operation (rectified linear unit (ReLU)) to propagate positive outputs and eliminate
negative outputs. The convolution process can be devoted as

Conv Xð Þij ¼ ReLU
XM
m ¼ 1

XN
n ¼ 1

wm;nxi þ m�1; j þ n�1

 !
; (1)

where X is the one-hot encoding representation of sequences, i ¼ 1; 2; � � � ; L�M þ 1;
j ¼ C - N + 1. Here, L is the length of an enhancer (i.e., L = 2,000), C the number of
nucleotides (i.e., C = 4). W ¼ wmnð ÞM � N is the weight matrix of a convolution kernel;
M � N the size of the kernel. In our case,N is set to be 4, thus j is a constant 0. The activation
function is the ReLU, defined as

ReLU zð Þ ¼ max 0; zf g: (2)

Next, max-pooling layers are used to reduce dimensions and help extract higher-level
features. The pooling process can be devoted as

MaxPooling Xð Þ ¼ max xij; xi þ 1;j; � � � ; xi þ W;j
� �

; (3)

where W is the size of pooling window.
Then, features learned by the above CNNs are concatenated using a merging layer,

followed by a bidirectional long-short-term memory (BLSTM) layer to further learn the
context features from pooled sequence patterns. As a typical representation of RNNs,
BLSTM is widely used for its ability in capturing dependencies of sequences by accessing
long-range context (Graves, Jaitly & Mohamed, 2013). To help BLSTM to pay more
attention to specific sequence patterns, an attention layer is adopted in the integration
module, following the BLSTM layer. The simplification of attention mechanism can be
formulated as

at ¼ exp f htð Þf gXT

k¼1
exp f hkð Þf g

(4)

where f �ð Þ ¼ tanh �ð Þ can be considered as a learnable function depending on hidden layer
ht at time step t, which measures scalar importance for ht. at is the weight computed
at each time step t for each state ht; t ¼ 1; 2; � � � ;Tð Þ; T the number of time steps
determined by the BLSTM layer. Given hidden states ht, attention layer computes an
adaptive weighted average of hidden states, θ, devoted as

θ ¼
XT
t ¼ 1

atht: (5)
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The final layer of EnContact is a dense layer which is actually an array of hidden units with
the ReLU activations feeding into a logistic regression (LR) unit that predicts the probability
of interacting. In addition, we adopt batch normalization layers to accelerate the training
process and dropout layers to avoid overfitting. Details for the parameters used in the deep
learning model are described in Table S4. We implemented the EnContact model using
Keras 1.2.0 (Bastien et al., 2012) on a Linux server. All experiments were carried out with
4 Nvidia K80 GPUs which significantly accelerated the training process than CPUs.

Generating negative cases based on the distance distribution
We generate negative cases based on the distance distribution of positive cases. Following
existing literature (Whalen, Truty & Pollard, 2016), we first divide the distances between
positive interaction pairs into five bins, guaranteeing each bin has an equal number of
positive samples. Then, we generate negative cases within each distance bin, making sure
that the number of negative cases in each bin is the same as that of positive cases.

Baseline methods
We use four baseline methods for comparison, including three typical classification
models, SVM (Wu, Lin & Weng, 2004), LR (Hosmer, Lemeshow & Sturdivant, 2013), and
random forest (RF) (Liaw &Wiener, 2002), and a deep learning model SPEID (Singh et al.,
2016). For the typical classification models, to convert nucleotide-based information
into numeric vectors, we extract k-mer features from genomic sequences using the
following strategy. First, we list all combinations of four types of nucleotides (A, T, C, G) in
k sites, resulting in 4k motif-like patterns. Then, for the sequence of a given enhancer,
we count the occurrence frequency of each k-mer pattern. Thus, we derive a feature vector
consisting of the frequency of 4k motif-like fragments for each enhancer. Since our goal is
to predict the interaction of two enhancers, we connect the feature vectors of these two
enhancers as the input for baseline methods.

We accomplish the classification process of SVM, LR, and RF using Scikit-learn package
(Pedregosa et al., 2011) in Python. We downloaded the source code of SPEID from
https://github.com/ma-compbio/SPEID and ran the model followed its instruction.
Considering SPEID was designed to predict enhancer-promoter contacts, we substituted
promoter-enhancer sequences to E-E sequences as the input for SPEID. The input
samples and features are totally the same for SPEID and EnContact. To ensure a fair
comparison, we provide the same training sets and testing sets in seven cell lines for
baseline methods and our EnContact model.

