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ABSTRACT
In this study, we propose and test a novel ensemble method for improving the accuracy
of each method in flood susceptibility mapping using evidential belief function (EBF)
and support vector machine (SVM). The outcome of the proposed method was
compared with the results of each method. The proposed method was implemented
four times using different SVM kernels. Hence, the efficiency of each SVM kernel was
also assessed. First, a bivariate statistical analysis using EBF was performed to assess
the correlations among the classes of each flood conditioning factor with flooding.
Subsequently, the outcome of the first stage was used in a multivariate statistical
analysis performed by SVM. A highest prediction accuracy of 92.11% was achieved by
an ensemble EBF-SVM—radial basis function method; the achieved accuracy was 7%
and 3% higher than that offered by the individual EBF method and the individual SVM
method, respectively. Among all the appliedmethods, both the individual EBF and SVM
methods achieved the lowest accuracies. The reason for the improved accuracy offered
by the ensemblemethods is that by integrating themethods, a more detailed assessment
of the flooding and conditioning factors can be performed, thereby increasing the
accuracy of the final map.

Subjects Natural Resource Management, Environmental Impacts
Keywords Flood susceptibility mapping, Support vector machine, Evidential belief function,
Ensemble modeling

INTRODUCTION
Climate change and the inevitable urbanization have increased the occurrences of floods
(Kjeldsen, 2010). The direct consequences of flooding include the loss of life, destruction of
property, damage to crops, and deterioration of health conditions as a result of waterborne
illnesses. Flooding can cause serious damages by dragging huge objects across the land
on which the water flows (Fotovatikhah et al., 2018). Large floods can affect wildlife and
decrease the level of biodiversity in inundated areas. A decrease in the habitat potential
and food availability in the affected areas can cause long-term effects for the surviving
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wildlife. Population growth can result in increased constructions on floodplains. Smaller
dwellings can be built that can result in denser cities and an increased possibility of
floods in such areas. More closely constructed dwellings increases the quantity of houses
that are potentially exposed to flood damage. Therefore, the costs involved in flood
damage are considerably high in terms of both damaged assets and human fatalities.
It is more important to aim at preventing such disasters than compensating for the
damages. Preventive actions can minimize the possibly irreversible damages caused to
buildings, farming, and transportation (Youssef, Pradhan & Sefry, 2016). The regions that
are susceptible to floods must be identified to assist the governments and agencies in
avoiding as much destruction as possible. It is not easy to determine the impact of a
flood because it is not tangible; the evaluation requires a considerable amount of time.
Conversely, the loss and destruction cause by a flood can be measured more easily (Yi, Lee
& Shim, 2010).

There is a need for more studies based on floods and floodplain management strategies
to improve the existing knowledge concerning the way floods occur under varying climate
and catchment situations. Numerous studies have utilized flood susceptibility mapping
(Merz, Thieken & Gocht, 2007; Pradhan, 2010; Pradhan & Youssef, 2011; Tehrany et al.,
2014; Van Alphen et al., 2009). However, it remains to solve the problem of generating
accurate flood forecasts and maps. The rainfall-runoff modeling techniques WetSpa,
HYDROTEL, and SWAT are some of the popular hydrological methods (Herder, 2013).
Calibration and sensitivity analysis must be performed for these methods (Neitsch et al.,
2002). Moreover, it is not easy for researchers with limited expertise in hydrology to
implement these methods (Herder, 2013). Therefore, they are less applicable for real-time
studies. Bivariate statistical analysis (BSA) and multivariate statistical analysis (MSA) are
two forms of quantitative (statistical) techniques (Ayalew & Yamagishi, 2005). BSA includes
the analysis of the correlations between the flood inventory map and each conditioning
factor (Althuwaynee, Pradhan & Lee, 2012). Each class of a particular conditioning factor is
examined separately, and the final probability map is produced by the sum of all weighted
summation. Frequency ratio (FR) and weight-of-evidence (WoE) are two examples of BSA
methods. MSA methods such as logistic regression (LR) examine the multiple associations
between the different conditioning factors and the flood inventory map simultaneously.
LR evaluates the correlations between the different conditioning factors and flooding
at the same time (Carrara, Crosta & Frattini, 2003). FR and LR have been widely used
in studies based on natural hazards (Lee & Pradhan, 2007; Park et al., 2013); both the
methods involve simple and linear calculation processes. On one hand, BSA neglects the
correlations among the different conditioning factors, which is considered a disadvantage.
On the other hand, MSA neglects the influence of the classes of each conditioning factor on
the occurrence of floods (Tehrany, Pradhan & Jebur, 2013). Generally, catchments cannot
be accuratelymodeled using simple and linear techniques owing to their complex, dynamic,
and non-linear structure. Other available techniques include the WoE, evidential belief
function (EBF), artificial neural network (ANN), support vector machine (SVM), and
decision tree (DT) that are more advanced and structurally complex. The WoE method,
which is a BSA method, is based on Bayesian theory, and it is appropriate for solving
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decision-making problems under uncertainties. This technique has been applied in several
studies based on natural hazards (Pourghasemi et al., 2013b). However, a demerit of all
BSA methods can also be observed in the WoE method: it does not evaluate the correlation
among the different conditioning factors.

The SVM, ANN, and DT methods are known as machine learning methods. They can
be trained using training datasets; then, the model can be applied to the whole dataset.
Machine learning methods have been used in a variety of applications (Qasem et al.,
2019). Fotovatikhah et al. (2018) have stated that the ANN method is one of the most
popular computational intelligence (CI) methods; it was applied in flood mapping by
Campolo, Soldati & Andreussi (2003), Shu & Burn (2004) and Seckin et al. (2013), among
others. It can handle errors in the input dataset and gather information from incomplete
or contradictory datasets. However, the accuracy of its outcomes decreases for cases in
which the validation data has values beyond the range of those used to run the model
(Kia et al., 2012). In cases where a large number of factors are used in the analysis, the
entire modeling process becomes time consuming (Ghalkhani et al., 2013). An adaptive
neuro-fuzzy inference system (ANFIS) (Dehghani et al., 2019) is an integrated method
created using the ANN and fuzzy interface system (FIS) methods. This method has better
capability than the individual ANN method (Tehrany, Pradhan & Jebur, 2014).

The application of the DT method in flood susceptibility analysis has been evaluated by
Tehrany, Pradhan & Jebur (2013) in Kelantan, Malaysia. The prediction accuracy of their
results proved the proficiency of this method in flood studies. The drawback of using the
DT method is the considerable amount of time required to produce the final tree. SVM is
a powerful machine learning technique in probability analysis. Using this technique, pixels
can be categorized even when the data are not linearly separable. Its processing speed varies
based on the selected SVM kernel.

