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ABSTRACT
Among amniotes, numerous lineages are subject to an evolutionary trend toward
body mass and size increases. Large terrestrial species may face important constraints
linked to weight bearing, and the limb segments are particularly affected by such
constraints due to their role in body support and locomotion. Such groups showing
important limb modifications related to high body mass have been called
“graviportal.” Often considered graviportal, rhinoceroses are among the heaviest
terrestrial mammals and are thus of particular interest to understand the limb
modifications related to body mass and size increase. Here, we present a
morphofunctional study of the shape variation of the limb long bones among the five
living rhinos to understand how the shape may vary between these species in relation
with body size, body mass and phylogeny. We used three dimensional geometric
morphometrics and comparative analyses to quantify the shape variation. Our
results indicate that the five species display important morphological differences
depending on the considered bones. The humerus and the femur exhibit noticeable
interspecific differences between African and Asiatic rhinos, associated with a
significant effect of body mass. The radius and ulna are more strongly correlated with
body mass. While the tibia exhibits shape variation both linked with phylogeny and
body mass, the fibula displays the greatest intraspecific variation. We highlight
three distinct morphotypes of bone shape, which appear in accordance with the
phylogeny. The influence of body mass also appears unequally expressed on the
different bones. Body mass increase among the five extant species is marked by an
increase of the general robustness, more pronounced attachments for muscles and a
development of medial parts of the bones. Our study underlines that the
morphological features linked to body mass increase are not similar between rhinos
and other heavy mammals such as elephants and hippos, suggesting that the weight
bearing constraint can lead to different morphological responses.
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INTRODUCTION
Many vertebrate lineages exhibit convergence toward a body mass increase through time
(Depéret, 1907; Raia et al., 2012; Baker et al., 2015; Bokma et al., 2016). Size and mass
augmentation implies metabolic and musculoskeletal modifications for the whole body to
bear its own weight (McMahon, 1973). One of the most noticeable body changes related to
weight bearing concern modifications of the appendicular skeleton; animals displaying
such adaptive traits are said to be “graviportal” (Hildebrand, 1974). This concept
introduced by Gregory (1912) and Osborn (1929) has been defined based on both
anatomical and locomotion aspects: the commonly accepted criteria are, in addition to
a body mass of several hundreds of kilograms, columnar limbs with stylopodium
lengthening and autopodium shortening, robust bones (i.e., larger shaft for a given length),
large feet with enlarged adipose cushions, reduced phalanges, long strides associated with
the inability to gallop (Gregory, 1912; Osborn, 1929; Coombs, 1978). This condition was
opposed to the “cursorial” one characterizing running animals (e.g., horses and many
ungulates). Between these two extremes, intermediate categories tended to sharpen this
tentative locomotor classification, with “subcursorial” for moderate cursorial adaptations
with good running performances (e.g., felids and canids), and “mediportal” for animals
with conformations meeting both the weight bearing aspect and running capacities
(e.g., suids, tapirs) (Gregory, 1912; Coombs, 1978; Eisenmann & Guérin, 1984). These
categories remain extensively used in functional morphology and locomotion studies
(Maynard Smith & Savage, 1956; Coombs, 1978; Eisenmann & Guérin, 1984; Prothero,
Manning & Hanson, 1986; Biewener, 1989a; Stein & Casinos, 1997; Polly, 2007; Scherler
et al., 2013; MacLaren & Nauwelaerts, 2016). Hildebrand (1974) proposed an arbitrary
body mass of 900 kg beyond which the species is considered as graviportal, but without
justification for this threshold. Carrano (1999) tackled this problem by replacing these
discrete categories by a multivariate continuum of locomotor habits ranging from
graviportal to cursorial based on bone and muscular insertion measurements, chosen to be
“biomechanically relevant” but performed only on the femur, tibia and third metatarsal.

As a consequence, the categorization of some taxa as graviportal may vary depending
on authors. Among living mammals, elephants, rhinos and hippos are commonly
considered as the three main graviportal taxa (Alexander & Pond, 1992). Elephants
obviously fulfill all the morphological and biomechanical criteria defining graviportality
(Coombs, 1978; Langman et al., 1995). However, the peculiar morphology of hippos
(barrel-like body and shortened limbs) linked to semi-aquatic habits (Mazza, 2014) has
been considered alternately as mediportal (Coombs, 1978; Ross, 1984) or graviportal
(Alexander & Pond, 1992; Carrano, 1999; MacFadden, 2005; Stilson, Hopkins & Davis,
2016). The graviportal condition in rhinoceroses is surely the least consensual: Gregory
(1912) and Osborn (1929) considered rhinos as mediportal whereas later works assigned
them a graviportal condition (Prothero & Sereno, 1982; Eisenmann & Guérin, 1984).
Becker (2003) and Becker et al. (2009) dug into this question and developed a “gracility
index” based on the work of Guérin (1980) to categorize modern and fossil rhinos, but only
based on third metacarpal and metatarsal proportions. The use of this index refined the
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classification of modern rhinos distinguishing mediportal and graviportal species instead
of a single class attribution for the whole family (Table 1).

Regardless of the locomotor type to which they belong, the family Rhinocerotidae
includes some of the heaviest land mammal species after elephants, displaying adaptations
to support their high body mass (Alexander & Pond, 1992). There are five remaining
species of rhinos on Earth nowadays: the White Rhinoceros (Ceratotherium simum
Burchell, 1817) and the Black Rhinoceros (Diceros bicornis Linnaeus, 1758) both live in
sub-Saharan Africa, whereas the Indian Rhinoceros (Rhinoceros unicornis Linnaeus, 1758),
the Javan Rhinoceros (R. sondaicus Desmarest, 1822) and the Sumatran Rhinoceros
(Dicerorhinus sumatrensis Fischer, 1814) survive in India and Nepal, Java and Sumatra,
respectively (Dinerstein, 2011). These species exhibit an important variation in body mass
and size (Table 1), ranging from less than a ton for Dicerorhinus sumatrensis to more
than three tons for the biggest known specimens of C. simum. They are all good
walkers and runners, able to gallop and reach an elevated speed (27 km/h for C. simum,
Alexander & Pond, 1992; 45 km/h for Diceros bicornis, Blanco, Gambini & Fariña, 2003).
However, important ecological differences also exist (Groves, 1967a, 1967b, 1972;
Groves & Kurt, 1972; Laurie, Lang & Groves, 1983; Hillman-Smith & Groves, 1994;
Dinerstein, 2011; Groves & Leslie, 2011): the three Asiatic rhinos are excellent swimmers
and very familiar with an aquatic environment whereas the two African ones are easily
stopped by a relatively deep river (Guérin, 1980). While C. simum is a pure grazer,
R. unicornis can both graze and browse small shrubs, leafy material and fruits, the three
other species being mainly leaf browsers. Before the drastic decrease of their natural
habitats under human pressure, rhinos occupied a wide geographic range across Africa
and Asia (Dinerstein, 2011; Rookmaaker & Antoine, 2013). Moreover, the fossil record
of the superfamily Rhinocerotoidea contains many lineages displaying evolutionary
convergence toward an increase of body mass (Prothero & Schoch, 1989; Prothero, 1998;

Table 1 Main characteristics of the five studied species.

Species name Total body
length (cm)

Shoulder
height (cm)

Mean body
mass (kg)

Ecology Locomotor type

Gregory (1912),
Osborn (1929), and
Coombs (1978)

Eisenmann &
Guérin (1984)

Becker
(2003)

Ceratotherium simum* 340–420 150–180 2,300 Open savanna M G G

Dicerorhinus
sumatrensis**

236–318 100–150 775 Dense forests and
swampy lakes

M G M

Diceros bicornis* 300–380 140–170 1,050 Open savanna and
clear forest

M G M

Rhinoceros sondaicus** 305–344 150–170 1,350 Dense forests and
swampy areas

M G G

Rhinoceros unicornis** 335–346 175–200 2,000 Floodplains and
swamps

M G M

Notes:
Length, height and body mass data compiled and calculated after Dinerstein (2011). Shoulder height is given at the withers. Ecological data compiled after Becker (2003).
G, graviportal; M, mediportal.
* African species.
** Asiatic species.
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Antoine, 2002; Becker, 2003; Scherler et al., 2013). However, despite the importance of
rhino species for understanding evolution toward large body mass and the fact that they
are some of the heaviest surviving land mammals, only a few studies really explore the
variation of their limb bone morphology in relation to their body proportions (Guérin,
1980; Eisenmann & Guérin, 1984). After the pioneering works of Cuvier (1812) and
De Blainville & Nicard (1839) describing the postcranial anatomy of modern rhinos,
almost no work tried to broadly analyze and compare the morphology of their limb bones.
Guérin (1980) published a substantial comparative anatomy work on the whole skeleton of
the five extant species. This study emphasized anatomical descriptions with a direct
application on the determination of fossil forms. Despite considerations on inter- and
intraspecific osteological variation in modern rhinos, this work did not fully explore the
patterns of shape variation in this group. Furthermore, most of the previous studies used
a classic morphometric approach with linear measurements on bones, an approach
which cannot precisely take into consideration the whole shape of the bone in three
dimensions (3D). To our knowledge, no morphofunctional analyses have been carried out
on limb long bones of modern rhinos taking into consideration their whole shape.

Here, we hypothesize that modern rhinoceroses exhibit a large amount of interspecific
variation of the shape of each bone that would be essentially associated with a strong
effect of body mass on bone morphology. We predict that this effect will be more
pronounced on the stylopodium (humerus and femur) than on the zeugopodium (radius,
ulna, tibia and fibula) bones. This would be in accordance with previous works on changes
of limb shape between graviportal and cursorial taxa (Biewener, 1989b; Campione & Evans,
2012). In addition, we expect an effect of phylogenetic heritage and different species’
ecologies on bone shape. To test these hypotheses, we propose to explore the variation
in the shape of the limb long bones among the five modern rhino species using a 3D
geometric morphometrics approach. We describe interspecific patterns of morphological
variation for the six bones composing the stylopodium and the zeugopodium, taking into
account the intraspecific variation.

MATERIALS AND METHODS
Sample
We selected 62 dry skeletons in different European museums belonging to the five extant
rhino species: C. simum, Dicerorhinus sumatrensis, Diceros bicornis, R. sondaicus and
R. unicornis (Table 2). We followed the taxonomic attribution given by each institution for
most of the specimens, except for three individuals determined or reattributed by ourselves
on osteological criteria and later confirmed by our morphometric analysis (see Table 2).
We studied altogether 53 humeri, 49 radii, 46 ulnae, 56 femora, 52 tibiae and 50 fibulae,
with 37 skeletons being complete. We included only mature specimens with fully fused
epiphyses (adults) or specimens where the line of the epiphyseal plates was still visible on
some bones (subadults). Bones showing breakages or unnatural deformations were not
considered in our analysis. It has been proved that feet bones are subject to important
osteopathologic deformations in rhinos (Regnault et al., 2013). However, in accordance
with the observations of Guérin (1980), we did not notice any major difference between the
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Table 2 List of the studied specimens with skeletal composition, sex, age class, condition and 3D acquisition details.

Taxon Institution Specimen number H R U Fe T Fi Sex Age Condition 3D acquisition

Ceratotherium simum* NHMUK ZD 2018.143 X X X X X X U A U SS

Ceratotherium simum NHMW 3086 X X X X X X U A W P

Ceratotherium simum RBINS 19904 X X X X X X M S W SS

Ceratotherium simum RBINS 35208 X X X X X U A U SS

Ceratotherium simum RMCA 1985.32-M-0001 X X X X X X U A W SS

Ceratotherium simum RMCA RG35146 X X X X X X M A W SS

Ceratotherium simum UCMP 125000 X U A U CT

Ceratotherium simum ZSM 1912/4199 X U A W SS

Ceratotherium simum BICPC NH.CON.20 X X X X X X M S W SS

Ceratotherium simum BICPC NH.CON.32 X X X X X X F S W SS

Ceratotherium simum BICPC NH.CON.37 X X X X X F A W SS

Ceratotherium simum BICPC NH.CON.40 X X X X X X F S W SS

Ceratotherium simum BICPC NH.CON.110 X X X X X X M A W SS

Ceratotherium simum BICPC NH.CON.112 X X X X X X M A W SS

Ceratotherium simum NMS NMS.Z.2010.44 X X F A U CT

Ceratotherium simum MNHN ZM-MO-2005-297 X X X X M A C SS

Dicerorhinus sumatrensis MNHN ZM-AC-1903-300 X X X X X X M A W SS

Dicerorhinus sumatrensis MNHN ZM-AC-A7967 X X X F A W SS

Dicerorhinus sumatrensis NHMUK ZD 1879.6.14.2 X X X X X X M A W SS

Dicerorhinus sumatrensis NHMUK ZD 1894.9.24.1 X X X X X X U A W SS

Dicerorhinus sumatrensis NHMUK ZD 1931.5.28.1 X X X X X X M S W SS

Dicerorhinus sumatrensis NHMUK ZE 1948.12.20.1 X X X X X X U A U SS

Dicerorhinus sumatrensis NHMUK ZE 1949.1.11.1 X X X X X X U A W SS

Dicerorhinus sumatrensis NHMUK ZD 2004.23 X X X X U A W SS

Dicerorhinus sumatrensis NHMW 1500 X X X M A U P

Dicerorhinus sumatrensis NHMW 3082 X X X X X X U A U P

Dicerorhinus sumatrensis NHMW 29568 X X X X U S U P

Dicerorhinus sumatrensis RBINS 1204 X X X X X X M A W SS

Dicerorhinus sumatrensis UMZC H.6392 X U A U CT

Dicerorhinus sumatrensis ZSM 1908/571 X X X X X M A U SS

Diceros bicornis CCEC 50002040 X X X X U A W SS

Diceros bicornis CCEC 50002044 X X U S U SS

Diceros bicornis CCEC 50002045 X U S W SS

Diceros bicornis CCEC 50002046 X X X X X U S U SS

Diceros bicornis CCEC 50002047 X X X X U A U SS

Diceros bicornis MNHN ZM-AC-1936-644 X X X X X X F S U SS

Diceros bicornis MNHN ZM-AC-1944-278 X X X X M A C SS

Diceros bicornis MNHN ZM-AC-1974-124 X X X F A C SS

Diceros bicornis RBINS 9714 X X X X X X F A W SS

Diceros bicornis RMCA RG2133 X X X X X X M S W SS

Diceros bicornis UCMP 9856 X U A U CT

Diceros bicornis ZSM 1961/186 X X X X X X M S U SS

(Continued)
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long bones of captive and wild animals, neither through visual and osteological
observations nor in our morphometric analyses; we therefore did not take into account this
parameter. Sexual dimorphism occurs among rhinos but has been mostly investigated
regarding the external morphology of the animals (Dinerstein, 1991, 2011; Berger, 1994;
Zschokke & Baur, 2002). The few studies that have explored the osteological variations
between sexes indicated only slight absolute metric divergences depending on species
(Guérin, 1980; Groves, 1982). This suggests that intraspecific variation due to sex may be
marginal when compared to interspecific variation, and probably more related to the size
of the bone than to the shape. Furthermore, since almost half of our sample lacked sex
information and that we had twice as many males than females, we could not carefully
address sex in our study (see Results).

3D models
Bones were mostly digitized with a structured-light three-dimensional scanner (Artec Eva)
and reconstructed with Artec Studio Professional software (v12.1.1.12—Artec 3D, 2018).

Table 2 (continued).