Motif analysis
To convert the weights of convolution kernels learned by EnContact into probabilistic
position weight matrix (PWM), we first calculate the activation scores of kernels for a given
input (i.e., the sequence of an enhancer), as

Si ¼
XM
m ¼ 1

XN
n ¼ 1

wm;nxi þ m�1;n�1; (6)
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where Si is the activation score of the ith nucleotide of the input sequence. Then, we define
a position as activated if its activation score is larger than half of the maximum value of the
whole sequence, formulated as

Si > 0:5 �MAXS
MAXS ¼ max Sij1 � i � Lf g

�
; (7)

where L is the length of the sequence; MAXS the maximum value of activation scores.
Then, we count the nucleotide occurrences of activated positions and format them

into PWMs. After that, we match the resulting PWMs to known motifs derived from
JASPAR database (Mathelier et al., 2016), which contains 1,082 motifs of 1,072 human
TFs, using the tool TOMTOM v4.12.0 (Gupta et al., 2007) with a threshold of false
discovery rate (FDR) q value < 0.1.

Definition of co-opening degree between two enhancers
We define the co-opening degree of two enhancers as the absolute value of Pearson’s
correlation coefficient of their openness scores. Here, the openness score of each enhancer
is defined as follow. Suppose the number of replicates in a given cell line is R, the length of
the regulatory element L, then the DNase signal of each regulatory element can be
represented as OR × L, where Orl r ¼ 1; 2; . . . ;R; l ¼ 1; 2; . . . ; Lð Þ is the chromatin
accessibility score at each genomic site, defined as

Orl ¼ Nrl

Mrl=W
; (8)

where N is the number of reads falling at each genomic site;M the number of reads falling
into a background window of length W (say, one Mb) surrounding this site. This fold
change value Orl is designed to remove the influence of sequencing depth according to
Li et al. (2017).

Then, for each enhancer, we obtain a vector of openness scores by averaging OR × L

across replicates R. Finally, the co-opening degree of two regulatory elements is defined
as the absolute value of Pearson’s correlation coefficient of two vectors of openness scores.
If the P-value of a Pearson’s correlation coefficient of an interaction pair is significant
(i.e., P-value > 0.05), we consider this E-E pair as co-opening.

Activity of hub enhancers
For each peak i in experiment j, we define an activity score, PASij, by calculating the fold
change between the number of reads falling into this peak and the number of reads falling
into a background region surrounding the peak, formulated as

PASij ¼ Nij=Pij
Mij=W

; (9)

whereW is the length of background window, defaulted as one Mb; Pij the length of peak i
in experiment j; Nij the number of reads falling into peak i in experiment j;Mij the number
of reads falling into the background region of peak i in experiment j.
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Then, we define the activity score of an enhancer as the maximum activity score of peaks
overlapping with this enhancer,

EASij ¼ max PASkjjk 2 Si
� �

; (10)

where Si is the set of peaks overlapping with enhancer i. Finally, we consider an enhancer
as active when its activity score is greater than 1. For each hub enhancer or non-hub
enhancer, we count the number of experiments where it is active to assess its activity across
cell lines.

RESULTS
Design of EnContact model and training strategy
We developed a deep learning model, named EnContact, to identify E-E interactions using
features learned from genomic sequences. As shown in Fig. 1A, we adopted a one-hot
encoding strategy to convert the sequence of an enhancer into a four-dimensional
matrix, where each genomic site has a four-element vector with the nucleotide bit set
to be 1. For a given E-E pair, EnContact learns patterns from the encoded sequences of
two enhancers using two separate convolutional neuron networks. Then, an attention-
based RNN was applied to extract high-level features from the concatenation of
patterns learned by CNNs. Finally, EnContact predicts the interacting probability of
the given two enhancers using a LR layer (Fig. 1B). Details of EnContact model are
shown in Methods.

To construct context-specific training data for EnContact, we developed the following
strategy. First, we collected the chromatin interactions of seven cell lines from the HiChIP
data of Mumbach et al. (2017). Then, we annotated those interactions with permissive
enhancers derived from FANTOM5 (Andersson et al., 2014) to obtain E-E interactions.
As shown in Fig. 1C, the E-E interactions are further divided into two subsets: one subset
consists of interactions that have only one enhancer located at each end (1v1); the other
subset contains interactions which have more than one enhancer in either end or both
ends (mvm). Thus, we derived an average of 131,907 interacting E-E pairs for “1v1” subsets
and an average of 1,023,134 interacting pairs for "mvm" subsets. The numbers of E-E
interactions collected from the HiChIP data of seven cell lines are shown in Table 1.
Next, we use the unambiguous E-E interactions in “1v1” subsets to construct positive cases
for model training and cross validation. After a context-specific model is trained using
“1v1” subset, we then apply the model to identify true E-E interactions from ambiguous
E-E pairs in “mvm” subset.

