Two new species of *Notodasus* Fauchald, 1972 (Annelida: Capitellidae) from the Central Indo-Pacific region (#36363)

First submission

Guidance from your Editor

Please submit by 11 Jun 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

Custom checks

9 Figure file(s)

3 Table file(s)

New species checks

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Two new species of *Notodasus* Fauchald, 1972 (Annelida: Capitellidae) from the Central Indo-Pacific region

Junhui Lin Corresp., 1, María Elena García-Garza 2, Ucu Yanu Arbi 3, Jianjun Wang Corresp. 1

Corresponding Authors: Junhui Lin, Jianjun Wang Email address: linjunhui@tio.org.cn, wangjianjun220@tio.org.cn

Notodasus Fauchald, 1972 is a small genus of the polychaete family Capitellidae, including ten described species worldwide. The genus is unusual in the Central Indo-Pacific, and there is no taxonomic record of Notodasus in this area. In this study, two new species of Notodasus are described and illustrated herein, namely Notodasus celebensis sp. nov. and Notodasus chinensis sp. nov. The former species, collected from the mixed-species seagrass beds in the Indonesian island of Sulawesi, is mainly characterized by the longitudinally striated epithelium on thoracic segments and the completely separated notopodial lobes. The latter species, obtained from coastal waters off southern China, differs from its congeners in the genus with the following characteristeics: tessellated epithelium present on anterior thorax as well as on the dorsum of chaetigers 11–12, notopodial lobes fused and chaetal fascicles almost touching each other in anterior abdomen, and branchial pores evident from anterior abdomen. Comparisons are made with closely related species in this paper, and a revised key is provided to all described Notodasus species. The discoveries of the two new species represent the first record of Notodasus in this area and expand the distribution range of the genus.

¹ Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian Province, China

² Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico

Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, None Selected, Indonesia

1 Two new species of *Notodasus* Fauchald, 1972

2 (Annelida: Capitellidae) from the Central Indo-Pacific

з region

4

5 Junhui Lin¹, María Elena García-Garza², Ucu Yanu Arbi³, Jianjun Wang¹

6

- 7 ¹ Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- 8 ² Laboratorio de Biosistemática, Facultad de Ciencias Biológicas, Universidad Autónoma de
- 9 Nuevo León, Nuevo León, México
- 10 ³ Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia

11

- 12 Corresponding Authors:
- 13 Junhui Lin¹, linjunhui@tio.org.cn
- 14 Jianjun Wang¹, wangjianjun220@tio.org.cn
- 15 178# Daxue Road, Xiamen, Fujian Province, 361005, China

16

17

Α	hs	str	a	ct
	\sim		M.	_

19 Notodasus Fauchald, 1972 is a small genus of the polychaete family Capitellidae, including ten 20 described species worldwide. The genus is unusual in the Central Indo-Pacific, and there is no 21 taxonomic record of *Notodasus* in this area. In this study, two new species of *Notodasus* are 22 described and illustrated herein, namely Notodasus celebensis sp. nov. and Notodasus chinensis 23 sp. nov. The former species, collected from the mixed-species seagrass beds in the Indonesian 24 island of Sulawesi, is mainly characterized by the longitudinally striated epithelium on thoracic 25 segments and the completely separated notopodial lobes. The latter species, obtained from 26 coastal waters off southern China, differs from its congeners in the genus with the following 27 characteristeics: tessellated epithelium present on anterior thorax as well as on the dorsum of 28 chaetigers 11–12, notopodial lobes fused and chaetal fascicles almost touching each other in 29 anterior abdomen, and branchial pores evident from anterior abdomen. Comparisons are made 30 with closely related species in this paper, and a revised key is provided to all described *Notodasus* species. The discoveries of the two new species represent the first record of 31 32 *Notodasus* in this area and expand the distribution range of the genus.