Taxon Institution Specimen number H R U Fe T Fi Sex Age Condition 3D acquisition

Diceros bicornis ZSM 1961/187 X X X X X X M S U SS

Diceros bicornis ZSM 1962/166 X X X X X F S U SS

Rhinoceros sondaicus CCEC 50002041 X X X X X X U A W SS

Rhinoceros sondaicus CCEC 50002043 X X X X U A W SS

Rhinoceros sondaicus MNHN ZM-AC-A7970 X X X X X X U A U SS

Rhinoceros sondaicus MNHN ZM-AC-A7971 X X X X X X U A W SS

Rhinoceros sondaicus NHMUK ZD 1861.3.11.1 X X X X X X U S W SS

Rhinoceros sondaicus NHMUK ZD 1871.12.29.7 X X X X X X M A W SS

Rhinoceros sondaicus NHMUK ZD 1921.5.15.1 X X X X X X F S W SS

Rhinoceros sondaicus RBINS 1205F X X X X X X U S W SS

Rhinoceros unicornis** MNHN ZM-AC-1885-734 X X X X X U A W SS

Rhinoceros unicornis MNHN ZM-AC-1932-49 X X X U S U SS

Rhinoceros unicornis MNHN ZM-AC-1960-59 X X X X X X M A C SS

Rhinoceros unicornis MNHN ZM-AC-1967-101 X X X X X F A C SS

Rhinoceros unicornis NHMUK ZD 1884.1.22.1.2 X X X X X X F A W SS

Rhinoceros unicornis NHMUK ZE 1950.10.18.5 X X X X X X M A W SS

Rhinoceros unicornis NHMUK ZE 1961.5.10.1 X X X X X X M A W SS

Rhinoceros unicornis* NHMUK ZD 1972.822 X X X X X X U A U SS

Rhinoceros unicornis RBINS 1208 X X X X X X F A C SS

Rhinoceros unicornis RBINS 33382 X X X X X X U A U SS

Notes:
Bones—H, humerus; R, radius; U, ulna; Fe, femur; T, tibia; Fi, fibula. Sex: F, female; M, male; U, unknown. Age—A, adult; Sa, sub-adult. Condition—W, wild; C, captive;
U, unknown. 3D acquisition—SS, surface scanner; P, photogrammetry; CT, CT-scan. Institutional codes: BICPC, Powell Cotton Museum, Birchington-on-Sea; CCEC,
Centre de Conservation et d’Étude des Collections, Musée des Confluences, Lyon; MHNT, Muséum d’Histoire Naturelle de Toulouse, Toulouse; MNHN, Muséum
National d’Histoire Naturelle, Paris; NHMUK, Natural History Museum, London; NHMW, Naturhistorisches Museum Wien, Vienna; NMS, National Museums
Scotland, Edinburgh; RBINS, Royal Belgian Institute of Natural Sciences, Brussels; RMCA, Royal Museum for Central Africa, Tervuren; UCMP, University of California
Museum of Paleontology, Berkeley; UMZC, University Museum of Zoology Cambridge, Cambridge; ZSM, Zoologische Staatssammlung München, Munich.
* Specimens NHMUK ZD 2018.143 and NHMUK ZD 1972.822 were determined by ourselves during the visit of the collections on the basis of morphological
observations and measurements on the post-cranial elements. These determinations were later confirmed by our shape analysis.

** The specimen MNHN-ZM-AC-1885-734 was previously determined as Rhinoceros sondaicus based on a supposed Javan origin. The observations made on both long
bones and tarsal elements led us to consider this individual as an Indian rhino (Rhinoceros unicornis). This attribution was later confirmed by our shape analysis.
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Complementarily, 19 bones were digitized with a photogrammetric approach, following
Mallison & Wings (2014) and Fau, Cornette & Houssaye (2016). Sets of photos were taken
all around the bones and aligned to reconstruct a 3D model with Agisoft Photoscan
software (v1.4.2—Agisoft, 2018). Previous studies indicated no significant difference
between 3D models obtained with these two methods (Petti et al., 2008; Remondino et al.,
2010; Fau, Cornette & Houssaye, 2016). Five bones were digitized using medical computed
tomography scanners at the Royal Veterinary College, London (Equine Hospital) and
at the University of California, San Francisco (Department of Radiology & Biomedical
Imaging). Bone surfaces were extracted as meshes using Avizo software (v9.5.0—Thermo
Fisher Scientific, 2018). Each mesh was decimated to reach 250,000 vertices and 500,000
faces using MeshLab software (v2016.12—Cignoni et al., 2008). We mainly selected left
bones during acquisition; when this was impossible, right bones were selected and then
mirrored before analysis.

Anatomical terminology
All anatomical terms used to describe bones come from classic references: the Nomina
Anatomica Veterinaria (World Association of Veterinary Anatomists, International
Committee on Veterinary Gross Anatomical Nomenclature, 2005) and anglicized terms of
Barone (2010a) for general osteology and bone orientation,Guérin (1980) for specific rhino
anatomy, complemented by the contributions of Colyn (1980), Antoine (2002) and
Heissig (2012). Despite these previous works, one anatomical feature remained
unnamed, leading us to use our own designation: we called “palmar process” the process
facing the coronoid process on the palmar border of the radius proximal epiphysis.
Muscle insertions were described after the general anatomy of horses (Barone, 2010b),
complemented by the work of Beddard & Treves (1889) and some complementary
information from Guérin (1980) on rhino myology, Bressou (1961) on that of tapirs and
Fisher, Scott & Naples (2007) and Fisher, Scott & Adrian (2010) on that of hippos.

Geometric morphometrics
To analyze shape variation in our sample, we performed 3D geometric morphometrics, a
widely used approach allowing quantification of morphological differences between
objects using landmark coordinates (Adams, Rohlf & Slice, 2004; Zelditch et al., 2012).

Landmark digitization
Following the procedure described by Gunz, Mitteroecker & Bookstein (2005), Gunz &
Mitteroecker (2013) and Botton-Divet et al. (2016), we defined the bones’ shape using
anatomical landmarks and curve and surface sliding semi-landmarks. Each curve is
bordered by anatomical landmarks as recommended by Gunz & Mitteroecker (2013).
We placed all landmarks and curves using the IDAV Landmark software (v3.0—Wiley
et al., 2005). We used 35 anatomical landmarks on the humerus, 23 on the radius, 21 on the
ulna, 27 on the femur, 24 on the tibia and 12 on the fibula. Details of landmark numbers
and locations used for each bone are given in Table S1 and Fig. S1.

Following the procedure detailed by Botton-Divet et al. (2016), we created a template
to place surface semi-landmarks for each bone: a specimen (C. simum RMCA
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1985.32-M-0001) was randomly chosen on which all anatomical landmarks, curve and
surface sliding semi-landmarks were placed. We then used this template for the projection
of surface sliding semi-landmarks on the surface of the other specimens. Projection
was followed by a relaxation step to ensure that projected points matched the actual surface
of the meshes. Curve and surface sliding semi-landmarks were then slid to minimize the
bending energy of a thin plate spline (TPS) between each specimen and the template
at first, and then two times between the result of the preceding step and the Procrustes
consensus of the complete dataset. Therefore, all landmarks can be treated at the end as
geometrically homologous (Gunz, Mitteroecker & Bookstein, 2005) and analyzed with
classic procedure such as generalized Procrustes analysis (GPA; see below). Projection,
relaxation and sliding processes were conducted using the Morpho package in the
R environment (R Development Core Team, 2014). Details of the process are provided in
the documentation of the package (Schlager, 2018).

Repeatability tests
For each bone, we tested the repeatability of the anatomical landmark digitization taking
measurements ten times on three specimens of the same species, C. simum, chosen to
display the closest morphology and size. We superimposed these measurements using a
GPA and visualized the results using a principal component analysis (PCA). Results
showed a variation within specimens clearly smaller than the variation between specimens
(see Fig. S2) and allowed us to consider our anatomical landmarks as precise enough to
describe shape variation.

Generalized Procrustes Analyses
After the sliding of all semi-landmarks, we performed GPA (Gower, 1975; Rohlf & Slice,
1990) to remove the effects of size and of the relative position of the points and to isolate
only the shape information. As our dataset contained more variables than observations,
we used a PCA to reduce dimensionality as recommended by Gunz & Mitteroecker (2013)
and visualize the specimen distribution in the morphospace. We computed theoretical
consensus shape of our sample and used it to calculate a TPS deformation of the template
mesh. We then used this newly created consensus mesh to compute theoretical shapes
associated with the maximum and minimum of both sides of each PCA, as well as mean
shapes of each bone for each species. GPA, PCA and shape computations were done using
the “Morpho” and “geomorph” packages (Adams & Otárola-Castillo, 2013; Adams,
Collyer & Kaliontzopoulou, 2018; Schlager, 2018) in the R environment (R Development Core
Team, 2014). Neighbor Joining method was used to construct trees based on relative
Euclidian distances between individuals based on all principal component scores obtained
with the PCA, allowing a global visualization of the relationships between all the specimens.
Trees were computed with the “ape” package (Paradis, Claude & Strimmer, 2004).

Allometry effect
We tested the effect of allometry, defined as “the size-related changes of morphological
traits” (Klingenberg, 2016). Pearson’s correlation tests were performed to look for
correlation between the principal components and the centroid size (log10) for each bone.
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We also used the function procD.allometry of the “geomorph” package to perform a
Procrustes ANOVA (a linear regression model using Procrustes distances between species
instead of covariance matrices—see Goodall, 1991) to quantify the shape variation related
to the centroid size, and to visualize theoretical shapes associated with minimal and
maximal sizes of our sample (Adams & Otárola-Castillo, 2013; Adams, Collyer &
Kaliontzopoulou, 2018). This test was performed taking into account group affiliation
(e.g., species) to highlight respective roles of centroid size and species determination on the
shape variation. In the absence of individual body mass for the majority of our sample,
we also performed a Procrustes ANOVA with the cube root of the mean mass attributed to
each species (Table 1), each specimen being associated with the mean mass of its species.
As for the centroid size, theoretical shapes associated with minimal and maximal mean
mass were computed using the predicted Procrustes residuals (details on the procedure are
given in the “geomorph” documentation). Plots of the multivariate regressions of shape
scores (i.e., regression of shape on size; see Drake & Klingenberg, 2008) against
log-transformed centroid size were also computed.

RESULTS
Shape analysis
We describe here the results of our PCA for each bone and focus on the theoretical shape
variations along the two main axes. For each bone, we chose to represent relevant views
and anatomical features. Complete visualizations of the different theoretical shapes for the
two first axes are available in Fig. S3. Analysis of shape relations among our sample is
completed by the Neighbor Joining trees provided in Fig. S4.

Humerus

The first two axes of the PCA computed on the humerus represent 60.6% of the total
variance (Fig. 1A). The first axis represents more than half of the global variance (53%) and
the five species appear clearly sorted along it, opposing Dicerorhinus sumatrensis on the
positive side to C. simum on the negative one, i.e., the lightest and heaviest species,
respectively. Diceros bicornis is grouped with C. simum on the negative part of the axis,
whereas R. sondaicus is on the positive part. R. unicornis occupies the center of the axis,
between Diceros bicornis and R. sondaicus. Points distribution in the morphospace and
Neighbor Joining trees indicate a clear separation between African and Asiatic rhinos
(Fig. S4A). The theoretical shape at the PC1 minimum (Figs. 1B, 1D, 1F and 1H) shows a
massive morphology, with mediolaterally and craniocaudally broad epiphyses and
shaft; a wide humeral head, with very little overhanging of the diaphysis in the caudal
direction; a lesser tubercle more strongly developed than the greater tubercle, with an
intermediate tubercle separating a widely open bicipital groove into unequal parts, the
lateral one being the largest; a lesser tubercle convexity medially extended whereas the
greater tubercle one is quite reduced in this direction; a broad and diamond-shaped
m. infraspinatus imprint on the lateral side; a broad deltoid tuberosity not extending
beyond the lateral border of the bone; a shaft with its maximal width situated between the
humeral head and the deltoid tuberosity; a distinct but very smooth and flatm. teres major
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Figure 1 Results of the PCA performed on morphometric data of the humerus. (A) Distribution of
the specimens along the two first axes of the PCA; (B–I) theoretical shapes associated with the minimum
and maximum values of PC1: caudal (B, C), lateral (D, E), proximal (F, G) and distal (H, I) views for PC1
minimum (B, D, F, H) and PC1 maximum (C, E, G, I). B.g., bicipital groove; C., capitulum; D.t., deltoid
tuberosity; E.c., epicondylar crest; G.t., greater tubercle; G.t.c., greater tubercle convexity; H., head; I.t.,
intermediate tubercle; L.e., lateral epicondyle; L.l.b., lateral lip border; L.t., lesser tubercle; L.t.c., lesser
tubercle convexity; M.e., medial epicondyle; M.i.i., M. infraspinatus insertion; M.l.b., medial lip border;
M.t.m.t., M. teres major tuberosity; N., neck; O.f., olecranon fossa; T., trochlea; T.g., trochlear groove.

Full-size DOI: 10.7717/peerj.7647/fig-1
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tuberosity; a very large distal epiphysis because of the development of the lateral
epicondyle; a smooth epicondylar crest; a mediolaterally wide and craniocaudally
compressed medial epicondyle; shallow and proximodistally compressed olecranon fossa
and trochlea; a wide trochlea displaying a main axis tilted in the dorsoventral direction;
and a capitulum with a relatively small surface area. At the opposite, the theoretical
shape at the PC1 maximum (Figs. 1C, 1E, 1G and 1I) shows a slender and thin aspect; a
more rounded humeral head overhanging the diaphysis caudally; a greater tubercle more
strongly developed than the lesser one and extending medially, conferring a more
closed aspect to the bicipital groove, where the intermediate tubercle is almost absent; a
poorly developed lesser tubercle convexity whereas the greater tubercle one is massive; a
rounded and reduced m. infraspinatus insertion; a deltoid tuberosity strongly protruding
laterally; a straight and thin shaft; no visible m. teres major tuberosity; a narrow distal
epiphysis, with a small development of the lateral epicondyle; a sharp epicondylar crest; a
craniocaudally developed medial epicondyle overhanging the olecranon fossa; a deep and
wide olecranon fossa; a far less compressed trochlea, with a less dorsoventrally tilted axis;
and a very reduced capitulum.

Along the second axis (7.6%), we observe this time that C. simum and Dicerorhinus
sumatrensis are grouped together on the negative part of the axis, with the three other
species on the positive part, whereas they are opposed along the first axis. This second axis
expresses the separation between the lightest and the heaviest rhino species on the one
hand and the three other species on the other hand. The theoretical shape at the PC2
minimum displays a humeral head stretched in the caudal direction; a lesser tubercle more
developed than the greater one, delimiting an open bicipital groove; a proximodistally
extended distal epiphysis, with an epicondylar crest starting almost on the middle of the
shaft; a rounded and wide olecranon fossa. At the opposite, the theoretical shape at the PC2
maximum shows a rounded humeral head; a strong development of both tubercles and a
more closed bicipital groove; a mediolaterally stretched distal epiphysis, with the
epicondylar crest starting at the distal third of the shaft; an olecranon fossa proximodistally
compressed and more rectangular; and a well-developed lateral epicondyle.

Radius
The first two axes of the PCA performed on the radius express 52.3% of the total variance
(Fig. 2A). The first axis (36.4%) opposes Dicerorhinus sumatrensis and Diceros bicornis
to R. unicornis and C. simum. R. sondaicus overlaps both R. unicornis and Diceros bicornis
clusters. The specimens of Dicerorhinus sumatrensis are split in two discrete clusters along
the first axis, but no clear explanation linked to age, sex or geographic origin was associated
with this distribution. Point dispersion along this axis indicates an important intraspecific
variation for Dicerorhinus sumatrensis, and to a lesser extent for Diceros bicornis and
R. sondaicus. Unlike for the humerus, phylogenetically related species are not grouped
together on PCA and Neighbor Joining trees (Fig. S4B). The theoretical shape at the PC1
minimum (Figs. 2B, 2D, 2F and 2H) shows a massive morphology with large shaft and
epiphyses; an asymmetrical proximal articular surface (constituting the ulnar notch), with
a medial portion appearing nearly twice as large as the lateral one; a protruding lateral

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 11/48

http://dx.doi.org/10.7717/peerj.7647/supp-5
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


L.i.r.

L.i.r.

L.g.c. L.g.c.
M.g.c.

M.g.c.C.p.

C.p.

R.t.
L.i.r.

I.s.

L.i.r. L.i.r.

I.s.

I.c.
I.c.

I.c.
I.c.

R.t.

C.p.

P.p. P.p.

P.p.
P.p.

L.s.a.s. M.s.a.s. L.s.a.s.

P.a.s.u.P.a.s.u.

D.a.s.u.

A.s.sl.
A.s.sl.

A.s.sl.

A.s.s.
R.s.p.R.s.p.

A.s.s.

R.s.p. R.s.p.

R.s.p.
R.s.p.

A.s.s.

D.a.s.u.

M.s.a.s.
P.p.C.p.

P.p.

A.s.s.
A.s.sl.