Similar to other natural disasters, floods cause costly and irrecoverable damages
to the affected areas. Although it is almost impossible to prevent flooding, high-risk
areas can be recognized, and the damages can be considerably reduced by proper
management. Appropriate planning and management can be carried out by performing
flood susceptibility, hazard, and risk analyses. The areas that are susceptible to floods must
be detected; the accuracy of the outcomes is directly associated with the efficiency of the
technique used and the accuracy of the dataset used.

Based on the aforementioned literature, there is a lack of optimized techniques for
obtaining flood susceptibility maps. In addition, there are several methods such as EBF
that have not yet been used for obtaining these maps. The idea of creating a more reliable
method by combining two or more techniques may resolve the issues involved in the
individual methods (Rokach, 2010). It has been shown by several researchers that an
ensemble technique is more efficient in terms of prediction accuracy than individual
methods (Lee & Oh, 2012). A recent study that was implemented by Choubin et al. (2019)
has proved the proficiency of ensemblemodeling in flood analysis. They used threemethods
for performing the analysis; these include multivariate discriminant analysis, classification
and regression trees, and SVM. Tehrany et al. (2014) resolved the issues faced by FR and
LR in flood susceptibility mapping by integrating both the methods. A similar method has
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been tested by Umar et al. (2014) to map landslide-susceptible regions in West Sumatera
Province, Indonesia. Although severalmethods and their applications to flood susceptibility
mapping have been examined, an ensemble analysis that includes the integration of EBF
and SVM has not been tested for this purpose. The reasons that these methods were chosen
are as follows:
1. Four SVM Kernels (linear (LN), polynomial (PL), radial basis function (RBF), and

sigmoid (SIG)) provide more detail in the assessment and reliability of the derived
ensemble method. If all the kernels in the ensemble method provide a higher accuracy
than the individual methods, it proves the proficiency of the ensemble method. Every
method does not provide the opportunity to not only evaluate the outcomes using an
accuracy assessment technique but also using various internal factors.

2. The study conducted by Fotovatikhah et al. (2018) investigated more than hundred
articles on floods. According to their results, SVM methods exhibited lower error rates
in comparison with those exhibited by other methods.

3. The EBFmethod has been rarely used in flood susceptibilitymapping, but its application
has been repeatedly examined in other natural hazard domains.

4. EBF is a robust method based on the Dempster-Shafer theory in which relative
flexibility is one of the benefits. It is capable of generating reliable outcomes by
integrating different factors to decrease the uncertainty (Thiam, 2005). This technique
assesses the likelihood that a certain theory is correct, and it estimates how closely the
proof confirms the correctness of that hypothesis. The degree of belief (Bel), degree
of uncertainty (Unc), degree of disbelief (Dis), and degree of plausibility (Pls) are the
main parameters of EBF each of which extracts specific information using different
analysis of a dataset.

5. A combination of SVM and EBF is an integration of a powerful machine learning
method and a strong statistical method, respectively.
An individual SVM and the application of its four kernels in flood susceptibility

mapping has been tested by Tehrany et al. (2015). However, EBF is almost new in the
flood susceptibility domain. EBF is mostly used in mineral potential mapping (Carranza,
2009; Ford, Miller & Mol, 2015), landslide mapping (Althuwaynee, Pradhan & Lee, 2012;
Lee, Hwang & Park, 2013), land subsidence mapping (Pradhan et al., 2014), forest fire
susceptibilitymapping (Pourghasemi, 2016), and groundwatermapping (Nampak, Pradhan
& Manap, 2014; Pourghasemi & Beheshtirad, 2015). The aim of this study is to enhance the
prediction accuracy of individual SVM and EBF methods in flood susceptibility mapping
by combining them. The SVM and EBF methods are applied individually to compare the
performance of the new ensemble method with that of the individual ones. In addition,
all the SVM kernel types are used in the ensemble modeling because each has a specific
analysis process that produces a different outcome. A comparison between the SVM kernels
can assist in identifying the most proficient method for natural hazard studies. Finally, the
precision and reliability of the results are assessed using the area under the curve (AUC)
method.
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STUDY AREA AND DATA
The Brisbane River Catchment in Queensland, Australia, was chosen as the study area.
Three sub-basins of the Bremer River, Brisbane River, and a part of Lockyer Creek are
covered by this catchment. The study area has an approximate area of 2,806 km2 located
between latitudes 27◦22′12′′S and 28◦01′48′′S and longitudes 152◦22′12′′E and 153◦05′6′′E
(Fig. 1). In Queensland, the average yearly precipitation ranges from very low values in
the Southwest to very high values exceeding 2,000 mm around the coastal regions. Even
in regions with low precipitation, considerably heavy rainfall takes place in some years,
thereby causing floods. Scientists believe that long-term climate change may affect rainfall
in this region (Partridge, 2001). Brisbane has a humid subtropical climate with very hot,
humid summers and dry, reasonably warm winters. The average temperature is 20.3 ◦C,
and it receives nearly 1,168mmof rainfall per year. A destructive flood occurred in Brisbane
in 2001 and is used in this study as inventory data. The flood forced the evacuation of many
people from towns and cities. Vast areas around the Brisbane River were inundated, and
there was significant damage and loss of life.

To perform flood susceptibility mapping, two sets of data are required. The first dataset
represents the historical data of floods that indicates the inundated regions (a flood
inventory map). The second dataset is related to flood contributing parameters that are
known as flood conditioning factors (Lee, Hwang & Park, 2013). Flood inventory data need
to be assessed against flood conditioning factors to recognize their significance and impact
on the occurrence of the floods because it is typically assumed that floods will occur under
the same conditions as before (Fotovatikhah et al., 2018). Then, the inventory data must
be divided into the training and testing datasets to be used for the training and validation
processes, respectively (Tsangaratos & Ilia, 2016). In flood modeling, there is no specific
or pre-defined method that exists for classifying inventory data. It is typically decided
based on the accessibility and quality of data. Space robustness and time robustness are
two measures used for assessment (Althuwaynee et al., 2014a). In time robustness, flood
inventory data are split into two periods: past incidence that represent the training data,
and future incidence that represent the validation data. Multi-temporal data are required
for this analysis, wherein each flood is associated with the precipitation data that caused
it. In space robustness, flood inventory data are randomly split into two classes: training
and testing. When comprehensive flood inventory data are available, integration of these
methods is possible (Huabin et al., 2005). In this study, the space robustness technique was
used to generate the training and testing datasets.

These training and testing datasets were also used later in the validation stage (Xu, Xu
& Yu, 2012). The validation process was implemented by comparing the existing flood
locations with the acquired flood susceptibility map. The AUC method, which is described
in the methodology section (‘Validation’), was used to assist the validation. The success
and prediction rates of the AUC method were measured using the training and testing
datasets, respectively. The success rate represented how well the model fit to the training
dataset (Tehrany et al., 2015). The prediction capability of the model cannot be assessed
by the success rate because it is measured using the flood locations that have already
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Figure 1 Study area and inundated points used as inventory data in this research.
Full-size DOI: 10.7717/peerj.7653/fig-1

been used for constructing the model. The prediction rate can be used to evaluate the
prediction capability of the model. The prediction rates were measured by comparing the
flood susceptibility maps with the flood testing dataset (Bui et al., 2012).