33

34

Introduction

Polychaetes, known as an ecologically important taxon of benthic macrofauna, are frequently 35 found and numerically dominated in marine surveys. They exhibit high taxonomic diversity with 36 around 10,000 described species worldwide (Hutchings & Fauchald, 200). Of all polychaete 37 38 families, Capitellidae Grube, 1862 is a family with approximately 200 described species, represented by 43 genera (García-Garza, de León-González & Tovar-Hernández, 2019). This 39 40 family is usually associated with organically enriched and disturbed sediment (Magalhães & 41 Blake, 2017), and as such, some species can be used as environmental indicators (Pearson & Rosenberg, 1978; Reish, 1980; Warren, 1991). Although extensive taxonomic studies on 42 43 capitellid polychaetes have been carried out, correct identification of capitellid species is fairly 44 challenging due to their simple morphology and the change in chaetal arrangement during 45 ontogeny (Blake, 2000; Hutchings, 2000). With the advancements in high-resolution 46 microscopes and molecular techniques, the taxonomy of capitellid polychaetes has been 47 extensively improved, and additional 44 new species have been added to the family since 2000, 48 based on the statistics from WoRMS (Read & Fauchald, 2018).

49	Notodasus Fauchald, 1972 is one of the least studied capitellid genera for most seas of the
50	world's ocean, which may be due to the fact that the majority of Notodasus species (six out of
51	ten species) were so far described from the coasts of North America. The genus was initially
52	established by Fauchald (1972) for type species Notodasus magnus from the Gulf of California,
53	mainly characterized by the presence of only capillaries on all 11 thoracic chaetigers as well as
54	on first two abdominal chaetigers. Recently, García-Garza et al. (2009) reviewed the genus by
55	re-examining type materials from museums and described four more new species. In this review,
56	the authors also proposed more diagnostic characteristics to differentiate species within the
57	genus, including the epithelial texture of thorax, the degree of fusion of notopodial lobes in
58	anterior abdomen, the shape of hooded hooks, size of abdominal lateral organs, and the methyl
59	green staining (Magalhães & Blake, 2017). Notodasus closely resembles Dodecaseta, the latter
60	genus erected by McCammon & Stull, 1978 and its generic definition expanded by Green
61	(2002). These two genera overlap in generic diagnosis, and the minor morphological differences
62	are that the former has the first two abdominal chaetigers with only capillaries while the latter
63	bears the first one or two abdominal chaetigers with only capillaries. Recently, García-Garza et
64	al. (2017) regarded <i>Dodecaseta</i> as a junior synonym of <i>Notodasus</i> , due to the high
65	morphological similarity between these two genera. To date, 10 valid species are known in the
66	genus (Fig. 1), and they are described from several localities: 6 species recorded from the coasts
67	of North America, namely N. dexterae Fauchald, 1973, N. harrisae García-Garza et al., 2009, N.
68	hartmanae García-Garza et al., 2009, N. magnus Fauchald, 1972, N. oraria (McCammon &
69	Stull, 1978), and N. salazari García-Garza et al., 2009; 2 species found in the Andaman Sea,
70	Thailand, namely N. eibyejacobseni (Green, 2002) and N. fauchaldi (Green, 2002); N. arenicola
71	Hartmann-Schröder, 1992 and N. dasybranchoides Magalhães & Bailey-Brock, 2012 described
72	from Ascension Island in the central Atlantic Ocean and the Hawaii Islands, respectively.
73	Currently, full undertandings of the actual species diversity within the genus in the world's
74	oceans and the distribution range of the genus remain an open question, since the records of
75	Notodasus species were only limited to several localities. In the Indo-Pacific, Notodasus is an
76	unusual and least known capitellid genera. Prior to this study, Notodasus species were only
77	taxonomically recorded in the Andaman Sea in the western part and in the Hawaii Islands in the
78	eastern part of the Indo-Pacific. In this study, the material of the genus was collected from the
79	southern coasts of China (Fig. 2A) and mixed-species seagrass beds in the Indonesian island of