A

B C D E

F G H I

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

PC1
36.4%

P
C

2
15

.9
%

Ceratotherium simum
Diceros bicornis
Rhinoceros sondaicus
Rhinoceros unicornis
Dicerorhinus sumatrensis

Proximal

Lateral

Proximal

Medial

Dorsal

Medial

Dorsal

Lateral

Figure 2 Results of the PCA performed on morphometric data of the radius. (A) Distribution of the
specimens along the two first axes of the PCA; (B–I) theoretical shapes associated with the minimum and
maximum values of PC1: dorsal (B, C), palmar (D, E), proximal (F, G) and distal (H, I) views for PC1
minimum (B, D, F, H) and PC1 maximum (C, E, G, I). A.s.s., articular surface for the scaphoid; A.s.sl.,
articular surface for the semilunar; C.p., coronoid process; D.a.s.u., distal articular surface for the ulna;
I.c., interosseous crest; I.s., interosseous space; L.g.c., lateral glenoid cavity; L.i.r., lateral insertion relief;
L.s.a.s., lateral synovial articular surface; M.g.c., medial glenoid cavity; M.s.a.s., medial synovial articular
surface; P.a.s.u., proximal articular surface for the ulna; P.p., palmar process; R.s.p., radial styloid process;
R.t., radial tuberosity. Full-size DOI: 10.7717/peerj.7647/fig-2
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insertion relief (distally to the lateral coronoid process sensu Budras, Sack & Röck, 2009)
(i.e., insertion area of them. extensor digitorum communis) whereas the radial tuberosity is
little prominent; a mediolaterally reduced lateral synovial articulation surface for the ulna;
a rectangular and thin medial synovial articulation surface for the ulna; a triangular
proximal articular surface for the ulna as wide mediolaterally as proximodistally; a thick
shaft with an interosseous space opening close to the proximal epiphysis: consequently, the
interosseous crest runs along the diaphysis to the distal articular surface for the ulna; a
broad distal epiphysis in the mediolateral direction, with a strong medial tubercle
developed on the dorsal face; a distal articular surface compressed in the dorsoventral
direction; an articular surface for the scaphoid little extended proximally; a trapezoidal and
wide articular surface for the semilunar (i.e., lunate bone or lunatum); a well-developed
radial styloid process. The theoretical shape at the PC1 maximum (Figs. 2C, 2E, 2G and 2I)
displays a more slender morphology; a less asymmetrical proximal articular surface,
despite the development of the medial part; an almost absent lateral insertion relief; a
completely flat radial tuberosity; a mediolaterally reduced lateral synovial articulation
surface for the ulna; a rectangular and thin medial synovial articulation for the ulna; a
triangular proximal articular surface for the ulna, mediolaterally short and proximodistally
stretched; a thin and slender shaft, with an interosseous space opening at the proximal
third of the total length; a poorly visible interosseous crest; a less dorsoventrally
compressed distal epiphysis and a poorly developed lateral tubercle (on the dorsal side); a
dorsoventrally wide distal articular surface, with a proximally extended articular surface
corresponding to the scaphoid; a trapezoidal and reduced articular surface for the
semilunar; a less developed radial styloid process with a rounded border.

The second axis (15.9%) discriminates mainly R. sondaicus from the four other species.
R. unicornis displays little extension along this axis; neither does Diceros bicornis, only
driven on the negative side by a single individual. Extension of R. unicornis morphospace
occupation along the second axis is very limited, contrary to that of C. simum and
Dicerorhinus sumatrensis clusters. As on the first axis, Dicerorhinus sumatrensis is split in
two clusters, one in the negative part and the other around null values. The theoretical
shape at the PC2 minimum displays a slender morphology, with a strongly asymmetrical
proximal articular surface; a proximally reduced palmar process, opposed to the coronoid
process; a distal epiphysis dorsoventrally broad, with a developed lateral prominence; a
little developed radial styloid process; a slight proximal extension of the articular surface
for the scaphoid. The theoretical shape at PC2 maximum displays a more massive shape; a
deeper and more symmetrical proximal articular surface with a well-developed palmar
process; a dorsoventrally compressed distal epiphysis with a more developed styloid
process.

Ulna
The first two axes of the PCA performed on the ulna express 41.5% of the total variance
(Fig. 3A). The first axis (22.1%) separates Dicerorhinus sumatrensis andDiceros bicornis on
the positive part and R. sondaicus, R. unicornis and C. simum on the negative part.
However, the clusters of C. simum and R. unicornis overlap along this axis. The general
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Figure 3 Results of the PCA performed on morphometric data of the ulna. (A) Distribution of the
specimens along the two first axes of the PCA; (B–I) theoretical shapes associated with the minimum and
maximum values of PC1: dorsal (B, C), medial (D, E), proximal (F, G) and distal (H, I) views for PC1
minimum (B, D, F, H) and PC1 maximum (C, E, G, I). A.p., anconeal process; A.s.h., articular surface for
the humerus; A.s.p., articular surface for the pisiform; A.s.sl., articular surface for the semilunar; A.s.t.,
articular surface for the triquetrum; D.a.s.r., distal articular surface for the radius; I.c., interosseous crest;
I.s., interosseous space; M.t.o., medial tuberosity of the olecranon; O.t., olecranon tuberosity; P.b., palmar
border; U.s.p., ulnar styloid process. Full-size DOI: 10.7717/peerj.7647/fig-3
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pattern on both PCA and Neighbor Joining trees is close to the one observed for the radius
(Fig. S4C). The theoretical shape at the PC1 minimum (Figs. 3B, 3D, 3F and 3H) displays a
thick morphology with large epiphyses; a massive olecranon tuberosity with a medial
tubercle—where inserts the medial head of the m. triceps brachii, as well as the mm. flexor
carpi ulnaris and flexor digitorum superficialis—oriented dorsally; an anconeal process
poorly developed dorsally and mediolaterally wide, as is the articular surface constituting
the trochlear notch (receiving the humeral trochlea); a medially stretched medial part
of the articular surface for the humerus; a short interosseous crest ending at the shaft half,
with the interosseous space; a broad shaft with a triangular cross-section; a straight palmar
border whereas the shaft is medially curved; a massive distal epiphysis with a wide
insertion surface for the radius; a mediolaterally wide and little concave articular surface
for the triquetrum (i.e., triquetral, pyramidal or cuneiform bone), while the one responding
to the pisiform is crescent-shaped and little extended proximally. The theoretical shape
for the PC1 maximum (Figs. 3C, 3E, 3G and 3I) displays a more gracile morphology; a
slender olecranon tuberosity with a medial tubercle where inserts the medial head of the
m. triceps brachii oriented in the palmar direction; a dorsally developed and mediolaterally
narrow anconeal process, as is the articular surface of the trochlear notch; a slightly
medially stretched medial part of the articular surface; a sharp interosseous crest; a thin
and straight shaft; a mediolaterally compressed and little concave distal epiphysis; a
mediolaterally narrow articular surface for the triquetrum; a triangular and proximally
well-developed articular surface for the pisiform.

The second axis (19.4%) separates quite clearly the three Asian species from the African
ones. The theoretical shape at the PC2 minimum displays a slender and straight
morphology with a high square-shaped olecranon process, mediolaterally flattened, more
stretched in the palmar direction; a wide and squared anconeal process; a straight and
regular shaft; a mediolaterally compressed distal epiphysis with a concave articular surface
for the triquetrum and a distally developed styloid process; a proximally extended articular
facet for the pisiform. The theoretical shape at the PC2 maximum displays a more massive
and medially concave shape with an olecranon process mediolaterally inflated and
rounded in the palmar direction; an anconeal process little developed dorsally and laterally
tilted; a proximodistally compressed and extending medially articular surface constituting
the trochlear notch; a mediolaterally wide articular surface for the triquetrum; a little
developed styloid process; a poorly extended proximally and square-shaped articular
surface for the pisiform.

Femur
The first two axes of the PCA performed on the femur express 45.0% of the global
variance (Fig. 4A). The first principal component (36.1%) clearly isolates Dicerorhinus
sumatrensis on the positive part from the other species. The clusters of Diceros bicornis,
R. sondaicus and R. unicornis overlap on the negative part of the axis. Diceros bicornis
and R. unicornis specimens overlap a substantial part of the cluster of C. simum too.
The general pattern observed on the Neighbor Joining tree is closer to the humerus one,
with African and Asiatic species grouped together, respectively (Fig. S4D). The theoretical
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Figure 4 Results of the PCA performed on morphometric data of the femur. (A) Distribution of the
specimens along the two first axes of the PCA; (B–I) theoretical shapes associated with the minimum and
maximum values of PC1: cranial (B, C), medial (D, E), proximal (F, G) and distal (H, I) views for PC1
minimum (B, D, F, H) and PC1 maximum (C, E, G, I). F.c., Fovea capitis; G.t., greater trochanter; G.t.c.,
greater trochanter convexity; G.t.t., greater trochanter top; H., head; I.s., intercondylar space; L.c., lateral
condyle; L.e., lateral epicondyle; L.t.r., lateral trochlear ridge; L.t., lesser trochanter; M.c., medial condyle;
M.e., medial epicondyle; M.t.r., medial trochlear ridge; N., neck; S.f., supracondylar fossa; T., trochlea;
T.f., trochanteric fossa; T.g., trochlear groove; T.t., third trochanter.

Full-size DOI: 10.7717/peerj.7647/fig-4
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shape at the PC1 minimum (Figs. 4B, 4D, 4F and 4H) shows a massive morphology with
large epiphyses and a curved medial border, conferring a concave aspect to the diaphysis; a
large femoral head, off-centered relatively to the shaft main axis, supported by a very large
neck; a small and shallow fovea capitis mediocaudally oriented; a greater trochanter
convexity expanding strongly laterodistally; the absence of trochanteric notch between the
convexity and the top of the trochanter (Fig. 4F); a proximodistally reduced trochanteric
fossa; a sharp lesser trochanter running along the medial edge, which is craniocaudally
flattened below the humeral head; a third trochanter extending strongly laterally, cranially
and proximally toward the greater trochanter convexity, and much curved toward the
medial direction; a quite irregular shaft section along the bone—flattened below the
proximal epiphysis and more trapezoidal toward the distal epiphysis; a broad distal
epiphysis with developed medial and lateral epicondyles; a shallow supracondylar fossa; a
wide trochlea, with a main rotation axis aligned with the shaft axis; a large and cranially
expanded medial ridge of the trochlea separated from the lateral one by a deep trochlear
groove; a medial condyle surface area larger than the lateral condyle one, both being
separated by a narrow intercondylar space. At the opposite, the theoretical shape at the
PC1 maximum (Figs. 4C, 4E, 4G and 4I) is more slender with a straight and regular shaft;
a rounded femoral head aligned with the shaft main axis and supported by a thinner neck;
a more pronounced and rounded fovea capitis oriented almost completely caudally; a
greater trochanter convexity little developed laterodistally; a more pronounced trochanter
top despite the absence of trochanteric notch; a thin lesser trochanter situated on the
caudal border of the medial side; a rounded third trochanter more developed laterally than
cranially; a quite regular and trapezoidal shaft section; a mediolaterally broader and
medially oriented distal epiphysis; an almost absent supracondylar fossa; a less developed
medial trochlear ridge separated from the lateral one by a shallow trochlear groove; a
lateral condyle more oblique and divergent relatively to the medial one, increasing the
intercondylar space; symmetrical medial and lateral condylar surfaces.

The second axis (8.9%) clearly opposes Dicerorhinus sumatrensis, C. simum and Diceros
bicornis on the positive part to the two Rhinoceros species on the negative part, the cluster
of Dicerorhinus sumatrensis being driven toward negative values by a single individual.
The theoretical shape at the PC2 minimum is mainly characterized by a flattened femoral
head with a strong neck; a rounded and large fovea capitis mediocaudally oriented; a
laterodistally expanded greater trochanter convexity; a long and thin lesser trochanter; an
extremely developed third trochanter in lateral, cranial and proximal directions; a
straight and regular shaft; a broad distal epiphysis with important development of both
epicondyles; a trochlea rotation axis aligned with the main axis of the shaft. The theoretical
shape at the PC2 maximum displays a more rounded head, with a more stretched neck; no
fovea capitis at all but a little groove on the head border; a greater trochanter convexity
little expanded laterodistally; a short and more medially developed lesser trochanter; a
rounded third trochanter little developed in cranial and proximal directions; a straight
shaft; a distal epiphysis less mediolaterally broad; a narrower intercondylar space; a more
inflated medial condyle.
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Tibia
The first two axes of the PCA performed on the tibia express 50.0% of the global variance
(Fig. 5A). The first axis (29.1%) separates roughly Diceros bicornis and Dicerorhinus
sumatrensis on the positive part and C. simum, R. sondaicus and R. unicornis on the
negative part. Diceros bicornis shows an important intraspecific variation along both axes.
Neighbor Joining tree structure is less clear than for previous bones: both Rhinoceros
species isolate from most of the other specimens, C. simum appears also separated from
Diceros bicornis and Dicerorhinus sumatrensis. However, one C. simum and three
Dicerorhinus sumatrensis specimens are closer from the Rhinoceros group than from their
own respective species (Fig. S4E). The theoretical shape at the PC1 minimum (Figs. 5B, 5D,
5F and 5H) shows a massive morphology with broad shaft and epiphyses, both in
craniocaudal and mediolateral directions; medial and lateral intercondylar tubercles
having the same height and a reduced central intercondylar area; a broad cranial
intercondylar area; a medial articular surface larger than the lateral one, with a caudally
extended sliding surface for them. popliteus tendon; a U-shaped popliteal notch; a rounded
tibial tuberosity, laterally deflected and medially bordered by a shallow groove; a
shallow extensor groove; a regularly triangular and distally extended proximal articular
surface for the fibula; a thick tibial crest disappearing at the middle of the shaft, where the
bone section is the smallest; a mediolaterally broad and rectangular in section distal
epiphysis; a triangular-shaped distal articular surface for the fibula reduced in height,
surmounted by a smooth interosseous crest running toward the middle of the shaft; a
roughly rectangular distal articular surface for the talus, with a lateral groove larger and
shallower than the medial one, separated by a prominent intermediate process without
synovial fossa; an articular surface with a rotation axis aligned with the bone main axis; a
prominent medial malleolus. The theoretical shape at the PC1 maximum (Figs. 5C, 5E, 5G
and 5I) displays a relatively gracile morphology with a thin shaft; a lateral intercondylar
tubercle more proximally extended than the medial one and a relatively large central
intercondylar area; a cranially extended lateral condylar surface, reducing the cranial
intercondylar area; roughly equal medial and lateral articular surface areas; a V-shaped
popliteal notch; a tibial tuberosity slightly more laterally deflected; a deeper tuberosity
groove; a nail-shaped proximal articular surface for the fibula; a sharper tibial crest
disappearing just before the first half of the shaft; a distal epiphysis more compressed
craniocaudally; a distal articular surface for the fibula displaying a large triangle synostosis
area occupying a third of the shaft and prolonged by a sharp interosseous crest. There is no
major difference in the distal articular shape between PC1 maximum and minimum,
except that the caudal apophysis is less prominent in the distal direction.

The second axis (20.9%) clearly separates the two African species (C. simum andDiceros
bicornis) on the positive part from the three Asian species (Dicerorhinus sumatrensis,
R. sondaicus and R. unicornis) on the negative part. The theoretical shape at the PC2
minimum displays a slightly more slender morphology; a proximal plateau higher cranially
than caudally and forming a closer angle with the diaphysis axis; a high intercondylar
eminence; a lateral articular surface more caudally extended than the medial one; a tibial
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Figure 5 Results of the PCA performed on morphometric data of the tibia. (A) Distribution of the
specimens along the two first axes of the PCA; (B–I) theoretical shapes associated with the minimum and
maximum values of PC1: cranial (B, C), lateral (D, E), proximal (F, G) and distal (H, I) views for PC1
minimum (B, D, F, H) and PC1 maximum (C, E, G, I). A.s.t., articular surface for the talus; C.a., caudal
apophysis; Ce.i.a., central intercondylar area; Cr.i.a., cranial intercondylar area; D.a.s.f., distal articular
surface for the fibula; E.g., extensor groove; I.c., interosseous crest; L.a.s., lateral articular surface; L.c.,
lateral condyle; L.g., lateral groove; L.i.t., lateral intercondylar tubercle; M.a.s., medial articular surface;
M.c., medial condyle; M.g., medial groove; M.i.t., medial intercondylar tubercle; M.m., medial malleolus;
P.a.s.f., proximal articular surface for the fibula; P.n., popliteal notch; S.s.m.p., sliding surface for the
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Full-size DOI: 10.7717/peerj.7647/fig-5
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tuberosity well separated from the condyles by deep tuberosity and extensor grooves; a
straight shaft ending with divergent borders forming a large and rectangular distal
epiphysis; a distal articular surface for the fibula forming a regular triangle surmounted
by a sharp interosseous crest; a medially extended medial malleolus, resulting in a
rectangular articular surface with the talus, where the medial groove is narrow and
deep, occupying a third of the area, whereas the lateral groove is shallow and broad.
The theoretical shape at the PC2 maximum displays a more massive morphology, with a
craniocaudal inflation of the epiphyses; a proximal plateau almost perpendicular to the
diaphysis axis; a lower intercondylar eminence; a lateral condyle surface almost twice less
large than the medial one, which is more developed caudally; a massive tibial tuberosity
strongly deviated laterally, delimited by very shallow tuberosity and extensor grooves and
resulting in a very large cranial intercondylar area; a straight shaft ending with almost
parallel medial and lateral borders and a square-shaped distal epiphysis; a less medially
deflated medial malleolus; a squared distal articular surface for the talus with medial and
lateral grooves showing similar surface area and depth.

Fibula
The first two axes of the PCA performed on the fibula express 55.9% of the global
variance (Fig. 6). Contrary to the five previous analyses, the first axis (40.7%) here seems
particularly driven by a strong intraspecific variation. The clusters of C. simum and
Dicerorhinus sumatrensis are stretched along the PC1 and overlap with almost every other
specimens. The cluster of Diceros bicornis is quite stretched along the axis too and only the
two Rhinoceros species display less intraspecific variation. This pattern does not seem
linked to sex, age class or condition (wild or captive): despite the presence of slightly more
females and subadults on the negative part of the component, we did not consider this
observation as robust enough to state on this question. This cluster distribution along the
PC1 seems linked to the presence of irregular crests along the shaft, associated with an
important variation of the outline of the crests running along the diaphysis, and a slight
rotation of the fibular head (see Fig. S3). Consequently, we chose to display and analyze the
specimen distribution along the second and third components instead. Theoretical shapes
associated with the PC1 are available in Fig. S3.