According to the literature, the percentages commonly used to divide the inventory
dataset are 30% and 70% for the testing and training datasets, respectively (Abdulwahid &
Pradhan, 2017; Chen et al., 2019; Pham et al., 2017a). In the study conducted by Kalantar
et al. (2018), the impacts of training data selection on the susceptibility mapping have been
evaluated.

From 159 flood locations, 106 locations were used for the purpose of training, and
the remaining 53 locations were used for validation (Fig. 1). With regard to the data
configuration, specific data preparation was required. Two separate data layers were
created for training and testing. The training flood locations (106 points) were selected
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Table 1 Spatial dataset and data sources.

Conditioning factor Source Impact

Altitude Light Detection and Ranging (LiDAR) data from
Australian Government/Geoscience Australia

High-elevation regions help water flow and connect to lower
areas around the rivers, causing flooding.

Slope Derived from DEM Impact on the extent and velocity of runoff.
Aspect Derived from DEM Effect on the amount of precipitation and sunshine.
Curvature Derived from DEM Influence on surface infiltration.
SPI Derived from DEM Erosive power of the terrain.
TWI Derived from DEM Amount of the flow accumulation at any place in a catchment.
Soil CSIRO website Soil type and soil structure control the soil saturation and

amount of water infiltration in soil.
Geology Queensland Government website Impact on rainfall penetration and water flow.
LULC • Classifying SPOT5 imagery Each LULC type plays specific role in flooding.

•High spatial resolution orthophotography
• Scanned aerial photos
• Local expert knowledge

Rainfall Bureau of Meteorology website Floods occur after heavy precipitation.
Distance from river Queensland government website (Wetlandinfo) Areas closer to the rivers have higher chance of getting flooded.
Distance from road Department of Transport and Main Roads Impervious surfaces produce more flooding.

randomly to produce the dependent data consisting of values 0 and 1 that represent the
existence and absence of flooding over a region, respectively. The same number of points
(106) were selected as non-flooded areas, and value 0 was assigned to them. Considering the
non-flooded locations in the study area can enhance the accuracy of the results (Tehrany
et al., 2015). The rest of the flood events (53 points) were used for the purpose of testing.
The same configuration was also used to create the testing data layer.

In terms of flood conditioning factors, the selection of the most influential parameters
is essential. Precipitation is the most significant parameter in the occurrence of floods.
However, many other parameters are involved (Lawal et al., 2012). Flooding is initiated
by rainfall but influenced by many other factors. During rainfall in a drainage basin,
the extent of rain that enters the rivers depends on the condition of the basin, mainly
its extent, topography, and LULC types (Hölting & Coldewey, 2019). Some rainfall is
controlled by vegetation and soil, and the remaining rainfall reaches the rivers. Twelve
flood conditioning factors (slope, aspect, elevation, curvature, topographic wetness index
(TWI), geology, stream power index (SPI), soil, LULC, rainfall, distance from roads, and
distance from rivers) were collected from different sources and converted into a raster
format with a 5 × 5 m pixel size (Table 1). All the scale factors were classified using the
quantile method, and they are presented in Fig. 2. The factors were classified because EBF is
a BSA method that assesses the influence of each class of a conditioning factor on a specific
event, which, in the current case, is floods.

Floods typically occur in regions with low elevation (Botzen, Aerts & Van den Bergh,
2013). Water moves from the hillsides of mountains and reaches the lower ground;
this leads to flooding. Researchers consider the altitude an amplifying parameter in the
occurrence of floods because it has an impact on the amount and velocity of runoff
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Figure 2 Flood conditioning factors. (A) Altitude, (B) slope, (C) aspect, (D) curvature, (E) stream
power index (SPI), (F) topographic wetness index (TWI),(G) distance from rivers, (H) distance from
roads, (I) rainfall, (J) soil types, (K) geology, (L) land use land cover (LULC).

Full-size DOI: 10.7717/peerj.7653/fig-2
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(Kia et al., 2012). Altitude and its derivatives have vital roles in identifying areas that are
susceptible to flooding. More reliable flood analysis can be expected when more accurate
topographical data are used (Abdullah, Vojinovic & Rahman, 2013). A DEM with a spatial
resolution of 5 m that was produced from Light Detection and Ranging (LiDAR) data was
used to derive other related parameters. Slope layer, another topographical parameter, was
produced from DEM with 10 classes with a maximum angle of 53◦. The slope impact on
flooding is related to runoff speed: steep slopes have less time for infiltration, which causes
an increase in water flow. An aspect map that has nine classes indicating the direction of
the terrain (flat, northeast, east, southeast, south, southwest, west, and northwest) was
also derived from DEM. The curvature (slope shape) has three classes: concave (positive
values (+)), convex (negative values (−)) and flat (value 0). Water-associated parameters
of TWI and SPI were also used in the analysis, and they were measured using the following
equations (Tehrany, Pradhan & Jebur, 2014):

TWI= ln(As/tanβ) (1)

SPI=As tanβ (2)

where As is the area of catchment (m2) and β (radians) is the slope gradient.
Although bothTWI and SPI factors have been derived from the catchment area and slope,

each represents different terrain characteristics. SPI measures the erosive power of flowing
water (Althuwaynee et al., 2014b). It is expected that flooding occurs in the areas with the
lowest SPI values, the reason being that most areas with high SPI values are sharp and steep
lands. Therefore, gravity increases the speed of water flow; consequently, destructive power
increases. On the other hand, the spatial distribution and zone of saturation of sources for
runoff generation can be identified by measuring the TWI. The TWI is used to measure
topographic control on hydrological procedures (Chen & Yu, 2011). It shows the water
penetration capability in a region and thus, the areas with potential for floods. Logically,
flat terrain absorbs more water than steep terrain owing to more gravity acting on the
water flowing down the hilly slopes. Hence, the TWI in areas around rivers and flat lands
is greater than that in areas with slopes. Higher TWI values are usually found in flooded
areas.

The distance from a river and the distance from a road were determined using the
Euclidean Distance tool, and ten classes were created for each parameter. Urbanization
increases the areas with impervious surfaces that cause increased hydraulic proficiency
in urban basins. Hence, the terrain has less rainfall infiltration capacity that increases the
extent of runoff (Shuster et al., 2005). Owing to the significant role of LULC, this factor
was also used in the analysis. Different soil conditions can affect the extent of runoff in
the catchment area. Some soil types allow greater infiltration of precipitation compared to
others, which leads to a smaller volume of runoff. Different types of geology can also affect
the amount and speed of water flow.
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Figure 3 Methodology flowchart.
Full-size DOI: 10.7717/peerj.7653/fig-3

METHODOLOGY
The process commenced by performing EBF using the flood training points. The correlation
between each class of a conditioning factor and flood occurrencewas assessed. All the factors
were reclassified using the derivedweights and used in SVManalysis as inputs. SVManalysis
was performed using all the four kernels (LN, PL, SIG, and RBF) because each kernel has
a different method of analysis. To clearly judge the performance of the ensemble methods,
EBF and SVM were also applied individually. All six derived susceptibility maps were
validated using the AUC technique and the flood testing dataset. The procedure is shown
in Fig. 3.