80	Sulawesi (Fig. 2B), respectively, representing the first occurrence of <i>Notodasus</i> in Indonesian
81	waters and Chinese waters. The taxonomic study of the material yields two new species,
82	described and illustrated herein. Detailed comparisons are made with closely related species.
83	This study serves as a new contribution to unveil the hidden diversity of the genus <i>Notodasus</i> in
84	the world's oceans. The discovery of the two new species also allows us to better understand the
85	geographical distribution of the genus. A revised key to all Notodasus species is also provided in
86	this paper.
87	
88	Materials & Methods
89	The Notodasus specimens were collected from the southern coasts of China (Fig. 2A) during
90	2017–2018 and mix-species seagrass beds of northern Sulawesi Island, Indonesia (Fig. 2B) in
91	May 2014, respectively (for more detail, see Table 1). Indonesian specimens examined in this
92	study were collected with permission of the Ministry of Research and Technology of the
93	Republic of Indonesia (permit no. 135/SIP/FRP/SM/V/2014). In Indonesia, a PVC corer (10 cm
94	in inner diameter) was used to collect sediment samples which were washed through a 0.5 mm
95	sieve in the field. In China, the <i>Notodasus</i> specimens were collected by means of a grab sampler
96	(surface area 0.05 m²), and then sieved through a 0.5 mm sieve on board. All retained specimens
97	were fixed with 7% diluted formalin in seawater. In the lab, Notodasus specimens were
98	transferred to 70% ethanol.
99	Light microscope images were obtained by means of a Leica M205A stereomicroscope
100	equipped with Leica DFC 550 digital camera. The structure of hooded hooks was observed under
101	a light microscope using oil emersion (Axio Imager Z2; ZEISS, Oberkochen, Germany). A
102	Scanning Electron Microscopy (SEM) analysis was conducted to observe the ultrastructure of
103	abdominal hooks. In brief, the specimens were placed in an ultrasonic chamber with distilled
104	water for 60 seconds to remove the hoods of the abdominal hooks. The treated specimens were
105	dehydrated and then dried in a drying oven at 60°C for 5 minutes. Finally, specimens were
106	mounted on a stub and coated with gold. SEM observations were performed using ZEISS
107	SUPRA 55 SAPPHIRE at Xiamen University, China. The methyl green staining pattern (MGSP)
108	was used to identify the distribution of glandular areas, following the protocol of Warren et al.
109	(1994). Morphological terminology and the characters used for classification follow those of
110	Warren et al. (1994).

111	The type materials of several <i>Notodasus</i> species were reviewed from the Natural History
112	Museum of Los Angeles County Museum-Allan Hancock Foundation (LACM-AHF) and
113	Colección Poliquetologica de la Universidad Autonoma de Nuevo León (UANL). The type
114	materials of the two new species described herein are deposited in the Third Institute of
115	Oceanography, Ministry of Natural Resources, Xiamen, China.
116	
117	Nomenclatural acts
118	The electronic version of this article in Portable Document Format (PDF) will represent a
119	published work according to the International Commission on Zoological Nomenclature (ICZN),
120	and hence the new names contained in the electronic version are effectively published under that
121	Code from the electronic edition alone. This published work and the nomenclatural acts it
122	contains have been registered in ZooBank, the online registration system for the ICZN. The
123	ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
124	through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
125	LSID for this publication is: urn:lsid:zoobank.org:pub:6342781B-D33C-4FF8-85BD-
126	37D185FC2403. The online version of this work is archived and available from the following
127	digital repositories: PeerJ, PubMed Central and CLOCKSS.
128	
129	Results
130	Systematic account
131	Class Polychaeta <i>Grube</i> , 1850
132	Family Capitellidae Grube, 1862
133	Genus Notodasus Fauchald, 1972
134	Notodasus Fauchald, 1972: 246-247, Pl.51 fig a-c; Fauchald, 1977: 34; García-Garza,
135	Hernández-Valdez & de León-González, 2009: 810; García-Garza & de León-González, 2011:
136	35; Magalhães & Bailey-Brock, 2012: 28; García-Garza, de León-González & Harris, 2017: 94,
137	fig. 1; Magalhães & Blake, 2017.
138	Dodecaseta McCammon & Stull, 1978: 40-43, figs 1-3; Green, 2002: 311.
139 140	Type species. Notodasus magnus Fauchald, 1972
141	Notodasus celebensis sp. nov. Lin, García-Garza & Arbi