PC2 and PC3 express 22.9% of the global variance (Fig. 7A). The second component
(15.2%) opposes C. simum on the negative side to Dicerorhinus sumatrensis on the positive
side, whereas Diceros bicornis, R. sondaicus and R. unicornis have a more central
disposition. As for the tibia, the Neighbor Joining tree structure appears less clearly sorted
by species than for other bones. If Rhinoceros species group together and African ones as
well, Dicerorhinus sumatrensis sample is split in two subgroups mixed with R. unicornis
and African rhinos, respectively (Fig. S4F). The theoretical shape at the PC2 minimum
(Figs. 7B, 7D, 7F, 7H and 7J) displays a broad morphology with large epiphyses and a
straight shaft; a rounded head with a craniomedially oriented proximal articular surface for
the tibia; a head width similar to the shaft one; a robust shaft with two strong craniolateral
and caudolateral lines running down the distal epiphysis and enlarging craniocaudally
toward the distal epiphysis; a sharp and irregular interosseous crest; a mediolaterally
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compressed distal epiphysis with little development of the two distal tubercles at the end of
the lateral crests; a shallow lateral groove; a triangular distal articular surface for the tibia,
occupying only the last distal quarter of the bone length; a short and ovoid articular surface
for the talus with a sharp distal ridge. The theoretical shape at the PC2 maximum (Figs. 7C,
7E, 7G, 7I and 7K) displays a slender morphology with a strongly curved shaft; a
mediolaterally flat head extending craniocaudally and overhanging strongly the diaphysis;
a thin shaft with two sharp lateral crests running along it: these crests end with two
developed tubercles surrounding a deep lateral groove; a distal articular surface for the tibia
extending from the distal third of the shape and forming a stretched triangle; a wider
and kidney-shaped articular surface for the talus, forming two distal tips corresponding to
the two lateral tubercles: between them on the distal face, a large groove is visible, ending at
the center of the face.

The third component (7.7%) mainly opposes Diceros bicornis on the positive part to
R. sondaicus on the negative part. However, this opposition is mainly driven by a small
number of individuals (two for Diceros bicornis and four for R. sondaicus). The specimens
of R. sondaicus are divided into two clusters, with three individuals overlapping notably
with Dicerorhinus sumatrensis. The theoretical shape at the PC3 minimum shows a
massive morphology, with broad shaft and epiphyses; a craniocaudally broad head,
overhanging the shaft laterally; a proximal articular surface for the tibia almost completely
medially oriented; a straight shaft displaying a constant width along the bone; craniolateral
and caudolateral crests running almost parallel toward the distal end of the bone, forming
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Figure 6 Results of the PCA performed on morphometric data of the fibula. Distribution of the
specimens along the two first axes of the PCA, taking into account the age class and the sex of each
specimen. Square, female; triangle, male; circle, unknown; empty symbol, subadult; filled symbol,
adult. Full-size DOI: 10.7717/peerj.7647/fig-6
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two developed tubercles surrounding a deep groove; an interosseous space covered by
irregular reliefs and bordered by a sharp interosseous crest; a distal articular surface for
the tibia forming a cranially deviated triangle; a kidney-shaped distal articular surface
for the talus, with a distal border separated from the lateral tubercles by a groove stopping
at the middle of the distal face. The theoretical shape at the PC3 maximum shows an
extremely thin morphology with a flattened and poorly developed head; a proximal
articular surface oriented almost completely in the cranial direction; a torsion of almost
90� between the orientation of the proximal and distal articular surfaces for the tibia; a very
thin and flat shaft; craniolateral and caudolateral crests running along the diaphysis ending
on the distal epiphysis with few developed tubercles; a distal articular surface for the
tibia forming a slender triangle; a relatively small distal articular surface for the talus, with a
less pronounced kidney-shape; a groove on the distal face mediolaterally compressed.

Interspecific morphological variation
In addition to global interspecific patterns of shape, we shortly describe the main
morphological features characterizing each species. Mean shapes of each bone for the five
species are available in Fig. S5.

Limb long bones of C. simum present a general massive and robust aspect. The humerus
is thick and shows a strong development of the lesser tubercle and the lateral epicondyle, as
well as a proximal broadening in the craniocaudal direction. The radius and ulna are
robust and display an important medial development of the articular parts constituting the
trochlear notch. The ulna bears a strong olecranon tubercle. The distal articular surface for
the carpals constituted by the two bones is mediolaterally wide and compressed in the
craniocaudal direction. The hind limb bones are robust as well, this robustness being
mainly expressed in the mediolateral direction for the femur. This bone displays a rounded
and thick head, strong greater and third trochanters, and a distal trochlea laterally
oriented. The tibia and fibula are robust as well, with a wide tibial plateau supporting the
knee articulation and a squared distal articulation for the talus.

For Diceros bicornis, the general aspect of the humerus is close to the one observed on
C. simum, particularly for the epiphyses (e.g., the shape of the bicipital groove, the
development of the lesser tubercle and of the lateral epicondyle), though its degree of
robustness is less intense. The radius is relatively slender but the proximal articular surface
displays a cranial border with a marked groove under the coronoid process, also observed
on C. simum. The ulna is slender as well with a thin olecranon process and limited medial
development. Both distal epiphyses form a mediolaterally wide articular surface for the
carpals, poorly craniocaudally compressed. As for hind limb bones, the femur is only
slightly robust, with poorly developed trochanters and a slender diaphysis. Tibia and fibula
are less thick too, with a squared articular surface for the talus as well. Diceros bicornis
displays noticeable morphological similarities with C. simum.

The bone general morphology is very similar between both R. sondaicus and
R. unicornis, being often more robust in R. sondaicus. For these two species, the humerus
displays an important development of both lesser and greater tubercles, resulting in an
asymmetrical bicipital groove. The greater tubercle is even sometimes higher than the
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lesser one in R. sondaicus, which is not the case in R. unicornis. The distal epiphysis is
wide but with a medial epicondyle less developed than in C. simum and Diceros bicornis,
and a rectangular olecranon fossa. The radius exhibits mediolaterally large epiphyses and a
quite robust diaphysis, with a proximal articular surface similar in both Rhinoceros
species, with a straight cranial border unlike in African rhinos. The distal epiphysis is
rectangular and craniocaudally compressed. R. unicornis distinguishes from R. sondaicus
in having a more robust radius, with a more asymmetrical proximal epiphysis, a deeper
radial tuberosity and a larger distal articular surface. The ulna is also very similar, the one
of R. unicornis being slightly more robust. The general aspect remains extremely close,
with a developed olecranon, a medial development of the articular surface constituting the
trochlear notch and a quite wide distal articular surface. On the hind limb, the femur
appears different, the R. unicornis one showing important development of the greater and
third trochanters, sometimes fused by a bony bridge as previously stated by Guérin (1980).
The femur of R. sondaicus appears slightly less robust, and the greater and third
trochanters are less developed and never fused. On the tibia, the proximal plateau is as
wide as for the African taxa but the tibial tuberosity is more detached from the condyles by
deep tuberosity and extensor grooves. The diaphysis is relatively thick and the distal
articular surface is clearly rectangular. The fibula is very similar as well in the two species,
with a distal epiphysis curved in the caudal direction and a kidney-shaped articular surface
for the talus.

Dicerorhinus sumatrensis clearly differs from the other species. Despite clear
rhinocerotid features, limb long bones display unique morphological traits, with a more
pronounced slenderness. On the humerus, the development of the greater tubercle
results in a more closed and asymmetrical bicipital groove. The distal epiphysis is
mediolaterally narrow with a straight trochlea axis. The thin radius possesses a proximal
articular surface almost symmetrical despite a medial glenoid cavity slightly more
developed. The ulna is thin as well, and forms with the radius a rectangular articular
surface for the carpals. The femur shows a high and rounded head and a poorly developed
third trochanter. The distal trochlea axis is more medially oriented. On the tibia, the
plateau is far less wide than in other species and the distal articular surface for the talus is
rectangular. The thin fibula displays a large head caudally bordered by a thin crest and the
diaphysis is strongly curved medially toward the tibia. The kidney-shape of the distal
articular surface for the talus resembles the Rhinoceros ones.

Correlation with the centroid size
Table 3 provides the results of the Pearson’s correlation tests between the centroid size
and the two first principal components for each bone (and the third component for the
fibula). There is a significant correlation in each case between the first component and
the centroid size, with higher correlation coefficient values for the radius and ulna, and
smaller values for the humerus and fibula. The second principal component is also
significantly correlated with the centroid size for the humerus, femur and fibula, with
smaller correlation coefficient values than for PC1, except for the humerus.
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Allometry
Tables 4 and 5 provide the main anatomical differences observed between theoretical
shapes associated with minimal and maximal centroid size for the forelimb and hind limb
bones, respectively. Theoretical shapes associated with minimal and maximal log centroid
size are provided in Fig. S6. In the case of the fibula, we found a pattern very close to the
one observed along the second axis of the PCA. Replacing the log centroid size by the cube
root of the mean mass of each species results in almost identical theoretical shapes for each
bone (Fig. 8; Fig. S7), only distinguishable by minor shape differences: toward body mass
maximum, the radius and ulna appear slightly more robust than for centroid size
maximum (Figs. 8D and 8F); the greater and third trochanters of the femur are slightly less
developed toward each other (Fig. 8H). Theoretical shapes associated with minimum and
maximum of log centroid size are slightly more massive than the ones obtained with the
cube root of the body mass for the humerus, the tibia and the fibula. All theoretical shapes
associated with minimal and maximal cube root of the mean mass are provided in Fig. S7.

Tables 6 and 7 provide the results of the two Procrustes ANOVAs performed on shape
data, where the log centroid size and the cube root of the mean body mass were,
respectively, the independent variable. Log centroid size is significantly correlated with
shape for the six bones, with a determination coefficient varying between 0.10 for the fibula
and 0.18 for the ulna. In every case, the determination coefficient is more than twice as
high for species affiliation as for log centroid size, indicating a more important influence of
group affiliation than of allometry. This is especially the case for the humerus, with a
determination coefficient of 0.53 for species affiliation and of only 0.13 for log centroid
size. Cube root of mean body mass is also significantly correlated with shape for the six
bones, with slightly higher determination coefficient values than those obtained with the

Table 3 Results of the Pearson’s correlation tests between the log-transformed centroid size and the
two first principal components for each bone.

Bone Component r t dF P

Humerus PC1 −0.38 −2.93 51 0.01

PC2 0.43 3.44 51 <0.01

Radius PC1 −0.64 −5.77 47 <0.01

PC2 0.22 1.58 47 0.12

Ulna PC1 −0.79 −8.44 44 <0.01

PC2 0.02 0.11 44 0.91

Femur PC1 −0.56 −5.01 54 <0.01

PC2 0.30 −2.34 54 0.02

Tibia PC1 −0.58 −5.05 51 <0.01

PC2 0.08 0.58 51 0.57

Fibula PC1 −0.36 −2.69 48 <0.01

PC2 −0.34 −2.47 48 0.02

PC3 0.16 1.12 48 0.27

Notes:
r, Pearson’s correlation coefficient value; t, student distribution value; dF, degrees of freedom; P, p-value.
Significant results are indicated in bold.
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Table 4 Main anatomical differences observed between theoretical shapes associated with minimal and maximal centroid size for each bone of
the forelimb.

B Anatomical feature Centroid size minimum Centroid size maximum

H General aspect Gracile Robust

Head Rounded, overhanging the shaft Rounded, overhanging poorly the shaft

Lesser tubercle Developed Poorly developed

Intermediate tubercle Almost absent Poorly developed

Greater tubercle Developed Strongly developed

Bicipital groove Asymmetrical and closed Almost symmetrical and widely open

M. infraspinatus insertion Diamond-shaped and strongly developed Ovoid and less developed

Deltoid tuberosity Poorly laterally deviated and caudally sharp Laterally deviated and caudally smooth

Distal epiphysis Medio-laterally compressed Medio-laterally extended

Supracondylar crest Smooth Very smooth

Lateral epicondyle Poorly extended laterally Strongly extended laterally

Medial epicondyle Overhanging the olecranon fossa Not overhanging the olecranon fossa

Olecranon fossa Triangular and deep Rectangular and deep

Trochlea Sharp lips and deep groove Smooth lips and shallow groove

Capitulum Extremely reduced Extremely reduced

R General aspect Gracile Robust

Proximal articular surface Open and little concave; medial glenoid
cavity slightly larger than the lateral one

Concave; medial glenoid cavity twice as
large as the lateral one

Radial tuberosity Poorly developed Poorly developed

Lateral insertion relief Poorly developed Knob-shaped

Lateral synovial articulation surface Trapezoid and laterally extended Trapezoid and laterally reduced

Medial synovial articulation surface Thin and rectangular Thin and rectangular

Proximal articular surface for the ulna Triangular, wide and proximo-distally short Triangular, slender and proximo-distally long

Interosseous crest Smooth Sharp

Interosseous space position Mid-shaft First proximal third of the shaft

Distal articular surface for the ulna Long and slender triangle Short and wide triangle

Articular surface for the carpal bones Broad in dorso-palmar direction Compressed in dorso-palmar direction

Articular surface for the scaphoid Proximally extended Poorly extended proximally

Articular surface for the semilunar Trapezoid and narrow Trapezoid and wide

Radial styloid process Short Long

U General aspect Gracile Robust

Olecranon Medio-laterally compressed Medio-laterally large

Olecranon tuberosity Oriented medially with a medial tubercle
pointing in the medio-palmar direction

Oriented laterally with a medial tubercle
pointing in the medio-dorsal direction

Anconeus process Developed in dorsal direction Little developed dorsally

Articular surface for the humerus Medio-laterally reduced, lateral lip
developed in proximal direction

Medio-laterally broad with an important
development of the medial part

Interosseous crest Irregular and sharp Smooth

Distal epiphysis Thin with a small lateral extension Large and extending largely in lateral and dorsal
directions

Articular surface for the triquetrum Narrow and concave Wide and slightly concave

Articular surface for the pisiform Extended in proximal direction Little developed in proximal direction

Note:
B, bone; H, humerus; R, radius; U, ulna.
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Table 5 Main anatomical differences observed between theoretical shapes associated with minimal and maximal centroid size for each bone of
the hind limb.

B Anatomical feature Centroid size minimum Centroid size maximum

Fe General aspect Gracile Robust

Head Rounded, well separated from the shaft by a
narrow neck

Massive and flattened, surmounting a large neck

Fovea capitis Formed by a simple shallow notch on the
border head in medio-caudal direction

Small and shallow, oriented more medially

Greater trochanter Small and developed in the cranial direction Large and developed in the latero-distal
direction

Lesser trochanter Thin and bordering the caudal border of the
shaft medial side

Thick, occupying the whole width of the medial
side

Lines on the cranial side Medial line running straight along the side Medial line strongly concave along the side

Third trochanter Rounded and poorly developed Strong and developed toward the greater
trochanter

Trochlea Oriented medially with a shallow groove and
developed medial lip

Oriented cranially with a deep groove and an
extremely developed medial lip

Condyles Almost of the same size Medial condyle more developed than the lateral
one

Intercondylar space Wide Narrow

T General aspect Gracile Robust

Proximal condyles Nearly equal surface areas; lateral condyle
more developed caudally with a sliding
surface for the m. popliteus

Medial condyle surface twice as wide as the
lateral one and more developed caudally

Intercondylar tubercles Nearly of equal height Medial tubercle higher than the lateral one

Central intercondylar area Wide Narrow

Tibial tuberosity Laterally deviated Massive and oriented in lateral direction

Tuberosity groove Deep Shallow

Extensor sulcus Shallow Shallow

Proximal articular surface for the fibula Nail-shaped Triangular

Interosseous crest Sharp Smooth

Distal articular surface for the fibula Narrow and triangular Wide and triangular

Articular surface for the talus Rectangular, slightly tilted laterally Squared, slightly oriented medially

Medial groove for the talus Deep and narrow Deep and narrow

Lateral groove for the talus Shallow and wide Shallow and wide

Fi General aspect Gracile Robust

Head Flat and large, oriented cranio-medially Small and oriented cranially

Proximal articular surface for the tibia Nail-shaped Triangular

Shaft Thin and slightly concave, with two sharp
crests running along the lateral side

Broad and straight, with two smooth crests
running along the lateral side

Distal articular surface for the tibia Triangular, narrow and long Triangular, wide and short

Lateral malleolus Two well-developed tubercles caudally
oriented and separated by a deep groove

Two flat tubercles laterally oriented, with the
cranial one being more developed, and
separated by a shallow groove

Articular surface for the talus Kidney-shaped, broad in proximo-distal
direction

Triangular, proximo-distally compressed

Note:
B, bone; Fe, femur; Fi, fibula; T, tibia.
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log centroid size. The humerus, the radius and the femur display the highest coefficients,
between 0.26 and 0.33. These higher values may be due to the use of a same mean
body mass for each rhino species instead of individual mass. Moreover, group affiliation
could not be used in this case because of the mean body mass redundancy.