Evidential belief function (EBF)
The Dempster–Shafer technique is a statistical procedure that is used to recognize spatial
integration between dependent and independent factors (Smets, 1994). The Dempster-
Shafer theory (DST) of evidence, developed by Dempster (2008), is a generalization of the
Bayesian theory of subjective probability. Its major advantages are its relative flexibility in
accepting uncertainty and the ability to combine beliefs from multiple sources of evidence
(Tehrany et al., 2017).

Suppose that a set of flood conditioning factors C = (Ci,i= 1,2,3,...,n) that includes
mutually exclusive and exhaustive factors of Ci is used in this research. C is known as the
frame of discernment. A basic probability assignment is a functionm: P(C)→ [0,1].P(C)
is the set of all subsets of C including the empty set and C itself. This function is also called
a mass function and satisfiesm(8)= 0 and

∑
ACm(A)= 1, where8 is an empty set and A

is any subset of C. m(A) measures the degree to which the evidence supports A, and it is
denoted byBel (A), a belief function. The degree of belief (Bel), degree of uncertainty (Unc),
degree of disbelief (Dis), and degree of plausibility (Pls) are the main parameters of EBF
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(Althuwaynee, Pradhan & Lee, 2012). The dissimilarity among Bel and Pls is represented
by Unc, which represents ignorance. Dis is the degree of belief of the hypothesis being
incorrect for certain evidence. The relationships between these parameters have been
previously described, and they include 1−Unc−Bel ,Dis= 1−Pls and Bel+Unc+Dis= 1,
where Cij has no flood event, Bel will be zero, and Dis will be reset to zero (Awasthi &
Chauhan, 2011).

Both BSA and MSA can be performed using EBF (Carranza, Woldai & Chikambwe,
2005). The number of pixels that represent flood or non-flood for each class of a flood
conditioning factor are measured by overlapping the flood inventory layer of all flood
conditioning factors. Assuming that N (L) and N (C) are the pixels that are inundated and
that Cij is the jth class of the flood contributing factor Ci(i= 1,2,3,...,n), N (Cij) is the
number of pixels in class Cij , and N = (L∩Cij) is the number of inundated pixels in Cij .
Hence, EBF can be calculated as follows (Carranza & Hale, 2003):

Bel
(
Cij
)
=

WCij (Flood)∑n
j=1WCij (Flood)

(3)

WCij (Flood)=

N (L∩Cij )
N (L)

[N (Cij )−N (L∩Cij )]
[N (C)−N (L)]

(4)

Dis
(
Cij
)
=

WCij (Non-flooded)∑n
j=1WCij (Non-flooded)

(5)

where

WCij (Non-flooded)=

[N(Cij)−N (L∩Cij )]
N (L)

[N (C)−N (L)−N(Cij)+N (L∩Cij )]
[N (C)−N (L)]

. (6)

The numerator in Eq. (4) is the proportion of flooded pixels in factor class Cij ; the
numerator in Eq. (6) is the proportion of flooded pixels that do not occur in factor class
Cij ; the denominator in Eq. (4) is the proportion of non-flooded pixels in factor class Cij ;
the denominator in Eq. (6) is the proportion of non-flooded pixels in other attributes
outside the factor class Cij . Here, the weight of Cij is represented by WCij (Flood), which
supports the belief that floods are more likely to occur, and WCij (Non-flood) represents the
weight of Cij that supports the belief that floods are less likely to occur.

Excel and ArcGIS software were used to measure the EBF. Subsequently, Dempster’s
rule of combination was applied using a raster calculator in ArcGIS to obtain the four
integrated EBFs. The formulae for combining two flood conditioning factors C1 and C2

are as follows:

BelC1C2 =
BelC1BelC2+BelC1UncC2+BelC2UncC1

1−BelC1DisC2−DisC1BelC2

(7)

DisC1C2 =
DisC1DisC2+DisC1UncC2+DisC2UncC1

1−BelC1DisC2−DisC1BelC2

(8)
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DisC1C2 =
DisC1DisC2+DisC1UncC2+DisC2UncC1

1−BelC1DisC2−DisC1BelC2

(9)

Integrated EBF of the flood conditioning factors are implemented sequentially using
Eqs. (7)–(9).

Support vector machine (SVM)
Among the data-driven techniques, machine learning methods produce promising
viewpoints in natural hazard mapping, and they are suitable for nonlinear multi-
dimensional modeling problems (Yilmaz, 2010). SVM is based on the statistical learning
concept. It contains a stage wherein the model is trained using a training dataset of related
input and target output values. After the model is trained, it is used to assess the testing
data. There are two main procedures underlying SVM for solving problems (Yao, Tham
& Dai, 2008). First, a linear separating hyper-plane is created that splits the data based
on their patterns. Second, mathematical functions (kernels) are used to transform the
nonlinear data into a linearly distinguishable format (Micheletti et al., 2011).

Separating hyper-plane formations from a training dataset is the basis for this method.
The separated hyper-plane is generated in the original space of n coordinates (xi: parameters
of vector x) between the points of two distinct classes (Shao & Deng, 2012). Values of +1
and −1 are assigned to the pixels that are above and below the hyper-plane, respectively.
The training pixels that are closest to the hyper-plane are called support vectors. Modeling
of the rest of the data can be undertaken after deriving the decision surface (Pradhan, 2013).
The maximum margin of separation between the classes is discovered by SVM; therefore,
it builds a classification hyper-plane in the center of the maximum margin.

Consider a training dataset of instance-label pairs (xi,yi) with xi ∈ Rn, yi ∈ {1, −1}
and i= 1,...,m. In this case study, x represents slope, aspect, elevation, curvature, TWI,
geology, SPI, soil, LULC, rainfall, distance from roads, and distance from rivers. The
classes of 1 and−1 show the flooded and non-flooded pixels, respectively. Finding the best
hyper-plane is the goal of the SVM, which separates pixels into different classes, namely,
flooded and non-flooded. A separating hyper-plane can be defined as:

yi(w.xi+b)≥ 1−ξi, (10)

where the orientation of the hyper-plane in the feature space is shown byw , the offset of the
hyper-plane from the origin is represented by b, and the positive slack variable is ξi (Cortes
& Vapnik, 1995). The following optimization problem using Lagrangian multipliers was
solved through the determination of an optimal hyper-plane (Samui, 2008).