EnContact accurately predicts enhancer-enhancer contacts
To evaluate the ability of EnContact in predicting E-E interactions, we designed a series of
systematical experiments. For each cell line, the unambiguous E-E interactions in “1v1”
subset were regarded as positive cases. Meanwhile, we considered three ways to generate
negative cases: (1) sampling negative cases based on the distance distribution of positive
cases (random contacts; Fig. 2A); (2) randomly sampling negative cases with one end
of positive E-E pairs fixed (random enhancers; Fig. 2A); (3) randomly sampling negative
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cases from all possible combinations of enhancers (random pairs; Fig. 2A). Then, we
uniformly divided the union of positive cases and negative cases into 10 groups: one for
testing and the others for training. All assessments were conducted on the testing sets.

Next, we trained and evaluated EnContact model in seven cell lines (Table 2). When
negative cases were sampled on account of the distance distribution of positive cases,
EnContact yields AUROCs of 0.803–0.858 and AUPRCs of 0.773–0.850. Otherwise, when
negative cases were sampled based on random enhancers or random pairs, EnContact
yields AUROCs of 0.811–0.867 and AUPRCs of 0.800–0.875 (for random enhancers), and

A A T C G G T T C C T T A G C T C G T T C C T T A A T C T C
A
T
C
G

A One hot encoding for sequences

B

pooling

E1: seq
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POOL pooling
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Figure 1 The EnContact method. (A) One-hot encoded sequence matrix. (B) Schematic illustration of
the deep neural network architecture in EnContact. See “Methods” for details. (C) Region-based inter-
actions in HiChIP data are divided into two sets: one set consists of interacting regions with only one
enhancer in each region (1v1); the other set contains interacting regions where each region contains more
than one enhancer (mvm). Full-size DOI: 10.7717/peerj.7657/fig-1
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AUROCs of 0.838–0.874 and AUPRCs of 0.851–0.891 (for random pairs). This result
demonstrates that our EnContact model can achieve decent performance no matter how
negative cases were generated. To check whether the shared enhancers between the
training set and testing set will bring bias to the model evaluation, we also designed another
training and testing sets which involves different groups of enhancers. Specifically, we
considered interactions derived from chromosome 1–18 as training set, and interactions
derived from other chromosomes as testing set. Our model achieves comparable
performance on the new training sets and testing sets (Table S5).

Finally, we compared our EnContact model with four baseline models: SVM (Wu,
Lin & Weng, 2004), LR (Hosmer, Lemeshow & Sturdivant, 2013), RF (Liaw & Wiener,
2002), and SPEID model (Singh et al., 2016). In EnContact model and SPEID model, we
used a one-hot encoding strategy to convert sequences into a numeric matrix and then
extracted features by scanning along the matrix with a convolution layer. For other
machine learning models which do not have convolution layers, we need a strategy to
extract features from sequences for downstream classification. Here, to derive sequence
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Figure 2 Comparison with baseline methods. (A) Three types of background enhancer-enhancer pairs. Random contacts are generated based on
the distance distribution, f(d), of positive interactions; d the distance between two enhancers. Random enhancers are sampled with one end of
positive interactions fixed. Random pairs are randomly selected from all possible combinations of any two enhancers. (B–D) Performance of
EnContact and other baseline methods across seven cell lines on account of random contacts (B), random enhancers (C), and random pairs (D) as
background. Full-size DOI: 10.7717/peerj.7657/fig-2
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features, we counted the number of k-mer (say, k = 6) located in each enhancer and
constructed a k-mer frequency vector for each enhancer. Then, we concatenated the
frequency vector of two enhancers of an E-E pair as the input for baseline models. With the
same training sets and testing sets, EnContact achieves a mean AUROC of 0.827,
compared with 0.551 of SVM, 0.636 of LR, 0.779 of RF, and 0.802 of SPEID (random
contacts; Fig. 2B); a mean AUROC of 0.843, compared with 0.599 of SVM, 0.686 of LR,
0.799 of RF, and 0.821 of SPEID (random enhancers; Fig. 2C); a mean AUROC of 0.856,
compared with 0.620 of SVM, 0.722 of LR, 0.804 of RF, and 0.839 of SPEID model
(random pairs; Fig. 2D). This shows that our model outperforms other baseline models in
all seven cell lines under different backgrounds.