Multivariate regressions of shape scores against log-transformed centroid size (Fig. 9)
show that Dicerorhinus sumatrensis has the smallest centroid size and is well separated
from the other rhino species in most cases, except for the tibia and fibula. R. unicornis
possesses the highest centroid size in most of the cases, except for the radius and ulna,
where it shares similar centroid size values and shape scores as C. simum (Table 8).
Different tendencies can be observed: for the humerus, Asiatic rhinos have lower shape
scores than African ones for a given size. Radius and ulna data display a point pattern
similar to each other, with the isolation of Dicerorhinus sumatrensis toward low values, a
second cluster formed by Diceros bicornis and R. sondaicus at average values, and a third
cluster with C. simum and R. unicornis showing the highest values. This separation in three

A B C D E F

G H I J K L

Figure 8 Landmark conformations associated with minimal and maximal centroid size and mean
mass for each bone. (A, B) Humerus (caudal view); (C, D) radius (dorsal view); (E, F) ulna (dorsal
view); (G, H) femur (cranial view); (I, J) tibia (cranial view); (K, L) fibula (lateral view). Red dots,
landmark conformation associated with the mean mass. Blue dots, landmark conformation associated
with the centroid size. (A, C, E, G, I, K) Landmark conformation associated with the minimum of both
parameters; (B, D, F, H, J, L) landmark conformation associated with the maximum of both para-
meters. Full-size DOI: 10.7717/peerj.7647/fig-8
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groups can be observed at a lesser extent for the femur, where Diceros bicornis and
R. sondaicus share almost the same centroid size and shape score variations, whereas
C. simum and R. unicornis are separated by their respective centroid size despite similar
shape scores. Finally, tibia and fibula display rather similar patterns with an important
intraspecific shape variation, notably for Dicerorhinus sumatrensis and Diceros bicornis.
There is a more important continuity between the different clusters for the tibia and the
fibula than for other bones, where clusters are more separated from each other.

DISCUSSION
Identification of morphotypes and phylogenetic influence
Morphological variation isolates each rhino species from the others, more or less clearly
depending on the bone considered. The shape analysis of the six bones allows for clear
isolation of three general bone morphotypes: the African morphotype grouping C. simum

Table 7 Results of the Procrustes ANOVA performed on shape data and cube root of the mean body
mass.

R² F Z P (> F)

Humerus 0.33 25.664 5.73 0.001

Radius 0.29 18.77 6.06 0.001

Ulna 0.21 11.22 5.57 0.001

Femur 0.26 18.61 6.39 0.001

Tibia 0.18 11.16 5.50 0.001

Fibula 0.11 5.91 3.40 0.001

Notes:
R², determination coefficient value; F, Fisher distribution value; Z, normal distribution value; P, p-value.
Significant results are indicated in bold.

Table 6 Results of the Procrustes ANOVA performed on shape data and log-transformed centroid
size (Cs.) taking into account species (Sp.) affiliation.

R² F Z P (> F)

Humerus Cs. 0.13 17.38 5.13 0.001

Sp. 0.53 17.72 8.50 0.001

Radius Cs. 0.18 15.72 5.74 0.001

Sp. 0.32 7.07 8.83 0.001

Ulna Cs. 0.16 12.94 6.19 0.001

Sp. 0.36 7.31 9.27 0.001

Femur Cs. 0.14 14.41 6.07 0.001

Sp. 0.37 9.56 10.08 0.001

Tibia Cs. 0.13 11.62 5.13 0.001

Sp. 0.36 8.06 9.03 0.001

Fibula Cs. 0.10 6.61 3.77 0.001

Sp. 0.26 4.47 5.61 0.001

Notes:
R², determination coefficient value; F, Fisher distribution value; Z, normal distribution value; P, p-value.
Significant results are indicated in bold.
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and Diceros bicornis, the Rhinocerosmorphotype grouping the two Rhinoceros species, and
the Dicerorhinus sumatrensis morphotype. The congruence of these morphotypes with
the phylogeny indicates that the phylogenetic signal on long bone shape is strong, although
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Figure 9 Multivariate regression plots performed on shape data and log-transformed centroid size. (A)
Humerus; (B) Radius; (C) Ulna; (D) Femur; (E) Tibia; (F) Fibula. Full-size DOI: 10.7717/peerj.7647/fig-9
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it fluctuates among bones. In addition, body mass also appears as an important factor,
depending on the considered bones. The phylogeny is clearly the main effect driving the
shape(s) of the humerus and femur. Conversely, the morphological variation observed
on the radius and ulna is essentially associated with body mass. The tibia seems to be
equally affected by both, which is also the case for the fibula that shows, in addition, an
important intraspecific variation.

Despite the fact that we could not test the phylogenetic signal in our data because of the
small number of studied species (Adams, 2014), our observations tend to indicate an
effect of phylogenetic relations. It is accepted that the two African rhino C. simum and
Diceros bicornis are closely related (Tougard et al., 2001). They may belong to the same
subfamily—called Dicerotinae (Guérin, 1982; Gaudry, 2017) or Rhinocerotinae (Antoine,
2002; Becker, Antoine & Maridet, 2013), depending on the authors. The two species
composing the genus Rhinoceros are also closely related (Tougard et al., 2001); the bones of
R. unicornis and R. sondaicus having sometimes been confused with each other (Groves &
Leslie, 2011). Conversely, the phylogenetic position of Dicerorhinus sumatrensis remains
debated (Willerslev et al., 2009; Gaudry, 2017), this species being considered alternately
as sister taxon of the two African species (Antoine, Duranthon & Welcomme, 2003;
Cappellini et al., 2018), of the two Rhinoceros species (Tougard et al., 2001; Welker et al.,
2017) or of all four other rhino species (Fernando et al., 2006; Piras et al., 2010).
Our analyses reveal equally contrasting relationship patterns, with Dicerorhinus
sumatrensis more closely resembling African species for some bones (radius, ulna and
tibia) and Asiatic ones for the others (humerus, femur and fibula).

Some anatomical features seem strongly influenced by phylogenetic relationships,
among which some have previously been used as characters for cladistics analyses
(Prothero, Manning & Hanson, 1986; Cerdeño, 1995; Antoine, 2002). On the humerus, the
bicipital groove allows the sliding of a large m. biceps brachii, a forearm flexor playing an
important locomotor role in coordinating the scapula and arm movements (Watson &
Wilson, 2007; Barone, 2010b). This groove appears more closed by the greater tubercle for
Asiatic rhinos, potentially indicating a different length and shape for the transverse
humeral ligament. Although most analyses (Prothero, Manning & Hanson, 1986; Antoine,
2002) have coded a few characters related to the tubercles of the humerus, the complexity
of the shape of this bone proximal epiphysis remains generally underestimated in
phylogenetic reconstructions. Moreover, the case of the greater tubercle development

Table 8 Mean centroid size and standard deviation by bone for each species.

C. simum D. sumatrensis D. bicornis R. sondaicus R. unicornis

Humerus 723 ± 34 626 ± 24 660 ± 49 749 ± 39 812 ± 26

Radius 501 ± 19 403 ± 14 485 ± 19 463 ± 28 520 ± 21

Ulna 512 ± 18 408 ± 14 492 ± 18 478 ± 28 530 ± 22

Femur 724 ± 37 613 ± 18 657 ± 28 686 ± 22 822 ± 34

Tibia 471 ± 17 398 ± 15 442 ± 25 451 ± 39 535 ± 28

Fibula 279 ± 14 233 ± 7 269 ± 14 254 ± 8 327 ± 16
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observed on the humerus of Asiatic species, and mainly for Dicerorhinus sumatrensis, is of
particular interest (see Fig. S5). As mentioned by Hermanson & MacFadden (1992), the
greater tubercle “increases mechanical advantages” for the mm. pectoralis ascendens,
supraspinatus and infraspinatus.Dicerorhinus sumatrensis displays the slenderest humerus
of all modern rhinos, with morphological traits qualitatively close to tapirs’ (MacLaren &
Nauwelaerts, 2016). The proximal epiphysis of Dicerorhinus sumatrensis resembles that
of tapirs, regarded by some authors as a plesiomorphic condition among Perissodactyla
(Prothero, Manning & Hanson, 1986; Hermanson & MacFadden, 1992; Antoine, 2002).
This particular shape may thus represent an evolutionary heritage and it is unclear whether
and how functional constraints may have also affected this shape. The greater tubercle
being also an insertion area for the m. supraspinatus, extension movements thus seem
achieved differently between African and Asiatic rhinos.Watson & Wilson (2007) showed
that the m. supraspinatus in horses acts more as a shoulder stabilizer than as a true
extensor of the shoulder. Given the qualitative similarity of shape of this joint between
African rhinos and equids, it is likely that this muscle plays a similar role among these
groups. The robustness of the lesser trochanter is consistent with a development of the
medial end of the m. supraspinatus, to increase the shoulder stabilization. The lever arm is
medially deflected for C. simum and Diceros bicornis, and distributed both medially and
laterally for Rhinoceros species and Dicerorhinus sumatrensis. The role of the shoulder
joint remains crucial in weight bearing and locomotion, and its shape may be influenced by
several factors. The development of a massive greater tubercle is encountered among
hippos (Fisher, Scott & Naples, 2007), a trait that could be interpreted as an indicator of
semi-aquatic habits and displacements into muddy swamps or riverbanks. However, this
particular morphology is yet also encountered among domestic bovids, for example
(Barone, 2010a), which are not semi-aquatic. Conversely, extinct Amynodontidae,
presumed to have been semi-aquatic Oligocene rhinos (Averianov et al., 2017), did not
display this greater tubercle development (Scott, Jepsen & Wood, 1941). The development
of the greater tubercle can rather be interpreted as an indicator of a powerful shoulder
extension, as well as a feature increasing the resistance to displacement on unstable
substrates. However, only a comprehensive study of this convergent trait among diverse
artiodactyls and perissodactyls taxa could help to understand the functional role of this
anatomical region, and its potential link with the ecological habits. On the distal epiphysis,
characters related to the shape of the olecranon fossa have been used in phylogenies
(Heissig, 1972; Antoine, 2002). Our results confirm that the shape and depth of this fossa do
not seem directly linked to the general bone robustness as observed in these studies.
Moreover, this fossa is proximodistally larger for the genus Rhinoceros than for
Ceratotherium and Diceros.

On the femur, the fovea capitis is extremely reduced in C. simum and absent in Diceros
bicornis, whereas it is well developed in Asiatic rhinos, especially in R. sondaicus,
confirming previous observations (Guérin, 1980; Antoine, 2002). This fovea provides an
attachment for the accessory ligament and the femoral head ligament (Hermanson &
Macfadden, 1996), acting as a hip stabilizer. The absence or reduction of fovea capitis in
African species may be both associated with their phylogenetic proximity. This fovea is

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 32/48

http://dx.doi.org/10.7717/peerj.7647/supp-6
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


indeed present in many fossil rhinos (Antoine, 2002), regardless of the ecological
preferences of these species. The shapes of the greater and of the third trochanters also
seem driven more by the phylogeny than by functional constraints, supporting their use in
phylogenies (Cerdeño, 1995; Antoine, 2002). On the distal epiphysis, the medial trochlear
ridge is more developed and inflated in all rhinos than in horses; this feature has been
previously interpreted as associated with “locking” the knee joint during long standing
periods in equids (Hermanson & Macfadden, 1996) and considered as functionally
equivalent in rhinos (Shockey, 2001). Other authors saw in the development of this medial
trochlear ridge an adaptation to a more important degree of cursoriality, linked to
openness of habitat (Janis et al., 2012). But tapirs, yet able to gallop (Sanborn & Watkins,
1950), do not display such an enlargement of the medial ridge of the trochlea (Holbrook,
2001; C. Mallet, 2019, personal observation). This trait may thus be phylogenetically
inherited between horses and rhinos only, or results of a convergence toward a
knee-locking apparatus (which has yet to be fully demonstrated for rhinos).

On the tibia, the massive development of the tibial tuberosity seems more pronounced
among African species than in Asiatic ones. The angle between the tibial plateau and the
shaft axis is interpreted as a functional character linked to the limb posture (Lessertisseur &
Saban, 1967); a plateau caudally lowered may reflect an angled limb associated with a
cursorial habit, whereas a horizontal plateau tends to indicate more columnar limbs. Here,
despite a slight change in the plateau orientation between light and heavy rhino
species, this trait seems more likely related to phylogeny; African species have a more
horizontal plateau than Asiatic ones. Similarly, on the distal epiphysis, the rectangular
shape of the articular surface for the talus is encountered mainly in the three Asiatic species
and not in African specimens.

Role of ecology
Phylogenetically related rhinos share ecologies with important similarities, making it
difficult to accurately assess the environmental effect on bone shape. Furthermore, as
historical ranges and habitats of rhinos have been drastically reduced and modified under
human pressure (Hillman-Smith & Groves, 1994; Dinerstein, 2011; Groves & Leslie, 2011;
Rookmaaker & Antoine, 2013), ecological inferences must be assessed with caution
regarding the current rhino habitats. The related C. simum andDiceros bicornis both live in
African savannas and display a common general bone morphotype (see above). Diceros
bicornis is a ubiquitous species, often visiting both open savannas and clear forests
and browsing various vegetal species, whereas C. simum is an open grassland grazer
(Dinerstein, 2011). The same assessment can be done for the two Rhinoceros species,
closely phylogenetically related and sharing an important part of their historical
geographic range. Despite their strong affinity with water, their ecological preferences
are quite different, R. unicornis feeding frequently in semi-open floodplains whereas
R. sondaicus prefers denser forests. R. sondaicus and Dicerorhinus sumatrensis share a
similar lifestyle in dense and closed forest habitats but only their humerus, femur and
fibula tend to display slight shape similarities. If long bone shape is affected by
environmental factors, these constraints are difficult to distinguish from the ones linked to
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phylogeny. This tends to confirm previous observations indicating that rhino long bones
can hardly be used as accurate environmental markers (Guérin, 1980; Eisenmann &
Guérin, 1984).

Shape variation, evolutionary allometry and functional implications
Increase in body size and mass between the lightest and heaviest rhinos is associated with a
global broadening of the limb long bones, with a clear enlargement of both the diaphysis
and epiphyses, confirming previous general observations on different mammalian
clades (Bertram & Biewener, 1990, 1992). However, this broadening is not uniform for all
the bones. It is directed both mediolaterally and craniocaudally for the humerus (especially
for the proximal part), and mainly mediolaterally for the radius and the femur.
Conversely, for the ulna, tibia and fibula, we rather observe a craniocaudal enlargement,
particularly visible on the proximal part of the tibia.

Forelimb bones
The difference between high and low size among extant rhinos is expressed on the
humerus by a general enlargement in both craniocaudal and mediolateral directions,
particularly for the proximal first half. This may be related to the constraints exerted both
by weight bearing and braking role of the forelimb during locomotion (Dutto et al., 2006).
The important development of the lesser tubercle at the expense of the greater tubercle
in non-Dicerorhinus species allows both a greater stability of the shoulder articulation,
preventing hyperextension and a larger insertion area for the medial end of the
m. supraspinatus, also considered as a shoulder stabilizer (Fisher, Scott & Naples, 2007;
Watson & Wilson, 2007). This muscle being one of the main extensors of the forelimb
(Barone, 2010b), the developed lesser tubercle acts as a strong medial lever arm for
extension movements. This configuration has been previously interpreted as mechanically
advantageous for the muscles inserting on the shoulder joint, while the lateral
reinforcement of the greater tubercle was supposed to help resisting the adduction of the
arm (Hermanson & MacFadden, 1992). The development of the lesser tubercle may
also help supporting the scapula (more elongated among African rhinos, J. MacLaren,
2019, personal communication) and be associated with a lengthening of the
m. subscapularis tendons. In addition, the lesser tubercle also displays an important
development in Diceros bicornis, more pronounced than in R. unicornis and R. sondaicus,
though these species are heavier and taller. This indicates a possible effect of phylogenetic
proximity or similar habitats between the African species (see above). The development
of the intermediate tubercle for some rhinos may be related to the presence of a
forelimb passive stay apparatus, as demonstrated in horses (Hermanson & MacFadden,
1992; Mihlbachler et al., 2014). Although less developed than in equids, the intermediate
tubercle is present in all rhinos at different degrees (well visible in African taxa, less
developed in Rhinoceros species and poorly developed in Dicerorhinus). This may indicate
different degrees of development of passive stay mechanism possibly linked to phylogeny
and ecology (Shockey, 2001). On the distal epiphysis of the humerus, the mediolateral
enlargement observed toward high body mass ensures both a greater stability of the elbow
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articulation and larger insertion areas for the different flexor and extensor muscles for the
digits (Barone, 2010a). The distal trochlea of the humerus is also subjected to a
proximodistal compression and a mediolateral extension, increasing the articular surface
area to dissipate compressive forces, important for maintaining posture at high body
masses (Jenkins, 1973).