Minimize
n∑

i=1

αi−
1
2

n∑
i=1

n∑
j=1

αiαjyiyj
(
xixj

)
, (11)

subject to
n∑

i=1

αiyj = 0, 0≤αi≤C, (12)
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where αi are Lagrange multipliers, C is the penalty, and the slack variables ξi allow the
penalized constraint violation. Then, the decision function that is used to classify the new
data can be written as:

g (x)= sign

( n∑
i=1

yiαixi+b

)
. (13)

In the case where the hyper-plane cannot be separated by the linear kernel function,
the original input data may be shifted into a high-dimension feature space through some
nonlinear kernel functions. Then, the classification decision function is written as (Pradhan,
2013):

g (x)= sign

( n∑
i=1

yiαjK
(
xi,xj

)
+b

)
(14)

where K (xi,xj) is the kernel function.
All of the conditioning factors were reclassified using the obtained EBF weights and

entered into SPSS Modeler to implement the SVM modeling. Selection of the kernel
function is very important in SVM modeling (Pradhan, 2013). SPSS Modeler offers four
types of SVM kernels: LN, PL, RBF, and SIG. RBF is the most popular kernel because it
works well in most cases (Yao, Tham & Dai, 2008). RBF has high interpolation capability
and less extrapolation capability (Kavzoglu & Colkesen, 2009). PL has an inverse situation,
which has better extrapolation capabilities compared to RBF. SIG and RBF perform in a
similar manner for certain parameters. However, RBF offers more accuracy (Song et al.,
2011). The LN kernel is less popular because it is based on a linear assumption. Using
different kernels results in different outcomes. Therefore, in this study, all the kernels
were used in ensemble modeling to find the optimal results and compare the outputs. The
mathematical representation of each kernel is listed below (Pourghasemi et al., 2013a):

where γ (gamma) is a common parameter for all kernels except LN; d shows the
polynomial degree term in the polynomial kernel function; r represents the bias term in
the polynomial and sigmoid kernel functions. The parameters γ , d and r are defined by the
user. The accuracy of these parameters directly influences the reliability and correctness
of SVM outcomes (Ballabio & Sterlacchini, 2012). The two other SVM parameters of the
cost of constraint violation (C) and epsilon (ε) were considered constant throughout the
analysis.

Because of the importance of kernel parameter selection, listed in Table 2, a cross-
validation method was used instead of the trial and error method (Zhuang & Dai, 2006).
This process commenced with the division of the flood inventory into n folds: one fold
was kept for accuracy assessment purposes, and the rest were saved to run the model (Yao,
Tham & Dai, 2008). In this study, the dataset was split into five random folds for which
every group had an equal number of flood points (Table 3). The average of the parameters
was used for the final training.
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Table 2 Different SVM kernel types, their equations and required parameters.

Kernel Equation Kernel parameters

RBF K
(
xi,xj

)
= exp

(
−γ ‖xi−xj‖2

)
γ

LN K
(
xi,xj

)
= xTi xj –

PL K
(
xi,xj

)
= (−γ xTi x+ r)

d γ , d
SIG K

(
xi,xj

)
=Tanh(−γ xTi x+ r)

d γ

Table 3 Cross-Validation results.

EBF & RBF-SVMModel Training fold Testing fold γ C
1 2, 3, 4, 5 1 0.1 20
2 1, 3, 4, 5 2 0.2 10
3 1, 2, 4, 5 3 0.1 10
4 1, 2, 3, 5 4 0.3 12
5 1, 2, 3, 4 5 0.2 15

0.18 13.5
EBF & SIG-SVMModel Training fold Testing fold γ C
1 2, 3, 4, 5 1 2 20
2 1, 3, 4, 5 2 1.5 10
3 1, 2, 4, 5 3 1 10
4 1, 2, 3, 5 4 2 10
5 1, 2, 3, 4 5 3 10

1.9 12
EBF & LN-SVMModel Training fold Testing fold C
1 2, 3, 4, 5 1 10
2 1, 3, 4, 5 2 11
3 1, 2, 4, 5 3 14
4 1, 2, 3, 5 4 15
5 1, 2, 3, 4 5 15

13
EBF & PL-SVMModel Training fold Testing fold γ d C
1 2, 3, 4, 5 1 1 3 10
2 1, 3, 4, 5 2 1 3 20
3 1, 2, 4, 5 3 5 5 20
4 1, 2, 3, 5 4 5 1 10
5 1, 2, 3, 4 5 10 7 10

4.4 3.8 14

Ensemble modeling
To perform the ensemble modeling, all the flood conditioning factors were reclassified
based on the acquired EBF weight of Cij . This stage represents the BSA. The next stage
denotes the MSA by reclassifying the conditioning factors using the derived weights from
EBF and using them in the SVM analysis. The ensemble method was applied using all four
SVM kernels and the parameters obtained from the cross-validation. Consequently, four
flood probability indices were derived. In addition, another flood probability map was
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generated using an individual SVM and an RBF kernel. A stand-alone SVM analysis was
performed using the original flood conditioning factors that were not classified by the EBF
results. The conditioning factors used in the individual SVM modeling were unclassified
and were all in a continuous data format. The reason for this was to examine whether the
data format or the use of classified factors can reduce the data variability (Sajedi Hosseini et
al., 2018). In addition, individual EBF results were modeled, and a flood probability index
was calculated.

Spatial sensitivity analysis
Uncertainty is an unavoidable factor in every analysis (Rahmati, Pourghasemi & Melesse,
2016). Considering these uncertainties helps in obtaining better interpretations of themodel
outcomes. Although it is not possible to achieve 100%accuracy, there are several approaches
that can be implemented to reduce the uncertainty (Refsgaard et al., 2007). These include
uncertainty engine (Brown & Heuvelink, 2007), inverse modeling (predictive uncertainty)
(Friedel, 2005), and Monte Carlo analysis (Yang, 2011). Sensitivity analysis (SA) evaluates
the impact of conditioning factor variations on model outputs, thereby allowing the
quantitative assessment of the relative importance of uncertainty sources (Chen, Yu &
Khan, 2010). In this study, the Jackknife test was used to assess the uncertainty among
the conditioning factor datasets. This SA technique examines the impact of repeatedly
removing every conditioning factor from the dataset on the final outcomes. This means
that by using this process, the conditioning factor contribution in the analysis can be
recognized. In addition, the percentage of relative decrease (PRD) of the AUC values
was measured to investigate the dependency of the model output on the influence of
conditioning factors using the following equation:

PRD=
AUCall−AUCi

AUCi
×100 (15)

where AUCall indicates the AUC value derived using the full conditioning factor dataset,
and AUCi shows the prediction power of the method when the i th conditioning factor has
been excluded from the dataset.