Taken together, the above results show that our EnContact model is capable of
extracting useful features from genomic sequences to predict E-E interactions and can
achieve much better performance than other traditional methods.

EnContact captures context-specific features which can be mapped to
transcription factors
To explore the biological meaning of features learned by EnContact, we developed a
strategy to convert the parameters of the first convolution layer of EnContact into PWM
(see “Methods”). Each convolution kernel can be regarded as a pattern recognizer, which
recognizes a specific sequence pattern by scanning along the input matrix. Then, we
matched the resulting PWM to known motifs and TFs derived from JASPAR database
(Mathelier et al., 2016). As a result, we found that EnContact captures different sets of TFs
in different cell lines and some of the TFs have been reported to be key TFs in the
corresponding cell line (Table 3). For example, IRF4 was identified as a key TF in Th17 cell
line by our strategy and was previously reported to be required during the development of
inflammatory Th17 cells (Brüstle et al., 2007; Lohoff et al., 2002). In Treg cell line, we
matched a convolution kernel to the motif of ETS1, which was previously reported to
control the development and function of natural Treg cells (Mouly et al., 2010). The motif
analysis shows that EnContact model can capture context-specific sequence patterns
and simultaneously convert input sequences into higher-level features. To sum up,

Table 2 Model performance of EnContact across seven cell lines.

Cell line Random contacts Random enhancers Random pairs

AUROC AUPRC AUROC AUPRC AUROC AUPRC

GM 0.806 0.773 0.831 0.830 0.853 0.863

K562 0.837 0.850 0.852 0.826 0.874 0.887

HCASMC 0.821 0.804 0.811 0.815 0.846 0.857

MyLa 0.803 0.792 0.827 0.800 0.838 0.851

Naive 0.858 0.848 0.867 0.875 0.865 0.885

Th17 0.842 0.832 0.861 0.868 0.872 0.891

Treg 0.835 0.828 0.851 0.854 0.845 0.864

Mean 0.829 0.818 0.843 0.838 0.856 0.871
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EnContact demonstrates the ability to capture known context-specific sequence patterns
and provides us an opportunity to explore novel context-specific TFs which have not been
identified by experiments yet.

EnContact provides a finer mapping of enhancer-enhancer
interactions
As discussed in the previous section, we divided E-E interactions derived from HiChIP
data into “1v1” subset and “mvm” subset. Chromatin contacts in “mvm” subset are
interactions with more than one enhancer in either end or both ends, which therefore can
be regarded as a bunch of candidate E-E pairs (Fig. 3A). For a given cell line, once the
context-specific model was trained using E-E interactions in “1v1” subset, we can apply
this model to predict true interactions from candidate E-E pairs in “mvm” subset.

For each of the seven cell lines, we applied the well-trained EnContact model to
identify true interactions from candidate E-E pairs, which can contribute to reducing
the false positive rate of E-E pairs for HiChIP data. For each candidate E-E pair,
EnContact provides a probability that two enhancers of this pair are interacting with
each other. Setting threshold as 0.5, we considered E-E pairs with probabilities larger
than the threshold as positive predictions, otherwise as negative predictions. In total,
we identified 1,545,180 positive E-E interactions from candidate E-E pairs in seven
cell lines.

Next, we compared the co-openness of two enhancers in positive predictions with that
in negative predictions. Here, we calculated the co-opening degree of two enhancers based
on the consistency of their DNase I hypersensitivity signal (Fig. 3B; see “Methods”).
We assumed that if two enhancers are interacting with each other, they should have a
larger probability to co-open. Indeed, we found that the percentage of co-opening pairs of
positive predictions is larger than that of negative predictions in all seven cell lines
(Fig. 3C). This result shows that E-E interactions predicted by EnContact are more likely
to be co-opening than other candidate interactions, suggesting that the predicted
E-E interactions are more reasonable than those derived from original HiChIP data.

Furthermore, we built a validation dataset using E-E interactions derived from
ChIA-PET data of several cell lines to check the consistency between predicted E-E pairs
and the validation dataset. We regarded positive predictions inferred by EnContact as

Table 3 Key TFs captured by convolution kernels of EnContact.