Forelimb paired zeugopodial bones seem to express complementary shape variations
linked to body mass. Whereas the radius broadens mainly mediolaterally with increasing
body mass, the ulna expands in the craniocaudal direction; they respond conjointly to
the increase in body mass and bone size to form a structure reinforced in all directions, as it
has been observed on the humerus. All rhinos have an ulnar proximal epiphysis situated
caudally to the radius, while its shaft expands laterally, possibly allowing a mediolateral
weight distribution. Moreover, almost all the weight is borne by the proximal articular
surface of the radius (Bertram & Biewener, 1992), which expands medially and becomes
asymmetrical for heavier rhinos. The concave radial tuberosity shows a deep m. biceps
brachii insertion delivering a strong forearm flexion (Antoine, 2002) and the developed
insertion lateral relief offers a greater surface for the m. extensor digitorum communis
(Guérin, 1980). As this relief is more developed in African species than in Asiatic ones, this
may suggest an effect of phylogeny or locomotion in different habitats or both. On the
ulna, the developed olecranon process constitutes a powerful lever arm for forearm
extensors such as the m. triceps brachii and the m. anconeus, also acting upon the bone for
gravitational support. The medial development of the olecranon process is related to
larger insertions for the mm. flexor carpi ulnaris, flexor digitorum profundus and flexor
digitorum superficialis, all essential to resist hyperextension of the wrist. The cranially
reduced anconeal process allows a greater extension of the forearm than in other taxa
(e.g., bovids or equids) (Hildebrand, 1974) but prevents a complete verticality of the
member as observed in elephants for example (Osborn, 1929). The distal epiphysis shows
a reduction of both radial and ulnar styloid processes toward high body mass, adding a
mediolateral degree of freedom to the wrist articulation. However, the proximally reduced
articular surface for the scaphoid limits the craniocaudal wrist flexion (Yalden, 1971).
These morphological traits allow the foot to bear the weight on different substrates while
limiting the risk of wrist hyperflexion (Domning, 2002).

Hind limb bones

In the hind limb, the femur expands mainly in the mediolateral direction for rhinos with
high body mass and bone size, tending to indicate a stronger resistance to constraints both
linked to body propulsion and weight bearing (Lessertisseur & Saban, 1967), exerted in
the mediolateral direction (Hildebrand, 1974). The mediolateral reinforcement of the
femur is mainly located under the head and the neck, responding to a concomitant
enlargement of the medial condyle and epicondyle on the distal epiphysis, both indicating
an increase of the body load near the sagittal plane. The more distal location of the lesser
trochanter improves the lever arm of the mm. psoas major and iliacus, developing slower
but stronger hip flexions (Hildebrand, 1974; Polly, 2007). The same phenomenon is
observed with the third trochanter, situated half way along shaft—contrary to in cursorial
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Perissodactyla like equids, where the third trochanter is more proximally situated
(Hermanson & Macfadden, 1996; Holbrook, 2001; Barone, 2010a). However, it has been
shown that the relative position of the third trochanter barely varies among extinct
rhinoceroses considered as “cursorial” or “semi-cursorial” (Prothero, 2005). This position
along the shaft may thus be influenced by both mechanical and phylogenetic constraints.
The extreme development of the third trochanter associated with a distolateral
development of the greater trochanter also creates a large lever arm for the fascia glutea,
themm. gluteus superficialis and gluteus medius allowing strong hip flexion and abduction.
This association appears the greatest for R. unicornis, where the greater and third
trochanters can be fused by a bony bridge. Conversely, the greater trochanter is less
proximally developed than in related groups like horses and tapirs (Radinsky, 1965;
Hermanson & Macfadden, 1996; Holbrook, 2001); as this trochanter is the insertion area
for the m. gluteus medius, the main extensor of the hip, the extension in rhinos seems
less powerful than in cursorial perissodactyls. On the distal epiphysis, the lateral torsion of
the rotation axis of the trochlea in heavy rhinos also indicates a more laterally deviated
position of the knee. This conformation may improve weight bearing, shifting the body
mass laterally to the body, as previously observed on a study of pressure patterns of the feet
in C. simum (Panagiotopoulou, Pataky & Hutchinson, 2019). No real difference in the
bone curvature related to body proportion was noticed, confirming previous observations
on the independence of femur curvature with regard to body mass increase in quadrupedal
mammals (Bertram & Biewener, 1992).

On the hindlimb zeugopodial elements, when the proximal epiphysis of the tibia
broadens craniocaudally, the proximal fibular epiphysis is reduced in this direction, despite
an increased general robustness. The proximal epiphysis of the fibula is also oriented far
more cranially than in lighter specimens. The enlargement of the tibial plateau thus
seems to involve a relative reduction in size of the fibular head. The distal epiphyses of both
bones covary too, with a broadening mainly expressed in the craniocaudal direction. The
medial condyle of the tibial plateau enlarges strongly, resulting into an asymmetrical
proximal epiphysis. Moreover, the broadening of the tibial tuberosity correlates with a
stronger and larger patellar ligament, reinforcing the knee articulation and therefore the
lever arm created by the patella (Hildebrand, 1974). On the distal epiphysis, the two
malleoli are more mediolaterally inflated but less distally expanded, allowing the tarsal
articulation to move more freely in heavier rhinos (Lessertisseur & Saban, 1967). This trait
is associated with a slightly shallower distal articular surface, conferring more important
degrees of freedom to the ankle articulation for high body mass (Polly, 2007). This
observation is coherent with similar analyses conducted on rhino ankle bones (C. Etienne,
2019, personal communication, showing notably that the talus bone is flattened and has a
shallower groove toward high body mass among rhinos).

In addition to the reduction of the proximal epiphysis, the fibula displays a straighter
diaphysis for large rhinos as opposed to the greatly curved one for lighter rhinos (see
Figs. S6 and S7). This is consistent with previous observations: although the fibula was not
considered in their study, Bertram & Biewener (1992) noted a decrease of tibia curvature
while body mass increases among terrestrial mammals. In our rhino sample, the tibia
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shows a very slight straightening of the diaphysis. However, this straightening, perhaps
linked to load carrying capacity, appears to be more pronounced on the fibula.

Differences between body mass and body size
As the exact body mass was only known for five specimens of our sample, we were not
able to precisely express the shape variation regarding the animal’s individual weight.
However, theoretical bone shape obtained with mean body mass are very similar to the
ones obtained with centroid size (see above). Comparing the values of the centroid size and
mean body mass highlights some interspecific differences: if Dicerorhinus sumatrensis,
the smallest rhino, has the lowest values for both centroid size and body mass, R. unicornis
(the species with the highest values of shoulder height) displays the highest values of
centroid size in most cases, which is coherent with its higher height at shoulder compared
to other modern rhinos (Guérin, 1980; Dinerstein, 2011), despite a mean body mass
(2,000 kg) lower than that of C. simum (2,300 kg). Furthermore, the centroid size of an
isolated bone may neither reflect the actual global size of an animal, nor be strictly
correlated with its body mass. This is particularly visible for taxa displaying brachypodial
adaptation (i.e., shortening of limb length relatively to the height at the shoulder), as it is
the case for modern hippos or some fossil rhinos like Brachypotherium or Teleoceras
(Cerdeño, 1998). However, our results indicate that it does not seem to be the case with the
long bones of modern rhinos. As bone size and body mass are intimately entangled
(Berner, 2011), the centroid size of isolated bones may still constitute a useful body
mass approximation when precise body mass remains unknown and if considered
cautiously—this approximation depending on the number and placement of the
landmarks on the bone. This is coherent with previous results obtained on cranial shape
data indicating a marked correlation between body mass and centroid size (both of the
skull and mandible) for many mammalian lineages, especially modern rhinos (Cassini,
Vizcaíno & Bargo, 2012). Another study focusing on tapirs tend to highlight a good
correlation between centroid size and body mass estimation when using the forelimb
elements (MacLaren et al., 2018).

Limb bone shape and graviportality
One of the criteria defining graviportality is straight and columnar limbs (Gregory, 1912;
Osborn, 1929; Biewener, 1989b). Rhino limb long bones do not display a true columnar
organization (Osborn, 1900, 1929). Morphological changes between light and heavy
rhino species do not imply a clear change in the orientation of the articular facets: the
elbow joint remains unable to completely open like the elephant’s one and the knee
remains markedly angled. Only the humeral proximal epiphysis displays a tenuous
orientation change between light and heavy rhinos, allowing a more slightly vertical
orientation of this bone for C. simum and R. unicornis.

Limb straightness can result from the reorientation of the trochlear notch of the ulna in
the dorsal direction, allowing an efficient support of the humerus (Gregory, 1912), as in
proboscideans (Christiansen, 1999). Our sample tends to indicate instead that the radius is
the main support of the body weight in the forelimb among modern rhinos. The shape of
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the radius becomes gradually more robust from light to heavy rhinos, with a strong medial
reinforcement of the proximal epiphysis. The particular role of the radius was previously
highlighted among a large sample of mammal clades (Bertram & Biewener, 1992), its
vertical position being parallel to ground reaction forces. This supportive role of the radius
is widespread among ungulates and remains of importance even in larger fossil rhinos like
Elasmotheriinae (Antoine, 2002) and Paraceratheriidae (Qiu & Wang, 2007; Prothero,
2013). Unlike in elephants, increase in body mass among rhinos is correlated with a
more important supportive role of the radius. At the opposite, the ulna’s role has not
been extensively explored in morphofunctional studies. Our work underlines the
complementary role of the ulna relative to the radius, providing more lateral and caudal
weight bearing by an enlargement in the dorsopalmar direction. In this regard, the
zeugopodial conformation in rhinos is close to the one encountered in hippos (Fisher,
Scott & Naples, 2007).

Forelimb elements bear more weight than hind limb ones (Lessertisseur & Saban, 1967;
Hildebrand, 1974; Polly, 2007) and play an additional braking role during locomotion,
particularly proximal elements (Dutto et al., 2006). Forelimb bones such as the humerus
thus need to be reinforced in all directions in order to support these higher masses in
heavier animals. Hind limb bone shape is affected differently than in forelimb by increases
in body mass and size. The hind limb bears relatively less weight than the forelimb in
quadrupeds and plays an additional propulsive role during locomotion (Lessertisseur &
Saban, 1967; Hildebrand, 1974; Barone, 2010a). The femur displays important
reinforcement and development of strong lever arms in large rhino species, possibly to
support increasing stress due to locomotion and body mass, but the variations in shape of
the tibia and the fibula seem driven as much by the body mass as by the phylogenetic
influence. The shape of the fibula is particularly variable within several rhino species,
questioning its functional role but also the factors driving this strong intraspecific
variation. It has been shown that the human fibula plays, in addition to its ankle stabilizer
role, a small but important weight bearing role, receiving one sixth of the load applied
to the knee (Lambert, 1971; Takebe et al., 1984). In horses, the diaphysis of the fibula is
absent and the malleolus is fused with the tibia, ensuring mainly ankle stabilization
(Barone, 2010a). The rhino fibula ensures a talus stabilization role (Polly, 2007) in addition
to a potential weight bearing due to the presence of the shaft. In addition, this bone often
bears crests along the diaphysis with no apparent correlation with weight bearing
(see above). These crest developments may be due to individual variations in bone
development, without clear functional implications, but this first analysis does not allow us
to address this question.

Bertram& Biewener (1990, 1992) and Polly (2007) previously called “allometry increase”
the tendency for body size and mass to rise among terrestrial mammals. Although reduced,
this allometry clearly affects our sample (Tables 6 and 7). In addition, robustness increase
is associated with a slight relative length reduction of the bone for larger rhinos such as
Ceratotherium (Guérin, 1980), a general trend observed among heavy mammals
(Christiansen, 1999). Another trait associated with body mass augmentation among extant
rhino species is the expansion of the medial epiphyses of multiple bones (e.g., medial

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 38/48

http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


epicondyle and trochlear lip on the humerus, medial glenoid cavity on the radius, medial
condyle and trochlear lip on the femur, medial condyle on the tibia). These medial
reinforcements result in more asymmetrical bones, potentially increasing parasagittal
weight bearing (Barone, 2010a). This conformation is coherent with foot posture during
walk: rhino forefeet are placed under the body, close to the sagittal plane of the animal
(Paul & Christiansen, 2000). Hind feet are more spaced and oriented laterally, especially
for heavy rhinos (Pfistermüller, Walzer & Licka, 2011; Panagiotopoulou, Pataky &
Hutchinson, 2019), which seems to agree with our observations regarding the rotation axis
of the femoral trochlea, oriented more laterally as well. However, the distal articular surface
of the tibia displays a broader lateral groove and appears as a counterexample (Fig. 5).
This lateral broadening of the ankle joint, also observed on the talus (C. Etienne, 2019,
personal communication), may be correlated with the hind limb posture of rhinos. As the
pelvic bone is large and the feet are placed under the body and oriented more laterally
than forefeet, the legs are not parallel to the sagittal plane (Paul & Christiansen, 2000;
C. Mallet, 2019, personal observation). The vertical forces exerted by the body mass may
therefore cross the axis of the tibia. This appears in accordance with the fact that the forces
may be medially higher on the proximal plateau but laterally higher at the ankle joint;
this point would need to be tested more precisely in vivo. As studies of pressure patterns
indicate that foot pressure is more intense laterally (Pfistermüller, Walzer & Licka,
2011; Panagiotopoulou, Pataky & Hutchinson, 2019), it will be crucial to explore relations
that exist between stylopodium, zeugopodium and autopodium organization in the
complete limb, as well as the gait and posture of the rhinos.

CONCLUSION
This study conducted on the limb long bones among modern rhinos highlights the
occurrence of three distinct morphotypes. These reflect phylogenetic relationships, and the
bone shape is differently affected by body size and mass. The shape of the stylopodium
bones, though affected by body mass variation, remains highly constrained by phylogeny,
whereas zeugopodial bones, especially the radius and ulna, are more strongly affected
by body mass, which highlights their important role in weight bearing. The shape of the
tibia is influenced by both body mass and phylogeny. The unique pattern of the fibula
reveals that, beyond significant intraspecific variation, this bone may play a role in weight
bearing. Comparisons with hippos and elephants show clear differences and convergences
and highlight the interest of investigating shape variation in other heavy mammal taxa.
This would enable description of the different ways to sustain an increase of body mass in
mammals and, eventually, to sharpen the concept of “graviportality.”

ACKNOWLEDGEMENTS
The authors would like to warmly thank all the curators of the visited institutions for
granting access to the studied specimens: Catriona West, Rachel Jennings, Mike Cobb
(Powell Cotton Museum, Birchington-on-Sea, UK), Didier Berthet (Centre de
Conservation et d’Étude des Collections, Musée des Confluences, Lyon, France), Yves
Laurent (Muséum d’Histoire Naturelle de Toulouse, Toulouse, France), Joséphine Lesur,

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 39/48

http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


Aurélie Verguin, Salvador Bailon (Muséum National d’Histoire Naturelle, Paris, France),
Roberto Portela-Miguez (Natural History Museum, London, UK), Frank Zachos,
Alexander Bibl (Naturhistorisches Museum Wien, Vienna, Austria), Olivier Pauwels,
Sébastien Bruaux (Royal Belgian Institute of Natural Sciences, Brussels, Belgium),
Emmanuel Gilissen (Royal Museum for Central Africa, Tervuren, Belgium), Anneke H.
van Heteren (Zoologische Staatssammlung München, Munich, Germany) and John
Hutchinson for providing us CT-scan data coming from the National Museums
Scotland (Edinburgh, UK), the University of California Museum of Paleontology
(Berkeley, USA) and the University Museum of Zoology Cambridge (Cambridge, UK).
C.M. acknowledges Arnaud Delapré (MNHN, Paris, France) for significant help in 3D
data reconstruction and management, Cyril Etienne, Rémi Lefebvre, Romain Pintore
(MNHN, Paris, France) for constructive discussions and advices on R programming, data
analyses and interpretations. We would also like to thank Jamie MacLaren (University of
Antwerp, Antwerp, Belgium), Kelsey Stilson (University of Chicago, Chicago, USA)
and Luke Holbrook (Rowan University, Glassboro, USA) for their constructive reviews
that allowed us to significantly improve the quality of the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by the European Research Council and is part of the GRAVIBONE
project (ERC-2016-STG-715300). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
This work was funded by the European Research Council and is part of the GRAVIBONE
project (ERC-2016-STG-715300).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Christophe Mallet conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, approved the final draft.

� Raphaël Cornette conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the paper, approved the final draft.

� Guillaume Billet conceived and designed the experiments, authored or reviewed drafts of
the paper, approved the final draft.

� Alexandra Houssaye conceived and designed the experiments, authored or reviewed
drafts of the paper, approved the final draft.

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 40/48

http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


Data Availability
The following information was supplied regarding data availability:

The raw data (available in the Supplemental Files) are the spatial coordinates of all the
landmarks placed on each specimen. Anatomical and curve landmarks were placed on
each specimen, whereas sliding surface semi-landmarks were placed only on the template
(suffix “LM_surface” in the file name) and then projected and slided on each specimen.