Validation
To evaluate the efficiency and reliability of the analytical outcomes, the popular AUC
method was used. AUC is a popular assessment technique in natural hazard analysis
because it provides an understandable and comprehensive way for performing validation
(Beguería, 2006;Hand & Till, 2001). It commences with the arrangement of the probability
index in descending order. Classification of the probability index into hundred categories
on the y-axis with cumulative 1% breaks is the second step. Then, the flood occurrence
in each class is examined, and prediction and success rates are derived. The prediction
rate is the accuracy that is achieved using flood testing points. It shows how successful the
applied technique was in predicting the flood-prone areas that were already inundated.
Conversely, the success rate is produced using the flood training points, and this shows
the model performance (Tehrany et al., 2015). The range of the AUC is between zero and
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one. The maximum accuracy is represented by the value 1, and 0 indicates the failure of
the analysis. In this study, 106 flood locations were used for training and 53 locations were
used for testing purposes.

RESULTS AND DISCUSSION
Analyzing the weights derived from each method
EBF was applied, and the weight for each class of the flood conditioning factors was
determined. The areas with high values of Bel and low values ofDis are the most susceptible
to floods. Table 4 lists the EBF calculated for the twelve flood parameters. A range of 0.22
to 23.75 m in altitude received the highest Bel (77) and lowest Dis (2) values, thereby
indicating the highest susceptibility to floods. All the altitude classes except the second one
had considerably low Bel values, thereby indicating low susceptibility to floods. EBF results
acquired for altitudes confirmed that most flooding occurred at low altitudes because the
water flowed to and met in the lower areas, thereby indicating that flooding of areas at
higher altitudes is almost impossible. The correlation between landslide occurrence and
slope shows that steep slopes accelerated water flows. A range of 0–0.21◦ in the slope map
attained the highest Bel value of 29 and a low Dis value of 8, followed by the slope range
0.62–1.25◦. The aspect map received the highest Bel value of 52 and the lowest value of 8
for the class that was flat; this shows that floods occur in flat areas because water cannot
infiltrate the saturated soil. Moisture preservation and vegetation density are affected by
this aspect, which also influences flood occurrence. The morphology of the topography
is indicated by curvature, which has three categories: concave, convex, and flat. A pixel
with a negative curvature value denotes upward concave ground; a pixel with a positive
curvature value denotes upward convex ground. A pixel with value zero represents flat
ground. The Bel values for the convex and concave categories in the curvature map were
low; this condition implies lower flood potential compared with the flat curvature class.
The flat class received Bel and Dis values of 54 and 17, respectively.

The SPI range 157700.42–315400.84 had the highest flood susceptibility with a Bel
value of 100. With regard to TWI, the highest flood potential was observed in the range
12.31–25.76 because this range showed the highest Bel (31) and lowest Dis (7) values.
As the value of TWI increases, the water infiltration decreases, which can cause floods.
Soil and geology also control water penetration and infiltration. The class of ‘‘Hard acidic
yellow and red mottled soils’’ in soil and the class of ‘‘Andesitic to rhyolitic flows and
volcaniclastic rocks’’ in geology received the highest Bel values of 40 and 71, respectively.
The first three classes of distance from river, which were 0–489.65 m, 489.65–1305.74 m,
and 1305.74–2285.05 m, received the highest Bel values. River proximity is one of the
main factors in flood studies. The results showed that the areas closer to the river had
higher chances of inundation. Heavy precipitation causes the ground to quickly become
saturated and flood. This was confirmed by the acquired weight from EBF for the rainfall
map. The highest rainfall class, 3.31–3.42, received the highest Bel value of 19 and a lowDis
value of 9.

As described in ‘Ensemble Modeling’, every conditioning factor was reclassified based
on the derived EBF weights and used in SVM analysis to implement ensemble modeling.
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Table 4 Results of EBF in the case of each factor.

Layer Classes Pixels in class Pixels
in domain

Bel Dis

0–23.75 1,214,340 81 77 2
23.75–39.43 1,221,749 12 11 9
39.43–51.19 1,427,269 4 3 10
51.19–66.87 1,474,786 1 0 11
66.87–82.56 1,480,835 4 3 10
82.56–98.24 1,010,034 3 3 10
98.24–121.76 1,384,453 1 0 11
121.76–149.21 1,049,967 0 0 10
149.21–204.10 1,151,800 0 0 11

Elevation (m)

204.10–1000.01 1,056,388 0 0 10
0–0.21 726,676 19 29 8
0.21–0.62 1,343,717 18 15 9
0.62–1.25 1,571,205 30 21 8
1.25–2.09 1,449,461 18 14 9
2.09–3.13 1,345,964 10 8 10
3.13–4.39 1,240,403 3 2 10
4.39–6.27 1,289,769 5 4 10
6.27–9.41 1,214,967 1 0 10
9.41–15.05 1,147,790 1 0 10

Slope

15.05–53.32 1,141,669 1 1 10
Flat 498,560 29 52 8
North 1,593,563 12 6 11
Northeast 1,708,517 10 5 11
East 1,813,190 10 4 11
Southeast 1,527,816 9 5 11
South 1,216,894 9 6 11
Southwest 1,147,405 10 7 11
West 1,391,379 7 4 11

Aspect

Northwest 1,574,297 10 5 11
Convex 141,143 1 45 40
Flat 12,201,477 105 54 17Curvature
Concave 129,001 0 0 41
0 2,479 0 0 11
0–157700.42 2,479 0 0 11
157700.42–315400.84 12,450,355 106 100 0
315400.84–473101.27 10,969 0 0 11

(continued on next page)
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Table 4 (continued)

Layer Classes Pixels in class Pixels
in domain

Bel Dis

473101.27–630801.69 3,631 0 0 11
630801.69–946202.54 1,609 0 0 11
946202.54–1419303.81 1,030 0 0 11
1419303.81–2207805.92 595 0 0 11
2207805.92–4257911.43 367 0 0 11

SPI

4257911.43–40213608 311 0 0 11
2.595171–5.410969 1,110,528 1 1 10
5.410969–6.137627 1,289,883 0 0 11
6.137627–6.773453 1,280,133 1 0 11
6.773453–7.409278 1,399,032 6 4 10
7.409278–8.045104 1,374,035 3 2 10
8.045104–8.680929 1,199,716 9 8 10
8.680929–9.498419 1,238,009 14 12 9
9.498419–10.588406 1,214,072 22 20 8
10.588406–12.314218 1,215,006 18 16 9

TWI

12.314218–25.757385 1,151,207 32 31 7
Metasediments and phyllites 896,047 1 1 6
Hard acidic yellow and red mottled soils 2,458,265 65 40 2
Sandstone, cracking clays and shales 1,860,005 16 13 5
Leached sands and siliceous sands 537,366 0 0 6
Porous loamy soils, clay and friable earth 34,892 0 0 5
Sandstones, hard acidic yellow and red soils 2,639,304 18 10 6
Clays and loamy soils 803,627 2 3 6
Shallow and stony leached loams 2,754 0 0 5
Hard acidic mottled soils with leached sands 157,001 3 29 5
Sandy or loamy red earths 106,873 0 0 5
Moderate and shallow dark cracking clays 250,975 0 0 6
Sandstones 1,589,702 1 0 6
Shallow dark cracking clays 538,555 0 0 6
Dark cracking clays 348,651 0 0 6
Red and brown friable porous earth 1 0 0 5
Rock outcrops and friable soils 83,011 0 0 5