- 142 urn:lsid:zoobank.org:act:A8E8DAA2-650A-4F10-AD10-3799C447670B
- 143 Figs. 3A–G, 4A–G, 5G–H
- 144 **Etymology.** The specific name is derived from the type locality, Sulawesi Island. Celebes is the
- 145 historical name for modern Sulawesi.
- 146 **Holotype.** TIO-BTS-Poly-101 (sta. SGT3-3), Tanjung Merah Village, the east coast of North
- Sulawesi (Fig. 2), Indonesia, [1°23′41″N, 125°06′43″E], 1 m depth, fine sand, incomplete, coll.
- 148 Junhui Lin, May 2014.
- 149 Paratype. TIO-BTS-Poly-102 (sta. SGT1-2), one specimen, Kema Village, the east coast of
- North Sulawesi, Indonesia, [1°23′11″N, 125°06′08″E], 1 m depth, fine sand, incomplete, coll.
- 151 Junhui Lin, May 2014; TIO-BTS-Poly-103, one specimen, same information as TIO-BTS-Poly-
- 152 102.
- 153 Comparative material examined. N. magnus holotype (LACM-AHF POLY 031), SW Punta
- Arena, Carmen Island, Gulf of California, from [25°46′00″N, 111°15′00″W] to [25°49′40″N,
- 155 111°15′30″W], 29–35 m, 18 March 1949; *N. fauchaldi* paratype (LACM-AHF POLY 2100) st.
- 156 E-20 m/BC, Andaman Sea, Thailand, [8°30'N, 98°12'E], 21 m, 22 April 1996, muddy sand, coll.
- 157 SB, ChA; *N. harrisae* holotype (UANL-6510), Baja California Sur, La Paz Bay, El Tesoro
- 158 beach, [24°15′16.1″N, 110°18′55.4″W], 1 m, 1 August 2006, coll. MEGG and JALG.
- 159 **Distribution.** Currently known from the Sulawesi Island, Indonesia.
- 160 **Diagnosis.** Prostomium rounded, with digitate palpode. Thorax having one achaetous
- peristomium and 11 chaetigers with bilimbate capillary chaetae only. First chaetiger biramous.
- 162 First two abdominal chaetigers with only capillary chaetae in both rami, thereafter, with hooded
- hooks only. Longitudinally striated epithelium through chaetiger 8. Notopodial lobes completely
- 164 free along the abdomen. Multidentate hooded hooks with four rows of small teeth above main
- fang. Lateral organs present on thorax and abdomen.

166 Description

- All specimens incomplete. Holotype anterior fragment with 40 chaetigers, 41.0 mm long, 2.8
- mm wide in abdomen. Paratypes ranging from 20 mm long by 2.2 mm wide (35 chaetigers) to
- 169 25.5 mm long by 2.5 mm wide (39 chaetigers). Body slightly coiled. Color in alcohol yellowish
- white (Fig. 3A). The dorsal epithelium of anterior abdomen slightly damaged. Prostomium
- 171 rounded, with digitate palpode (Fig. 3B, C). Everted proboscis papillated in paratype (TIO-BTS-
- 172 Poly-103). Eyespots not observed. Peristomium achaetous, wider than long, same length as first