The R code (available in the Supplemental Files) describes the template creation, sliding
process, Procrustes analysis and data analysis for one bone (humerus). Landmark
definition is provided for all the other five bones.

Table S2 provides the details regarding the institution, the accession numbers, the
available bones, the sex, the age and the condition, as well as the method of 3D acquisition
of the data. All the studied specimens are stored in their respective institution.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.7647#supplemental-information.

REFERENCES
Adams DC. 2014. A generalized K statistic for estimating phylogenetic signal from shape and other

high-dimensional multivariate data. Systematic Biology 63(5):685–697
DOI 10.1093/sysbio/syu030.

Adams DC, Collyer M, Kaliontzopoulou A. 2018. Geometric Morphometric Analyses of 2D/3D
Landmark Data. Available at http://kambing.ui.ac.id/cran/web/packages/geomorph/geomorph.pdf.

Adams DC, Otárola-Castillo E. 2013. geomorph: an R package for the collection and analysis of
geometric morphometric shape data. Methods in Ecology and Evolution 4(4):393–399
DOI 10.1111/2041-210X.12035.

Adams DC, Rohlf FJ, Slice DE. 2004. Geometric morphometrics: ten years of progress following
the ‘revolution.’ Italian Journal of Zoology 71(1):5–16 DOI 10.1080/11250000409356545.

Agisoft. 2018. PhotoScan Professional Edition. St. Petersburg: Agisoft. Available at https://www.
agisoft.com/.

Alexander RMN, Pond CM. 1992. Locomotion and bone strength of the white rhinoceros,
Ceratotherium simum. Journal of Zoology 227(1):63–69
DOI 10.1111/j.1469-7998.1992.tb04344.x.

Antoine P-O. 2002. Phylogénie et évolution des Elasmotheriina (Mammalia, Rhinocerotidae). Paris:
Muséum national d’Histoire naturelle, 369. (Mémoires du Muséum national d’Histoire
naturelle; 188).

Antoine P-O, Duranthon F, Welcomme J-L. 2003. Alicornops (Mammalia, Rhinocerotidae) dans
le Miocène supérieur des Collines Bugti (Balouchistan, Pakistan): implications phylogénétiques.
Geodiversitas 25:575–603.

Artec 3D. 2018. Artec Studio Professional. Santa Clara: Artec 3D. Available at https://www.artec3d.
com/.

Averianov A, Danilov I, Jin J, Wang Y. 2017. A new amynodontid from the Eocene of South
China and phylogeny of Amynodontidae (Perissodactyla: Rhinocerotoidea). Journal of
Systematic Palaeontology 15(11):927–945 DOI 10.1080/14772019.2016.1256914.

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 41/48

http://dx.doi.org/10.7717/peerj.7647#supplemental-information
http://dx.doi.org/10.7717/peerj.7647#supplemental-information
http://dx.doi.org/10.7717/peerj.7647/supp-2
http://dx.doi.org/10.7717/peerj.7647#supplemental-information
http://dx.doi.org/10.7717/peerj.7647#supplemental-information
http://dx.doi.org/10.1093/sysbio/syu030
http://kambing.ui.ac.id/cran/web/packages/geomorph/geomorph.pdf
http://dx.doi.org/10.1111/2041-210X.12035
http://dx.doi.org/10.1080/11250000409356545
https://www.agisoft.com/
https://www.agisoft.com/
http://dx.doi.org/10.1111/j.1469-7998.1992.tb04344.x
https://www.artec3d.com/
https://www.artec3d.com/
http://dx.doi.org/10.1080/14772019.2016.1256914
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


Baker J, Meade A, Pagel M, Venditti C. 2015. Adaptive evolution toward larger size in mammals.
Proceedings of the National Academy of Sciences of the United States of America
112(16):5093–5098 DOI 10.1073/pnas.1419823112.

Barone R. 2010a. Anatomie comparée des mammifères domestiques. Tome 1: Ostéologie. Paris:
Vigot Frères.

Barone R. 2010b. Anatomie comparée des mammifères domestiques. Tome 2: Arthrologie et
myologie. Paris: Vigot Frères.

Becker D. 2003. Paléoécologie et paléoclimats de la molasse du Jura (oligo-miocéne). (Doctoral
dissertation, Université de Fribourg).

Becker D, Antoine P-O, Maridet O. 2013. A new genus of Rhinocerotidae (Mammalia,
Perissodactyla) from the Oligocene of Europe. Journal of Systematic Palaeontology
11(8):947–972 DOI 10.1080/14772019.2012.699007.

Becker D, Bürgin T, Oberli U, Scherler L. 2009.Diaceratherium lemanense (Rhinocerotidae) from
Eschenbach (eastern Switzerland): systematics, palaeoecology, palaeobiogeography. Neues
Jahrbuch für Geologie und Paläontologie - Abhandlungen 254(1):5–39
DOI 10.1127/0077-7749/2009/0002.

Beddard FE, Treves F. 1889. On the Anatomy of Rhinoceros sumatrensis. Proceedings of the
Zoological Society of London 57(1):7–25 DOI 10.1111/j.1469-7998.1889.tb06740.x.

Berger J. 1994. Science, conservation, and black rhinos. Journal of Mammalogy 75(2):298–308
DOI 10.2307/1382548.

Berner D. 2011. Size correction in biology: how reliable are approaches based on (common)
principal component analysis? Oecologia 166(4):961–971 DOI 10.1007/s00442-011-1934-z.

Bertram JEA, Biewener AA. 1990. Differential scaling of the long bones in the terrestrial carnivora
and other mammals. Journal of Morphology 204(2):157–169 DOI 10.1002/jmor.1052040205.

Bertram JEA, Biewener AA. 1992. Allometry and curvature in the long bones of quadrupedal
mammals. Journal of Zoology 226(3):455–467 DOI 10.1111/j.1469-7998.1992.tb07492.x.

Biewener AA. 1989a. Mammalian terrestrial locomotion and size. BioScience 39(11):776–783
DOI 10.2307/1311183.

Biewener AA. 1989b. Scaling body support in mammals: limb posture and muscle mechanics.
Science 245(4913):45–48 DOI 10.1126/science.2740914.

Blanco RE, Gambini R, Fariña RA. 2003. Mechanical model for theoretical determination of
maximum running speed in mammals. Journal of Theoretical Biology 222(1):117–125
DOI 10.1016/S0022-5193(03)00019-5.

Bokma F, Godinot M, Maridet O, Ladevèze S, Costeur L, Solé F, Gheerbrant E, Peigné S,
Jacques F, Laurin M. 2016. Testing for Depéret’s rule (body size increase) in mammals using
combined extinct and extant data. Systematic Biology 65(1):98–108 DOI 10.1093/sysbio/syv075.

Botton-Divet L, Cornette R, Fabre A-C, Herrel A, Houssaye A. 2016. Morphological analysis of
long bones in semi-aquatic mustelids and their terrestrial relatives. Integrative and Comparative
Biology 56(6):1298–1309 DOI 10.1093/icb/icw124.

Bressou C. 1961. La myologie du tapir (Tapirus indicus L.). Mammalia 25(3):358–400
DOI 10.1515/mamm.1961.25.3.358.

Budras K-D, Sack WO, Röck S. 2009. Anatomy of the horse. Hannover: Schlütersche.

Campione NE, Evans DC. 2012. A universal scaling relationship between body mass and proximal
limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10(1):60
DOI 10.1186/1741-7007-10-60.

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 42/48

http://dx.doi.org/10.1073/pnas.1419823112
http://dx.doi.org/10.1080/14772019.2012.699007
http://dx.doi.org/10.1127/0077-7749/2009/0002
http://dx.doi.org/10.1111/j.1469-7998.1889.tb06740.x
http://dx.doi.org/10.2307/1382548
http://dx.doi.org/10.1007/s00442-011-1934-z
http://dx.doi.org/10.1002/jmor.1052040205
http://dx.doi.org/10.1111/j.1469-7998.1992.tb07492.x
http://dx.doi.org/10.2307/1311183
http://dx.doi.org/10.1126/science.2740914
http://dx.doi.org/10.1016/S0022-5193(03)00019-5
http://dx.doi.org/10.1093/sysbio/syv075
http://dx.doi.org/10.1093/icb/icw124
http://dx.doi.org/10.1515/mamm.1961.25.3.358
http://dx.doi.org/10.1186/1741-7007-10-60
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


Cappellini E, Welker F, Pandolfi L, Madrigal JR, Fotakis A, Lyon D, Mayar VLM,
Bukhsianidze M, Jersie-Christensen RR, Mackie M, Ginolhac A, Ferring R, Tappen M,
Palkopoulou E, Samodova D, Ruther PL, Dickinson MR, Stafford T, Chan YL,
Gotherstrom A, Nathan SK, Heintzman PD, Kapp JD, Kirillova I, Moodley Y, Agusti J,
Kahlke R-D, Kiladze G, Martinez-Navarro B, Liu S, Velasco MS, Sinding M-HS,
Kelstrup CD, Allentoft ME, Krogh A, Orlando L, Penkman K, Shapiro B, Rook L, Dalen L,
Gilbert MTP, Olsen JV, Lordkipanidze D, Willerslev E. 2018. Early Pleistocene enamel
proteome sequences from Dmanisi resolve Stephanorhinus phylogeny. bioRxiv 407692
DOI 10.1101/407692.

Carrano MT. 1999. What, if anything, is a cursor? Categories versus continua for determining
locomotor habit in mammals and dinosaurs. Journal of Zoology 247(1):29–42
DOI 10.1111/j.1469-7998.1999.tb00190.x.

Cassini GH, Vizcaíno SF, Bargo MS. 2012. Body mass estimation in Early Miocene native South
American ungulates: a predictive equation based on 3D landmarks. Journal of Zoology
287(1):53–64 DOI 10.1111/j.1469-7998.2011.00886.x.

Cerdeño E. 1995. Cladistic analysis of the family Rhinocerotidae (Perissodactyla). American
Museum Novitates 3143:1–25.

Cerdeño E. 1998. Diversity and evolutionary trends of the family Rhinocerotidae (Perissodactyla).
Palaeogeography, Palaeoclimatology, Palaeoecology 141(1–2):13–34
DOI 10.1016/S0031-0182(98)00003-0.

Christiansen P. 1999. Scaling of mammalian long bones: small and large mammals compared.
Journal of Zoology 247(3):333–348 DOI 10.1111/j.1469-7998.1999.tb00996.x.

Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. 2008. Meshlab: an
open-source mesh processing tool. Eurographics Italian chapter conference 2008:129–136
DOI 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.

Colyn M. 1980. Ostéologie descriptive de Ceratotherium simum cottoni Lydekker, 1908. Bruxelles:
Faculté des Sciences.

Coombs WP Jr. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. Quarterly Review
of Biology 53(4):393–418 DOI 10.1086/410790.

Cuvier G. 1812. Recherches sur les ossements fossiles de quadrupèdes. Tome 2. Vol. 2. Paris:
Deterville.

De Blainville H-MD, Nicard P. 1839. Ostéographie, ou Description iconographique comparée du
squelette et du système dentaire des mammifères récents et fossiles pour servir de base à la zoologie
et à la géologie. Tome 3. Vol. 3. Paris: J.B. Baillère & Fils.

Depéret C. 1907. Les transformations du monde animal. Paris: Flammarion.

Dinerstein E. 1991. Sexual dimorphism in the greater one-horned rhinoceros (Rhinoceros
unicornis). Journal of Mammalogy 72(3):450–457 DOI 10.2307/1382127.

Dinerstein E. 2011. Family Rhinocerotidae (Rhinoceroses). In: Wilson DE, Mittermeier RA, eds.
Handbook of the Mammals of the World. Barcelona: Lynx Edicions, 144–181.

Domning DP. 2002. The terrestrial posture of desmostylians. Smithsonian Contributions to
Paleobiology 93:99–111.

Drake AG, Klingenberg CP. 2008. The pace of morphological change: historical transformation of
skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences
275(1630):71–76 DOI 10.1098/rspb.2007.1169.

Dutto DJ, Hoyt DF, Clayton HM, Cogger EA, Wickler SJ. 2006. Joint work and power for both
the forelimb and hindlimb during trotting in the horse. Journal of Experimental Biology
209(20):3990–3999 DOI 10.1242/jeb.02471.

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 43/48

http://dx.doi.org/10.1101/407692
http://dx.doi.org/10.1111/j.1469-7998.1999.tb00190.x
http://dx.doi.org/10.1111/j.1469-7998.2011.00886.x
http://dx.doi.org/10.1016/S0031-0182(98)00003-0
http://dx.doi.org/10.1111/j.1469-7998.1999.tb00996.x
http://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
http://dx.doi.org/10.1086/410790
http://dx.doi.org/10.2307/1382127
http://dx.doi.org/10.1098/rspb.2007.1169
http://dx.doi.org/10.1242/jeb.02471
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


Eisenmann V, Guérin C. 1984. Morphologie fonctionnelle et environnement chez les
périssodactyles. Geobios 17:69–74 DOI 10.1016/S0016-6995(84)80158-8.

Fau M, Cornette R, Houssaye A. 2016. Photogrammetry for 3D digitizing bones of mounted
skeletons: potential and limits. Comptes Rendus Palevol 15(8):968–977
DOI 10.1016/j.crpv.2016.08.003.

Fernando P, Polet G, Foead N, Ng LS, Pastorini J, Melnick DJ. 2006. Genetic diversity,
phylogeny and conservation of the Javan rhinoceros (Rhinoceros sondaicus). Conservation
Genetics 7(3):439–448 DOI 10.1007/s10592-006-9139-4.

Fisher RE, Scott KM, Adrian B. 2010. Hind limb myology of the common hippopotamus,
Hippopotamus amphibius (Artiodactyla: Hippopotamidae). Zoological Journal of the Linnean
Society 158(3):661–682 DOI 10.1111/j.1096-3642.2009.00558.x.

Fisher RE, Scott KM, Naples VL. 2007. Forelimb myology of the pygmy hippopotamus
(Choeropsis liberiensis). Anatomical Record 290(6):673–693 DOI 10.1002/ar.20531.

Gaudry M. 2017. Molecular phylogenetics of the rhinoceros clade and evolution of UCP1
transcriptional regulatory elements across the mammalian phylogeny. Master of Science thesis.
University of Manitoba, Winnipeg.

Goodall C. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal
Statistical Society: Series B (Methodological) 53(2):285–321
DOI 10.1111/j.2517-6161.1991.tb01825.x.

Gower JC. 1975. Generalized Procrustes analysis. Psychometrika 40(1):33–51
DOI 10.1007/BF02291478.

Gregory WK. 1912. Notes on the principles of quadrupedal locomotion and on the mechanism of
the limbs in hoofed animals. Annals of the New York Academy of Sciences 22(1):267–294
DOI 10.1111/j.1749-6632.1912.tb55164.x.

Groves CP. 1967a. Geographic variation in the black rhinoceros, Diceros bicornis (L, 1758).
Zeitschrift fur Saugetierkunde 32:267–276.

Groves CP. 1967b. On the rhinoceroses of South-East Asia. Saugetierkundliche Mitteilungen
15:221–237.

Groves CP. 1972. Ceratotherium simum. Mammalian Species (8):1–6 DOI 10.2307/3503966.

Groves CP. 1982. The skulls of Asian rhinoceroses: wild and captive. Zoo Biology 1(3):251–261
DOI 10.1002/zoo.1430010309.

Groves CP, Kurt F. 1972. Dicerorhinus sumatrensis. Mammalian Species (21):1–6
DOI 10.2307/3503818.

Groves CP, Leslie DM Jr. 2011. Rhinoceros sondaicus (Perissodactyla: Rhinocerotidae).
Mammalian Species 43:190–208 DOI 10.1644/887.1.

Guérin C. 1980. Les Rhinocéros (Mammalia, Perissodactyla) du Miocène terminal au Pléistocène
supérieur en Europe occidentale. Comparaison avec les espèces actuelles. Documents du
Laboratoire de Géologie de l’Université de Lyon thesis.

Guérin C. 1982. Les Rhinocerotidae (Mammalia, Perissodactyla) du Miocène terminal au
Pleistocène supérieur d’Europe Occidentale comparés aux espèces actuelles: Tendances
évolutives et relations phylogénétiques. Geobios 15(4):599–605
DOI 10.1016/S0016-6995(82)80077-6.

Gunz P, Mitteroecker P. 2013. Semilandmarks: a method for quantifying curves and surfaces.
Hystrix, the Italian Journal of Mammalogy 24:103–109.

Gunz P, Mitteroecker P, Bookstein FL. 2005. Semilandmarks in three dimensions.
In: Slice ED, ed.Modern Morphometrics in Physical Anthropology. Developments in Primatology:
Progress and Prospects. Boston: Springer, 73–98.