Cell type Key TFs

GM PKNOX1, PKNOX2, FOS, BHLHE40, JUND, USF1, EBF1

K562 EGR1, MGA, BHLHE40, MNT, CREB1, FOXA1, NFYB, USF1

HCASMC ETS1, IRF2, HSF2, MZF1, HOXB3, JUND, CREB1, FOXO3, POU6F1, NFE2, ZNF263, BATF3, ATF7, NKX6-2

MyLa ETS1, FLI1, RORA, CREB1, ELK4, NFATC1, ETV3, ZBTB33, REST, ELK3, MLX, NR3C1, SP2, ETV6

Naive IRF4, PLAG1, IRF2, HSF2, MZF1, HOXB3, MEF2D, JUND, CREB1, EMX1, FOXO3, NFYB, MEF2A, POU6F1

Th17 IRF4, IRF2, FOXP3, FOXP1, TP53, RXRB, SMAD3, NR2C2, POU6F1, CREB1, TFE3, IRF7, PRDM1

Treg ETS1, NFATC2, MAX, RORA, ELF4, NR2C2, RUNX1, ELF1, RELA, ZBTB33
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Figure 3 Fine-scale enhancer-enhancer interactions predicted by EnContact. (A) Region-based interactions in HiChIP data are divided into two
sets. Interacting regions with more than one enhancer located on each end may result in several candidate enhancer-enhancer interactions.
(B) Concept of enhancer co-opening based on DNase I hypersensitivity signal. (C–I) Co-opening percentages of positive predictions and negative
predictions across seven cell lines. (J–P) Comparison of validated enhancer-enhancer interactions within E-E pairs predicted by EnContact, E-E pairs
derived from candidate interactions, and random E-E pairs. (Q–W) Comparison of three E-E groups (i.e., EnContact E-E group, Candidate E-E
group, and Random E-E group) in terms of the number of E-E pairs whose two enhancers regulate the same promoter.

Full-size DOI: 10.7717/peerj.7657/fig-3
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“EnContact E-E group.” Then, we constructed a comparison group, named “Candidate
E-E group,” by randomly sampling from all candidate pairs with the same sample size as
EnContact E-E group. Additionally, we constructed a control group which contains
E-E pairs generated based on the distance distribution of positive E-E pairs. The
comparison group and control group were generated 1,000 times to remove randomness.
In each cell line, we calculated the overlaps between these three E-E groups and the
validation dataset. The result shows that in all seven cell lines, EnContact group has the
largest overlap with validation interactions, compared with candidate groups and random
groups (Fig. 3D). This indicates that EnContact can provide finer mapping E-E
interactions than candidate E-E interactions derived from original HiChIP-data.

Finally, considering that E-E interaction may be related with the common promoter
that they may co-regulate. We analyzed the E-E interaction based on whether they regulate
the same promoter in ChIA-PET data. Specifically, for each E-E group described above
(i.e., EnContact E-E group, Candidate E-E group, and Random E-E group), we counted
the number of E-E pairs whose two enhancers regulate the same promoter. The result
shows that E-E interactions predicted by EnContact model are more likely to co-regulate
the same promoters than candidate E-E interactions and random E-E interactions
(Fig. 3E). This indicates that EnContact model can identify E-E interactions which are
related to the co-regulation of promoters.

Collectively, the above analysis suggests that features learned by EnContact from
genomic sequences can be used to predict context-specific E-E interactions.

Characterization of hub enhancers
To further discuss the characterization of predicted interactions, we constructed an
enhancer-based network using E-E interactions identified by EnContact. We checked the
degree distribution of the enhancer network and observed that only a small portion of
enhancers have significantly high degrees (Fig. 4A). In the following analysis, we take the
data of GM cell line as an example. To check the characterization of enhancers frequently
interacting with others, we defined those enhancers with top 10% highest degrees as
hub enhancers. For comparison, we prepared hub enhancers of a network constructed
using candidate interactions. In addition, we randomly selected non-hub enhancers with
the same sample size as another control group. Next, we collected plentiful epigenomic
data to explore distinct features of hub enhancers and also to compare the difference of
characterization of hub enhancers defined by EnContact interactions, candidate
interactions, and non-hub enhancers.