173	chaetiger, but narrower. Peristomium and first six chaetigers with epithelium longitudinally
174	striated (Figs. 3B-D, 4A-B, 5G), chaetigers 7-8 slightly striated, following segments smooth.
175	Thorax with 11 chaetigers, exclusively with bilimbate capillary chaetae in both rami (Fig. 4A)
176	First chaetiger biramous. All thoracic chaetigers biannulated, 1.5–2 times as wide as long, with
177	deep inter-segmental and clear intra-segmental grooves (Figs. 3B, 4A-B). Chaetal fascicles
178	inserted just posterior to midline of thoracic segments (Fig. 3B, D). Notopodia dorsolateral in
179	anterior thorax, moving dorsally to end of thorax, and neuropodia lateral. Lateral organs present
180	along body, located between noto- and neuropodia; those in thorax closer to notopodia, as small
181	rounded pores; abdominal ones closer to superior neuropodial lobes, as small protuberances (Fig
182	3G). Genital pores not observed.
183	Transition between thorax and abdomen marked by constriction and reduced length of
184	abdominal segments (Figs. 3E-F, 4C-D, 5H). First two abdominal segments biannulated, with
185	bilimbate capillary chaetae only and partially developed neuropodial lobes; subsequent
186	abdominal segments with hooded hooks and expanded neuropodial lobes (Figs. 3E-F, 4D-E,
187	5H). Notopodial lobes free along the abdomen (Figs. 3F, 4C, 5H), approaching each other in
188	anterior abdomen, but becoming further separated posteriorly. Notopodia with approximately 40
189	hooded hooks per fascicle. Abdominal neuropodial lobes separated mid-ventrally, extending
190	from ventral area to the dorsolateral region (Figs. 3E, 4C). Neuropodial lobes covered with
191	hooded hooks, leaving enlarged superior neuropodial lobe (Fig. 4D, F). Chaetal fascicles in
192	neuropodia with more than 200 hooded hooks. Notopodial and neuropodial abdominal hooded
193	hooks similar along body, with long anterior shaft, angled node, distinct constriction, developed
194	shoulder, and short hood; posterior shaft curved, longer than anterior one, attenuated to terminal
195	end (Fig. 4G). Hooded hooks with four rows of small teeth above main fang (Fig. 4G). Main
196	fang subtriangular, longer than wide.
197	Branchiae not known, as all examined specimens incomplete. Pygidium not known.
198	Variations. The holotype is bigger than paratypes. Meanwhile, the longitudinally striated
199	epithelium is more evident in the holotype.
200	Methyl green staining (Figs. 4A-D, 5G-H). Thorax uniformly stained light green except that a
201	medium green transverse band on peristomium. Methyl green stain on first two abdominal
202	chaetigers slightly darker than on thorax. Abdominal chaetigers 3–13 with medium green stain
203	on dorsolateral areas between noto- and neuropodial lobes and ventral areas around neuropodia,

- a longitudinal mid-ventral band stained with medium green, and light green stain on parapodial
- tori and lateral organs. Abdominal chaetiger 14 and following ones with light green completely,
- and mid-ventral band faded.

- 208 Notodasus chinensis sp. nov. Lin, García-Garza & Wang
- 209 urn:lsid:zoobank.org:act:201C23E8-5FD1-4D12-813D-B0A649A0DC11
- 210 Figs. 6A–F, 7A–D, 8A–F, 9A–B

211

- **Etymology.** The specific name is derived from the type locality, Chinese waters.
- 213 Holotype. TIO-BTS-Poly-105 (sta. GFC-S31), one specimen, Qinzhou Bay, Guangxi Province,
- 214 [21°41′31″N, 108°39′52″E], 8 m, mud, incomplete, coll. Zhong Li, 26 January 2018.
- 215 Paratype. 11 specimens: TIO-BTS-Poly-106 (sta. GFC-S31), 4 incomplete specimens, same
- 216 information as holotype, one mounted on SEM stub; TIO-BTS-Poly-107 (sta. GFC-S33), one
- 217 specimen, Qinzhou Bay, Guangxi Province, [21°34′30″N, 108°52′41″E], 7 m, muddy sand,
- 218 incomplete, coll. Zhong Li, 26 January 2018; TIO-BTS-Poly-108 (sta. GFC-S11), one specimen,
- 219 Qinzhou Bay, Guangxi Province, [21°37′33″N, 108°38′15″E], 12 m, mud, incomplete, coll.
- 220 Zhong Li, 27 October 2017; TIO-BTS-Poly-109 (sta. GFC-S24), one specimen, Qinzhou Bay,
- 221 Guangxi Province, [21°32′14″N, 108°28′29″E], 11 m, mud, incomplete, coll. Zhong Li, 27
- 222 October 2017; TIO-BTS-Poly-112 (sta. GFC-S17), 2 specimens, Qinzhou Bay, Guangxi
- 223 Province, [21°31′16″N, 108°49′42″E], 7 m, mud, incomplete, coll. Zhong Li, 21 April 2018;
- 224 TIO-BTS-Poly-113 (sta. GFC-S18), one specimen, Qinzhou Bay, Guangxi Province,
- 225 [21°35′39″N, 108°34′41″E], 9 m, muddy sand, incomplete, coll. Zhong Li, 22 April 2018.
- 226 Additional material examined. TIO-BTS-Poly-110, 2 specimens, Daya Bay, Guangdong
- 227 Province, [22°36′43″N, 114°43′12″E], 9 m, mud, incomplete, coll. Junhui Lin, 30 August 2017,
- one mounted on SEM stub.
- 229 Comparative material examined. N. oraria holotype (LACM-AHF POLY 1248), Palos Verdes
- Peninsula, California, USA, 30–180 m; *N. dexterae* holotype (LACM-AHF POLY 2190), Naos
- Island, Panama, [8°53'N, 79°33'W], intertidal, sand, incomplete, July 1969.
- 232 **Distribution.** Currently known from shallow subtidal waters of the Qinzhou Bay (Guangxi
- 233 Province) and Daya Bay (Guangdong Province), the southern coast of China.
- 234 **Diagnosis.** Prostomium conical, with short palpode. Thorax having one achaetous peristomium