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 44/48

http://dx.doi.org/10.1016/S0016-6995(84)80158-8
http://dx.doi.org/10.1016/j.crpv.2016.08.003
http://dx.doi.org/10.1007/s10592-006-9139-4
http://dx.doi.org/10.1111/j.1096-3642.2009.00558.x
http://dx.doi.org/10.1002/ar.20531
http://dx.doi.org/10.1111/j.2517-6161.1991.tb01825.x
http://dx.doi.org/10.1007/BF02291478
http://dx.doi.org/10.1111/j.1749-6632.1912.tb55164.x
http://dx.doi.org/10.2307/3503966
http://dx.doi.org/10.1002/zoo.1430010309
http://dx.doi.org/10.2307/3503818
http://dx.doi.org/10.1644/887.1
http://dx.doi.org/10.1016/S0016-6995(82)80077-6
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


Heissig K. 1972. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan—5.
Rhinocerotidae (Mammalia) aus den unteren und mittleren Siwalik-Schichten. Abhandlungen
der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse,
München 152:1–112.

Heissig K. 2012. Les Rhinocerotidae (Perissodactyla) de Sansan. In: Peigné S, Sen S, eds.
Mammiferes de Sansan. Paris: Mémoires du Muséum national d’histoire naturelle, 317–485.

Hermanson JW, MacFadden BJ. 1992. Evolutionary and functional morphology of the shoulder
region and stay-apparatus in fossil and extant horses (Equidae). Journal of Vertebrate
Paleontology 12(3):377–386 DOI 10.1080/02724634.1992.10011466.

Hermanson JW, Macfadden BJ. 1996. Evolutionary and functional morphology of the knee in
fossil and extant horses (Equidae). Journal of Vertebrate Paleontology 16(2):349–357
DOI 10.1080/02724634.1996.10011321.

Hildebrand M. 1974. Analysis of vertebrate structure. New York: John Wiley & Sons.

Hillman-Smith AKK, Groves CP. 1994. Diceros bicornis. Mammalian Species (455):1–8
DOI 10.2307/3504292.

Holbrook LT. 2001. Comparative osteology of early Tertiary tapiromorphs (Mammalia,
Perissodactyla). Zoological Journal of the Linnean Society 132(1):1–54
DOI 10.1111/j.1096-3642.2001.tb02270.x.

Janis CM, Shoshitaishvili B, Kambic R, Figueirido B. 2012. On their knees: distal femur
asymmetry in ungulates and its relationship to body size and locomotion. Journal of Vertebrate
Paleontology 32(2):433–445 DOI 10.1080/02724634.2012.635737.

Jenkins FA. 1973. The functional anatomy and evolution of the mammalian humero-ulnar
articulation. American Journal of Anatomy 137(3):281–297 DOI 10.1002/aja.1001370304.

Klingenberg CP. 2016. Size, shape, and form: concepts of allometry in geometric morphometrics.
Development Genes and Evolution 226(3):113–137 DOI 10.1007/s00427-016-0539-2.

Lambert KL. 1971. The weight-bearing function of the fibula. A strain gauge study. Journal of
Bone & Joint Surgery 53(3):507–513 DOI 10.2106/00004623-197153030-00007.

Langman VA, Roberts TJ, Black J, Maloiy GM, Heglund NC, Weber JM, Kram R, Taylor CR.
1995. Moving cheaply: energetics of walking in the African elephant. Journal of Experimental
Biology 198:629–632.

Laurie WA, Lang EM, Groves CP. 1983. Rhinoceros unicornis. Mammalian Species (211):1–6
DOI 10.2307/3504002.

Lessertisseur J, Saban R. 1967. Le squelette. Squelette appendiculaire. In: Traité de Zoologie. Tome
XVI, Fasicule 1: Mammifères. Paris: Grassé Pierre-Paul, 298–1123.

MacFadden BJ. 2005. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata)
from the late Quaternary of South and Central America. Quaternary Research 64(2):113–124
DOI 10.1016/j.yqres.2005.05.003.

MacLaren JA, Hulbert RC Jr, Wallace SC, Nauwelaerts S. 2018. A morphometric analysis of the
forelimb in the genus Tapirus (Perissodactyla: Tapiridae) reveals influences of habitat,
phylogeny and size through time and across geographical space. Zoological Journal of the
Linnean Society 20:1–17.

MacLaren JA, Nauwelaerts S. 2016. A three-dimensional morphometric analysis of upper
forelimb morphology in the enigmatic tapir (Perissodactyla: Tapirus) hints at subtle variations in
locomotor ecology. Journal of Morphology 277(11):1469–1485 DOI 10.1002/jmor.20588.

Mallison H, Wings O. 2014. Photogrammetry in paleontology—a practical guide. Journal of
Paleontological Techniques 12:1–31.

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 45/48

http://dx.doi.org/10.1080/02724634.1992.10011466
http://dx.doi.org/10.1080/02724634.1996.10011321
http://dx.doi.org/10.2307/3504292
http://dx.doi.org/10.1111/j.1096-3642.2001.tb02270.x
http://dx.doi.org/10.1080/02724634.2012.635737
http://dx.doi.org/10.1002/aja.1001370304
http://dx.doi.org/10.1007/s00427-016-0539-2
http://dx.doi.org/10.2106/00004623-197153030-00007
http://dx.doi.org/10.2307/3504002
http://dx.doi.org/10.1016/j.yqres.2005.05.003
http://dx.doi.org/10.1002/jmor.20588
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


Maynard Smith J, Savage RJG. 1956. Some locomotory adaptations in Mammals. Zoological
Journal of the Linnean Society 42(288):603–622 DOI 10.1111/j.1096-3642.1956.tb02220.x.

Mazza PPA. 2014. If hippopotamuses cannot swim, how did they colonize islands? Lethaia
47(4):494–499 DOI 10.1111/let.12074.

McMahon T. 1973. Size and shape in biology: elastic criteria impose limits on biological
proportions, and consequently on metabolic rates. Science 179(4079):1201–1204
DOI 10.1126/science.179.4079.1201.

Mihlbachler MC, Lau T, Kapner D, Shockey BJ. 2014. Coevolution of the shoulder and knee in
Ungulates: implications of the evolution of locomotion and standing. 74th Meeting of the Society
of Vertebrate Paleontology, Berlin.

Osborn HF. 1900. The angulation of the limbs of proboscidia, dinocerata, and other quadrupeds,
in adaptation to weight. American Naturalist 34(398):89–94 DOI 10.1086/277565.

Osborn HF. 1929. The Titanotheres of ancient Wyoming, Dakota, and Nebraska. Washington,
D.C.: Government Printing Office.

Panagiotopoulou O, Pataky TC, Hutchinson JR. 2019. Foot pressure distribution in White
Rhinoceroses (Ceratotherium simum) during walking. PeerJ 7(1):e6881 DOI 10.7717/peerj.6881.

Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R
language. Bioinformatics 20(2):289–290 DOI 10.1093/bioinformatics/btg412.

Paul GS, Christiansen P. 2000. Forelimb posture in neoceratopsian dinosaurs: implications for gait
and locomotion. Paleobiology 26:450–465.

Petti FM, Avanzini M, Belvedere M, De Gasperi M, Ferretti P, Girardi S, Remondino F,
Tomasoni R. 2008. Digital 3D modelling of dinosaur footprints by photogrammetry and laser
scanning techniques: integrated approach at the Coste dell’Anglone tracksite (Lower Jurassic,
Southern Alps, Northern Italy). Studi Trentini di Scienze Naturali—Acta Geologia 83:303–315.

Pfistermüller R, Walzer C, Licka T. 2011. From Chitwan to Vienna—How do gait parameters
change in a pair of Indian Rhinos (Rhinoceros unicornis) coming from semi-wild conditions to a
European Zoo? In: Proceedings of the 2011 International Elephant and Rhino Conservation and
Research Symposium, Rotterdam.

Piras P, Maiorino L, Raia P, Marcolini F, Salvi D, Vignoli L, Kotsakis T. 2010. Functional and
phylogenetic constraints in Rhinocerotinae craniodental morphology. Evolutionary Ecology
Research 12:897–928.

Polly PD. 2007. Limbs in mammalian evolution. Chapter 15. In: Hall BK, ed. Fins into Limbs:
Evolution, Development, and Transformation. Chicago: University of Chicago Press Books,
245–268.

Prothero DR. 1998. Rhinocerotidae. In: Janis CM, Scott KM, Jacobs LL, eds. Evolution of Tertiary
Mammals of North America: Volume 1, Terrestrial Carnivores, Ungulates, and Ungulate Like
Mammals. Cambridge: Cambridge University Press, 595–605.

Prothero DR. 2005. The evolution of North American Rhinoceroses. Cambridge: Cambridge
University Press, 218.

Prothero DR. 2013. Rhinoceros giants: the Paleobiology of Indricotheres. Bloomington and
Indianapolis: Indiana University Press, 159.

Prothero DR, Manning EM, Hanson BC. 1986. The phylogeny of the Rhinocerotoidea
(Mammalia, Perissodactyla). Zoological Journal of the Linnean Society 87(4):341–366
DOI 10.1111/j.1096-3642.1986.tb01340.x.

Prothero DR, Schoch RM. 1989. The evolution of perissodactyls. New York: Oxford University
Press.

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 46/48

http://dx.doi.org/10.1111/j.1096-3642.1956.tb02220.x
http://dx.doi.org/10.1111/let.12074
http://dx.doi.org/10.1126/science.179.4079.1201
http://dx.doi.org/10.1086/277565
http://dx.doi.org/10.7717/peerj.6881
http://dx.doi.org/10.1093/bioinformatics/btg412
http://dx.doi.org/10.1111/j.1096-3642.1986.tb01340.x
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


Prothero DR, Sereno PC. 1982. Allometry and paleoecology of medial miocene dwarf
rhinoceroses from the Texas Gulf Coastal Plain. Paleobiology 8(1):16–30
DOI 10.1017/S0094837300004322.

Qiu Z-X, Wang B-Y. 2007. Paracerathere Fossils of China. Palaeontologia Sinica 29:1–396.

R Development Core Team. 2014. R: a language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org/.

Radinsky LB. 1965. Evolution of the tapiroid skeleton from Heptodon to Tapirus. Bulletin of the
Museum of Comparative Zoology 134:69–106.

Raia P, Carotenuto F, Passaro F, Fulgione D, Fortelius M. 2012. Ecological specialization in fossil
mammals explains cope’s rule. American Naturalist 179(3):328–337 DOI 10.1086/664081.

Regnault S, Hermes R, Hildebrandt T, Hutchinson J, Weller R. 2013. Osteopathology in the
feet of rhinoceroses: lesion type and distribution. Journal of Zoo and Wildlife Medicine
44(4):918–927 DOI 10.1638/2012-0277R1.1.

Remondino F, Rizzi A, Girardi S, Petti FM, Avanzini M. 2010. 3D Ichnology—recovering digital
3D models of dinosaur footprints. Photogrammetric Record 25(131):266–282
DOI 10.1111/j.1477-9730.2010.00587.x.

Rohlf FJ, Slice D. 1990. Extensions of the Procrustes Method for the optimal superimposition of
landmarks. Systematic Biology 39(1):40–59 DOI 10.2307/2992207.

Rookmaaker K, Antoine P-O. 2013. New maps representing the historical and recent distribution
of the African species of rhinoceros: Diceros bicornis, Ceratotherium simum and Ceratotherium
cottoni. Pachyderm 52:91–96.

Ross MD. 1984. The influence of gravity on structure and function of animals. Advances in Space
Research 4(12):305–314 DOI 10.1016/0273-1177(84)90575-1.

Sanborn CC, Watkins AR. 1950. Notes on the Malay Tapir and other game animals in Siam.
Journal of Mammalogy 31(4):430–433 DOI 10.2307/1375112.

Scherler L, Mennecart B, Hiard F, Becker D. 2013. Evolutionary history of hoofed mammals
during the Oligocene-Miocene transition in Western Europe. Swiss Journal of Geosciences
106(2):349–369 DOI 10.1007/s00015-013-0140-x.

Schlager S. 2018. Morpho: calculations and vizualisations related to Geometric Morphometrics.
Available at https://cran.r-project.org/web/packages/Morpho/Morpho.pdf.

Scott WB, Jepsen GL, Wood AE. 1941. The mammalian fauna of the white river oligocene: part V.
Perissodactyla. Transactions of the American Philosophical Society 28(5):747–975
DOI 10.2307/1005518.

Shockey BJ. 2001. Specialized knee joints in some extinct, endemic, South American herbivores.
Acta Palaeontologica Polonica 46:277–288.

Stein BR, Casinos A. 1997. What is a cursorial mammal? Journal of Zoology 242(1):185–192
DOI 10.1111/j.1469-7998.1997.tb02939.x.

Stilson KT, Hopkins SSB, Davis EB. 2016. Osteopathology in Rhinocerotidae from 50 million
years to the present. PLOS ONE 11(2):e0146221 DOI 10.1371/journal.pone.0146221.

Takebe K, Nakagawa A, Minami H, Kanazawa H, Hirohata K. 1984. Role of the fibula in weight-
bearing. Clinical Orthopaedics and Related Research 184:289–292.

Thermo Fisher Scientific. 2018. Avizo. Available at https://www.thermofisher.com/us/en/home/
industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-
visualization-analysis-software/avizo-materials-science.html.

Tougard C, Delefosse T, Hänni C, Montgelard C. 2001. Phylogenetic relationships of the five
extant rhinoceros species (Rhinocerotidae, Perissodactyla) based on mitochondrial cytochrome

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 47/48

http://dx.doi.org/10.1017/S0094837300004322
http://www.R-project.org/
http://dx.doi.org/10.1086/664081
http://dx.doi.org/10.1638/2012-0277R1.1
http://dx.doi.org/10.1111/j.1477-9730.2010.00587.x
http://dx.doi.org/10.2307/2992207
http://dx.doi.org/10.1016/0273-1177(84)90575-1
http://dx.doi.org/10.2307/1375112
http://dx.doi.org/10.1007/s00015-013-0140-x
https://cran.r-project.org/web/packages/Morpho/Morpho.pdf
http://dx.doi.org/10.2307/1005518
http://dx.doi.org/10.1111/j.1469-7998.1997.tb02939.x
http://dx.doi.org/10.1371/journal.pone.0146221
https://www.thermofisher.com/us/en/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/avizo-materials-science.html
https://www.thermofisher.com/us/en/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/avizo-materials-science.html
https://www.thermofisher.com/us/en/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/avizo-materials-science.html
http://dx.doi.org/10.7717/peerj.7647
https://peerj.com/


b and 12S rRNA genes. Molecular Phylogenetics and Evolution 19(1):34–44
DOI 10.1006/mpev.2000.0903.

Watson JC, Wilson AM. 2007. Muscle architecture of biceps brachii, triceps brachii and
supraspinatus in the horse. Journal of Anatomy 210(1):32–40
DOI 10.1111/j.1469-7580.2006.00669.x.

Welker F, Smith GM, Hutson JM, Kindler L, Garcia-Moreno A, Villaluenga A, Turner E,
Gaudzinski-Windheuser S. 2017. Middle Pleistocene protein sequences from the rhinoceros
genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene
Rhinocerotidae. PeerJ 5(3):e3033 DOI 10.7717/peerj.3033.

Wiley DF, Amenta N, Alcantara DA, Ghosh D, Kil YJ, Delson E, Harcourt-Smith W, Rohlf FJ,
St. John K, Hamann B. 2005. Evolutionary morphing. Proceedings of IEEE Visualization 2005,
Minneapolis. Piscataway: IEEE.

Willerslev E, Gilbert MTP, Binladen J, Ho SY, Campos PF, Ratan A, Tomsho LP, Da
Fonseca RR, Sher A, Kuznetsova TV, Nowak-Kemp M, Roth TL, Miller W, Schuster SC.
2009. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals
lack of phylogenetic resolution. BMC Evolutionary Biology 9(1):95
DOI 10.1186/1471-2148-9-95.

World Association of Veterinary Anatomists, International Committee on Veterinary Gross
Anatomical Nomenclature. 2005. Nomina anatomica veterinaria. Hannover, Columbia [Mo.],
Ghent, Sapporo: The Editorial Committee.

Yalden DW. 1971. The functional morphology of the carpus in ungulate mammals. Cells Tissues
Organs 78(4):461–487 DOI 10.1159/000143609.

Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2012. Geometric morphometrics for biologists: a
primer. London, Waltham, San Diego: Academic Press.

Zschokke S, Baur B. 2002. Inbreeding, outbreeding, infant growth, and size dimorphism in captive
Indian rhinoceros (Rhinoceros unicornis). Canadian Journal of Zoology 80(11):2014–2023
DOI 10.1139/z02-183.

Mallet et al. (2019), PeerJ, DOI 10.7717/peerj.7647 48/48

http://dx.doi.org/10.1006/mpev.2000.0903
http://dx.doi.org/10.1111/j.1469-7580.2006.00669.x
http://dx.doi.org/10.7717/peerj.3033
http://dx.doi.org/10.1186/1471-2148-9-95
http://dx.doi.org/10.1159/000143609
http://dx.doi.org/10.1139/z02-183
https://peerj.com/
http://dx.doi.org/10.7717/peerj.7647

	Interspecific variation in the limb long bones among modern rhinoceroses&#x2014;extent and drivers
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