We asked whether hub enhancers are more active across different cell lines than other
enhancers. To answer this question, we collected 637 ChIP-seq experiments of 128 cell
lines for four key histone markers: H3K4me3, H3K27ac, H3K4me2, and H3K9ac
(The ENCODE Project Consortium, 2004). For each hub enhancer, we calculated its activity
across different experiments and counted the number of experiments where this
enhancer is active. Thus, we derived a distribution of experiment numbers where all hub
enhancers defined by EnContact interactions (i.e., E-E pairs predicted by EnContact)
are active. Next, we also calculated another two distributions of experiment numbers
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where hub enhancers defined by candidate interactions (i.e., E-E pairs derived from
original HiChIP data) and non-hub enhancers are active. Comparing these three
distributions, we observed that hub enhancers defined by EnContact interactions are
generally active in significantly more experiments than hub enhancers defined by
candidate E-E pairs or non-hub enhancers (Fig. 4B; P-values < 2.2 × 10−16, one-sided
Wilcoxon rank-sum tests). This indicates that hub enhancers are indeed more active across
different cell lines. Besides, the comparison result further supports that EnContact is able
to extract true E-E interactions from original HiChIP data.

Moreover, we downloaded 4,383 ChIP-seq experiments of 144 cell lines for 579 distinct
TFs (The ENCODE Project Consortium, 2004). Similarly, for each hub enhancer,
we counted the number of experiments where this enhancer is active and the number of
TFs included in these experiments. Then, we compared the number of experiments where
hub enhancers define by the three E-E groups are active. As shown in Fig. 4C, hub
enhancers defined by EnContact interactions are active in significantly more experiments
and covered much more TFs than the other two enhancer groups (P-values < 2.2 × 10−16,
one-sided Wilcoxon rank-sum tests). This again indicates that hub enhancers tend to be
active across different cell lines.

In conclusion, EnContact predicts true E-E interactions from original HiChIP data
and guides us to identify a class of hub enhancers which tend to be active across different
cell lines. Furthermore, the analysis of the characterization of hub enhancers again
supports the predicting ability of our EnContact model.
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Figure 4 Characterization of hub enhancers. (A–G) Distribution of enhancer interaction degrees in different cell lines. (H–K) Comparison of hub
enhancers derived from E-E pairs predicted by EnContact, hub enhancers derived from candidate E-E pairs, and non-hub enhancers in terms of four
histone marker H3K4me3 (H), H3K27ac (I), H3K4me2 (J), and H3K9ac (K). (L) Comparison of the number of ChIP-seq experiments where hub
enhancers are active. (M) Comparison of the number of TFs included in the experiments where hub enhancers are active. The y-axis represents the
number of experiments where a promoter is active. Full-size DOI: 10.7717/peerj.7657/fig-4
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DISCUSSION
There are several directions worth exploring in future work. First, our sequence-based model
can be used to evaluate the influence of nucleotide variants on chromatin interactions. Briefly,
for a given SNP located in an enhancer, we can calculate the difference of E-E interacting
probability when given reference nucleotide and given variant nucleotide. This difference can
be regarded as a quantitative measurement of the biological influence of the given variant.
Second, in this work, we only use genomic sequences as input to predict E-E interactions.
Since epigenomic features are closely related to three-dimension structure and are
complementary to sequence information, we can integrate epigenomic features, which can be
derived from ChIP-seq data or ATAC-seq data, with genomic sequences to achieve a
better prediction of chromatin contacts among enhancers. Finally, our current model focuses
on the prediction of E-E interaction in a context-specific way. With the cooperation of
epigenomic signals and sequence information, it is hopeful that an integrative model to
predict E-E interactions across cell lines can be developed.

CONCLUSIONS
Chromatin contacts between regulatory elements are of crucial importance for the
interpretation of transcriptional regulation and the understanding of disease mechanisms.
In the last decade, many computational studies have been developed to improve the
resolution of three-dimension genomic data (Whalen, Truty & Pollard, 2016; Zhu et al.,
2016; Zhang et al., 2018). However, these methods mainly focused on the interactions
between enhancers and promoters, leaving E-E interactions not well explored. In this
paper, we designed a deep learning model, EnContact, to predict interactions among
enhancers. First, we statistically demonstrated the predicting ability of EnContact using
training sets and testing sets derived from HiChIP data of seven cell lines. Then, we
compared EnContact with two other machine learning models using k-mer features as
input. Results show that our model significantly outperforms baseline models. Next, we
trained a context-specific model for each cell line and applied the model to predict
E-E interactions from original HiChIP data. Finally, we identified hub enhancers from the
predicted E-E interactions and observed that hub enhancers tend to be active across cell
lines. We summarize that EnContact is capable of predicting E-E interactions using
features automatically learned from genomic sequences.
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