235 and 11 chaetigers with bilimbate capillary chaetae only. First chaetiger biramous. First 236 abdominal chaetigers with only capillary chaetae in both rami, thereafter, with hooded hooks 237 only. Tessellated epithelium through chaetiger 5 as well as on dorsum of chaetigers 11–12. Notopodial lobes fused dorsally into a raised coalesced lobe on abdominal chaetigers 2–4, while 238 fused but not raised on abdominal chaetigers 5-11. Multidentate hooded hooks with four rows of 239 240 small teeth above main fang. Lateral organs present on thorax and abdomen. Branchiae present, retractile, arising just above neuropodial hooks. Branchial pores commencing from anterior 241 242 abdomen.

243

244

257

258

259

260

261

262

263

264265

Description

All specimens incomplete. Holotype anterior fragment with 67 chaetigers, 21.6 mm long, 1.7 245 mm wide in abdomen (maximum width 1.9 mm at chaetiger 4). Paratypes ranging from 7.7 mm 246 long by 0.6 mm wide in abdomen (23 chaetigers; maximum width 1.0 mm at chaetiger 4) to 87.4 247 mm long by 2.8 mm wide in abdomen (broken into two parts; more than 100 chaetigers; 248 249 maximum width 3.7 mm at chaetiger 4). Body slightly coiled. Color in alcohol whitish tan (Fig. 250 6A). Prostomium conical, with short palpode. Everted proboscis distally ciliated, and proximal portion with numerous minute papillae (Figs. 6A–B, 8A–B). Peristomium about same length as 251 252 first chaetiger, but narrower. Eyespots present, covered by lateral margin of peristomium (TIO-253 BTS-Poly-106). Peristomium and first 5 chaetigers with epithelium tessellated, dorsum of 254 chaetigers 11–12 slightly tessellated, and remaining segments smooth (Figs. 6A–B, 8A–B). 255 Thorax with 11 chaetigers, exclusively with bilimbate capillary chaetae in both rami (Figs. 6A, 256

7A–C, 8A). First chaetiger biramous. Thoracic chaetigers biannulated, being of similar length, 3.5–5 times as wide as long, with clear inter-segmental and intra-segmental grooves (Figs. 6A–D, 8A–B). Notopodia dorsolateral in first chaetiger, approaching each other gradually to end of thorax, and neuropodia lateral (Fig. 8A). Chaetal fascicles inserted just posterior to midline of thoracic segments (Figs. 6A–C, 7A–B, 8A–B). Lateral organs evident from posterior thorax, located between noto- and neuropodia; those in posterior thorax closer to notopodia, as small rounded pores (Fig. 6D); those in the abdomen closer to superior neuropodial lobes from chaetiger 12 (first abdominal chaetiger), as small protuberances, protruded above surface in posterior segments (Figs. 6F, 7B, 8E). Genital pores not seen.