Soil

Loamy soils with clay 164,592 0 0 5
Phyllite and greywacke 1,835,300 42 7 5
Sandstone, siltstone, shale and conglomerate 2,882,371 14 1 8
Sand, silt, mud and gravel 929,694 7 2 7
Granite, granodiorite, tonalite, diorite and gabbro 127,866 0 0 7
Shale, conglomerate, sandstone, coal, siltstone, basalt and
tuff

811,388 19 8 6

Basaltic lavas with local rhyolite 927,150 0 0 8
(continued on next page)
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Table 4 (continued)

Layer Classes Pixels in class Pixels
in domain

Bel Dis

Andesitic to rhyolitic flows and volcaniclastic rocks 52,795 11 71 6
Andesite 19,650 0 0 7
Sandstone, mudstone and conglomerate 676,567 5 2 7
Sandstone, siltstone, mudstone, coal and conglomerate 3,362,012 4 0 10
Poorly lithified sandstone, conglomerate and mudstone 3,362,012 4 0 10
Ferricrete and silcrete 263,124 3 3 7

Geology

Basalt to gabbro plugs 192,005 1 1 7
Reservoir/dam 48,873 1 12 3
Waste treatment and disposal 7,155 0 0 3
Lake 9,314 0 0 3
Marsh/wetland 978 0 0 3
River 81,631 0 0 3
Channel/aqueduct 779 0 0 3
Nature conservation 767,825 0 0 4
Managed resource protection 16,674 0 0 3
Other minimal use 959,487 8 4 3
Livestock grazing 6,937,978 24 2 6
Production forestry 4,793 0 0 3
Plantation forestry 105,294 0 0 3
Grazing modified pastures 14,728 0 0 3
Cropping 8,177 0 0 3
Perennial horticulture 7,073 0 0 3
Land in transition 226 0 0 3
Irrigated modified pastures 177,342 0 0 3
Irrigated cropping 420,877 3 4 3
Irrigated perennial horticulture 11,025 0 0 3
Irrigated seasonal horticulture 10,3824 0 0 3
Intensive horticulture 1,397 0 0 3
Intensive animal production 90,621 2 13 3
Manufacturing and industrial 159,058 3 11 3
Residential 1,873,566 27 8 3
Services 471,135 35 43 2
Utilities 13,453 0 0 3
Transport and communication 21,731 0 0 3

LULC

Mining 156,607 3 11 3
0 401,007 8 26 9
0–117.16 2,280,545 53 31 6
117.16–351.48 1,932,712 20 13 9
351.48–585.81 1,213,919 6 6 10

(continued on next page)
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Table 4 (continued)

Layer Classes Pixels in class Pixels
in domain

Bel Dis

585.81–937.29 1,343,246 6 6 10
937.29–1405.93 1,314,392 7 7 10
1405.93–1991.74 1,097,365 2 2 10
1991.74–2811.87 1,031,440 2 2 10
2811.87–4100.64 943,365 0 0 10

Distance from
Roads(m)

4100.64–29876.13 913,630 2 2 10
0–489.65 1,241,245 31 31 7
489.65–1305.74 1,482,252 49 42 6
1305.74–2285.05 1,296,926 13 12 9
2285.05–3590.81 1,313,062 4 3 10
3590–5059.76 1,281,742 1 0 11
5059.76–6691.94 1,234,808 0 0 11
6691.94–9140.22 1,205,804 4 4 10
9140.22–12894.24 1,142,553 4 4 10
12894.24–18606.88 1,135,295 0 0 11

Distance from
Rivers (m)

18606.88–41620.6 1,137,934 0 0 11
1.86–2.81 1,245,402 3 2 10
2.81–2.86 1,214,009 0 0 11
2.86–2.92 1,278,634 9 8 10
2.92–2.98 1,205,609 15 14 9
2.98–3.04 1,459,866 13 10 9
3.04–3.09 1,397,625 9 7 10
3.09–3.17 1,344,633 6 5 10
3.17–3.31 1,142,961 4 3 10

Rainfall (mm/day)

3.31–3.42 1,049,373 18 19 9

The ensemble method was applied using all four SVM kernels. The kernel parameters were
derived from the cross-validation (Table 3). The final step involved the derivation of four
flood probability indices. In addition, another flood probability map was generated using
an individual SVM and an RBF kernel. The stand-alone SVM was undertaken using the
original flood conditioning factors, which were not classified by the EBF results. Figure 4
illustrates the six flood probability index maps.

Creations of flood susceptibility maps
To produce the flood susceptibility maps, the flood probability index has to be classified
into different zones of susceptibility (Pradhan, 2013; Tehrany, Jones & Shabani, 2019).
Natural break, equal interval, and quantile are some of the most commonly used methods
in natural hazard probability index classification (Ayalew & Yamagishi, 2005). Two factors
of data nature and data application influence the choice of classification method (Tehrany,
Jones & Shabani, 2019). For instance, quantile is a technique that, without affecting the
data, groups the pixels into same-size classes. This means that it groups equal numbers of
pixels (area) into each susceptibility zone (Nampak, Pradhan & Manap, 2014). Therefore,
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Figure 4 Flood probability index maps derived from: (A) individual EBF, (B) individual SVM, (C) en-
semble EBF and SVM-RBF, (D) ensemble EBF and SVM-LN, (E) ensemble EBF and SVM-PL and (F) en-
semble EBF and SVM-SIG.

Full-size DOI: 10.7717/peerj.7653/fig-4
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it appears to be the most suitable method for classifying the flood probability index.
To facilitate a reliable assessment of the impact of each class of a flood conditioning
factor on flood occurrence, we attempted, where possible, to reduce the influence of the
classification algorithm on the classes of the conditioning factor. However, natural break
and equal interval might lead to a class with a large number of pixels and a class with few
values (Chung & Fabbri, 2003). The flood susceptibility maps were produced by dividing
each flood probability index into five susceptible classes of very low, low, moderate, high,
and very high using a quantile method as seen in Fig. 5. The selected number of classes was
based on the literature (Pham et al., 2017b; Termeh et al., 2018)

Accuracy assessment
To evaluate the reliability of the derived susceptibility maps, an accuracy assessment was
performed using the AUC method (Fig. 6). The AUC results showed that the highest
prediction (92.11%) and success (94.32%) rates were achieved by the ensemble EBF-
SVM–RBF method. The individual methods produced lower accuracies (EBF: 82.60%
success rate and 89.56% prediction rate; SVM: 86.91% success rate and 83.53% prediction
rate) compared to all the ensemble methods except the ensemble EBF-SVM–LN method
(81.21% success rate and 74.70% prediction rate). The reason is that the linear kernel is
not appropriate for use in non-linear phenomena such as flooding. Based on the achieved
accuracies, the ensemble EBF and SVM method can be used instead of the individual
methods to improve the accuracy of the final maps. This can help planners to recognize
the most susceptible areas with higher certainty. Using the ensemble technique improved
the success rate by 12% and 7% and the prediction rate by 3% and 9% over the individual
EBF and SVM methods, respectively.