Transition between thorax and abdomen marked by constriction and reduced length of first

266 abdominal segment (Figs. 6C-E, 7B, 8A). First abdominal segments biannulated, with bilimbate capillary chaetae in both rami and partially developed neuropodial lobes; subsequent abdominal 267 268 segments with hooded hooks and expanded neuropodial lobes (Figs. 6C-E, 8A). Notopodial lobes fused dorsally into a raised coalesced lobe on abdominal chaetigers 2-4 (Figs. 6C, 8C), 269 while fused but not raised on abdominal chaetigers 5–11. Notopodial fascicles almost touching 270 271 each other on abdominal chaetigers 2-11, forming a continuous line (Fig. 8A, C). From abdominal chaetiger 11, gap between notopodial lobes becoming gradually larger. Neuropodial 272 lobes expanded, separated mid-ventrally (Fig. 8D), extending from ventral area to dorsolateral 273 region (Fig. 6D, E). Neuropodial lobes covered with hooks, leaving enlarged superior 274 neuropodial lobe (Fig. 6D). Notopodial fascicles positioned posterior part of segment (Fig. 8A, 275 C). Chaetal fascicles with approximately 30 hooks in notopodia and more than 150 hooks in 276 277 neuropodia. Notopodial and neuropodial abdominal hooded hooks similar along body, with long 278 anterior shaft, developed shoulder, angled node, indistinct constriction, and short hood; posterior 279 shaft slightly longer than anterior shaft (Fig. 8F). Four rows of small teeth above main fang (Figs.

- 280 7D, 8F). Main fang subtriangular, longer than wide.
- 281 Branchiae digitiform in holotype, may be retractile, only observed on some superior
- neuropodial lobes of abdominal segments (Fig. 6F), arising from a small pore just above 282
- 283 neuropodial fascicles. Pygidium not seen.
- Variations. All specimens are incomplete, without posterior abdomen. Tessellated epithelium on 284
- 285 chaetigers 11-12 are more evident in larger specimens. Fused notopodial lobes located on a
- 286 raised coalesced lobe on abdominal chaetigers 2-4 in larger specimens, while on abdominal
- 287 chaetigers 2–3 in smaller specimens.
- Methyl green staining pattern (Figs. 8A–C, 9A–B). Thorax and abdominal segments 288
- 289 completely stained light green except that dark green stain from chaetiger 6 to prechaetal area of
- 290 chaetiger 7, and moderate green stain from chaetiger 11 to prechaetal area of chaetiger 12.

Discussion 292

291

- 293 On Notodasus celebensis sp. nov.
- 294 Among all ten known *Notodasus* species worldwide, *Notodasus celebensis* sp. nov. (Fig. 5G) is
- 295 the most similar to N. magnus (Fig. 5A) and N. harrisae (Fig. 5C) from the Gulf of California,
- 296 and N. fauchaldi (Fig. 5E) from the Andaman Sea by having longitudinally striated epithelium