According to the results obtained in this study, ensemblemodeling provided considerable
advantages compared to the traditional methods. For example, the processing time for
SVM was significantly reduced due to the pre-analysis of the flood conditioning factors.
Hence, the factors were assessed and reclassified based on the EBF analysis and then used as
an input for SVM. This quickened the machine learning process. In terms of cost, there are
no direct differences among the methods in terms of performance; however, reducing the
processing time in a large-scale analysis may speed up the management process, thereby
reducing the damage costs in hazardous areas.

Sensitivity analysis
As described earlier in the methodology section, every dataset includes an inevitable
amount of uncertainty. The SA in this study was performed using the Jackknife test, and
its outcomes are summarized in Table 5. The highest loss of performance or PRD ≈ 8.23
of the AUC method was achieved when slope was omitted from the conditioning factor
dataset. This was followed by SPI (PRD ≈ 8.11) and geology (PRD ≈ 7.33). A higher PRD
indicates that those conditioning factors provide specific information to the model that
cannot be found in other factors. On the contrary, some of the conditioning factors did
not represent strong contributions to the spatial prediction of flood occurrence such as
distance from road (PRD ≈ 0.22), soil (PRD ≈ 0.65), and distance from river (PRD ≈
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Figure 5 Flood susceptibility maps derived from: (A) individual EBF, (B) individual SVM, (C) ensem-
ble EBF and SVM-RBF, (D) ensemble EBF and SVM-LN, (E) ensemble EBF and SVM-PL and (F) ensem-
ble EBF and SVM-SIG.

Full-size DOI: 10.7717/peerj.7653/fig-5

Shafapour Tehrany et al. (2019), PeerJ, DOI 10.7717/peerj.7653 23/32

https://peerj.com
https://doi.org/10.7717/peerj.7653/fig-5
http://dx.doi.org/10.7717/peerj.7653


..... 
0 " 
o, 50 
� 

., 40 

Success Rate 

o-�---------------------�

0 10 20 30 40 50 60 70 
Flood probability inde.x (%) 

--EBF (82.60%) 
--EnsembleEBF+SVM (LN) (81 .21%) 

Ensemble EBF+SVM (PL) (92.25%) 
- -Ensemble EBF+SVM (RBF) (94.32%) 
·········· Ensemble EBF+SVM (SIG) (90.18%) 
-----SVM (RBF) (86.9I%) 

80 90 100 

100 

90 

" 80 

B iO 

� 
'O 
0 

,E 60 
.... 
0 

� 50 
� 

t 40 

-�
'.§ 

30 

§; 20 u 

10 

0 

0 

Prediction Rate 

,:,, 
,: ,_.._ ________________ _
,: i 
It ! 

'A-� r,J : 

10 20 30 40 50 60 70 80 
Flood probability index(%) 

--EBF (89.56%) 
--EnsembleEBF+SVM(LN) (74.70%) 

Ensemble EBF+SVM (PL) (92.03%) 

- -Ensemble EBF+SVM (RBF) (92.11 %) 
.......... Ensemble EBF+SVM (SIG) (90.02%) 
-----SVM (RBF) (83.53%) 

90 100 

(a)
(b)
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(2) individual SVM, (3) ensemble EBF and SVM-RBF, (4) ensemble EBF and SVM-LN, (5) ensemble
EBF and SVM-PL and (6) ensemble EBF and SVM-SIG.

Full-size DOI: 10.7717/peerj.7653/fig-6

Table 5 The Jackknife test results of variables when each conditioning factor is excluded in ensemble
model.

Excluded factor Decrease of AUC Percent of relative
decrease (PRD) of AUC

Slope 8.23 9.81
SPI 8.11 9.65
Geology 7.33 8.65
Altitude 6.98 8.20
LULC 6.16 7.17
Aspect 3.54 4.00
TWI 2.77 3.10
Curvature 0.87 0.95
Rainfall 0.73 0.80
Distance from river 0.71 0.78
Soil 0.65 0.71
Distance from road 0.22 0.24

0.71). These outcomes show that flood susceptibility mapping is highly sensitive to slope,
SPI, geology, altitude, and LULC. Such an SA assists researchers in recognizing the most
influential parameters in flood analysis. It is important to consider that these factors might
be different in each study area.

Shafapour Tehrany et al. (2019), PeerJ, DOI 10.7717/peerj.7653 24/32

https://peerj.com
https://doi.org/10.7717/peerj.7653/fig-6
http://dx.doi.org/10.7717/peerj.7653


CONCLUSION
Proper and reliable techniques and strategies are required to assist governments and
planners in identifying areas that are susceptible to floods and avoiding future urban
development plans in these areas. Therefore, advancements in studies based on floods and
available techniques are required to enhance our understanding the occurrence of floods
varied climate and catchment conditions. To overcome the weaknesses of the stand-alone
EBF and SVM methods, the more sophisticated ensemble methods can be used. In this
study, a novel ensemble EBF-SVM method was developed, applied, and examined for the
assessment of flood susceptibility mapping of the Brisbane Catchment, Australia, using GIS
and SPSS Clementine V.14.2. Each of these methods is considered an efficient and powerful
statistical technique. However, to enhance their performance, they were ensembled and
used in this study. EBF and SVM were used to perform BSA and MSA, respectively.
All four SVM kernels and their impacts were also considered. The ensemble method was
applied four times using different kernels to identify themost proficient SVMkernel type. In
addition, both EBF and SVMwere used individually to obtain flood probability indices. The
success rate and prediction rate of the AUCmethod were used to examine the strength and
prediction capabilities of all the applied methods. The best accuracy was achieved by using
the ensemble EBF-SVM–RBF method, with AUC of 94.32% and 92.11% for prediction
and success rates, respectively. These values were approximately 6% higher than those
obtained with the stand-alone models. The identified ensemble method offered the best fit
for reasonable automatic flood conditioning parameter classification without any expert
knowledge requirement. The performances of individual methods were enhanced by their
integration. SVM offers different kernel types that can be selected based on the objective
and data availability of each study. Each kernel is suitable for specific conditions, and each
produces considerably different outcomes. Although the improvement in prediction was
approximately 3% and 9% compared to the current individual EBF and SVM methods,
respectively, the improvement is significant. Any increase in prediction accuracy can have a
significant impact on flood mitigation planning, and the relevant method should be tested
under different scenarios and implemented where possible.
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