297 on thoracic segments, whereas the rest members of the genus bear thoracic segments with tessellated epithelium. However, N. celebensis sp. nov. differs from these three closely related 298 299 species, based on the morphological characteristics (Table 2). N. celebensis sp. nov. is 300 distinguished from N. magnus in that: (1) N. celebensis sp. nov. bears rounded prostomium with digitate palpode compared with conical prostomium with short palpode in N. magnus; (2) striated 301 302 epithelium is present on more thoracic segments in N. magnus than in N. celebensis sp. nov.; (3) abdominal notopodial lobes are completely separated along the abdomen in N. celebensis sp. 303 304 nov., while in N. magnus, they are fused with a median constriction in anterior abdomen; (4) N. 305 celebensis sp. nov. has abdominal hooks with four rows of small teeth above main fang instead of three rows as in N. magnus. N. celebensis sp. nov. also differs from N. harrisae in that: (1) N. 306 307 celebensis sp. nov. bears prostomium with digitate palpode and without eyespots compared with 308 prostomium with short palpode and eyespots in N. harrisae; (2) striated epithelium are present 309 on anterior 8 chaetigers of N. celebensis sp. nov. but on the entire thorax of N. harrisae; (3) 310 abdominal notopodial lobes are completely separated along the abdomen in N. celebensis sp. nov. 311 whereas they are fused in the anterior abdomen of N. harrisae; (4) abdominal hooks of N. 312 celebensis sp. nov. have four rows of small teeth above main fang instead of three rows as in N. harrisae. Furthermore, N. celebensis sp. nov. differs from N. fauchaldi in that: (1) N. celebensis 313 314 sp. nov. bears prostomium with digitate palpode and without eyespots compared with prostomium with short palpode and eyespots in N. fauchaldi; (2) abdominal notopodial lobes are 315 316 completely separated along the abdomen in N. celebensis sp. nov. whereas they are fused in the anterior abdomen of N. fauchaldi; (3) in anterior abdomen, lateral organs are situated in a pit in 317 318 N. celebensis sp. nov. but protruded above surface in N. fauchaldi. 319 The inhabiting environment is also different: N. celebensis sp. nov. was found in the shallow 320 nearshore seagrass beds characterized by fine sand; N. magnus was collected from soft sediments 321 mixed with sand, mud, and pebbles at depths of 29 to 35 m; N. harrisae was found to inhabit 322 intertidal and shallow fine sand; and N. fauchaldi was recorded in a variety of sediments at depths of 21 to 55 m. 323 324 As for methyl green staining, the most relevant characteristic of *Notodasus celebensis* is that it 325 has a dark transverse band on peristomium and medium green stain on dorsolateral areas of abdominal chaetigers 3–13 (Fig. 5G–H), which is distinct from the other three *Notodasus* species. 326

Based on the original descriptions of type species, N. magnus has darker prechaetal and

327

- postchaetal transverse band on abdominal chaetigers 3–5 (Fig. 5B); *N. harrisae* has two dark dorsolateral longitudinal bands on abdominal chaetigers 3–22 (Fig. 5D); and *N. fauchaldi* has dark green stain on dorsum of abdominal chaetigers except for notopodial lobes and lateral organs (Fig. 5F). Moreover, the latter three species have uniform light green stain on anterior thorax, without a dark band on peristomium.
- Quite a few monographs and papers dealing with Indonesian polychaetes have been published
- 334 (Caullery, 1915, 1944; Horst, 1903, 1910, 1912, 1015, 1916a, 1916b, 1917, 1924; Pettibone,
- 335 1970, 1971; AI-Hakim & Glasby, 2004; Pamungkas, 2015, 2017). In these publications, seven
- capitellid genera were taxonomically recorded in Indonesian waters, namely Capitella,
- 337 Dasybranchus, Mediomastus, Notomastus, Polymastigos, Promastobranchus, and Scyphoproctus.
- 338 Notodasus celebensis sp. nov., which is newly described from Sulawesi Island, represents the
- 339 discovery of *Notodasus* in Indonesian waters for the first time. The number of capitellid genera
- 340 in this area rises to eight genera.

342

On Notodasus chinensis sp. nov.

- 343 N. chinensis sp. nov. mostly resembles N. oraria (Fig. 9C) from the waters off California, USA and N. dexterae (Fig. 9D) from the Pacific coast of Panama. These three species share the 344 345 tessellated epithelium on thoracic segments, the fused notopodial lobes in anterior abdomen, and the mid-ventrally separated neuropodial lobes along the abdomen. However, N. celebensis sp. 346 347 nov. bears tessellated epithelium on the dorsum of chaetigers 11-12 and branchial pores commencing from abdominal chaetiger 2, which are not found in other species in the genus. In 348 addition to the above characteristics exclusive to N. chinensis sp. nov., N. chinensis sp. nov. can 349 350 be distinguished from N. oraria in that: (1) eyespots are present in N. chinensis sp. nov while 351 absent in N. oraria; (2) thoracic segments have tessellated epithelium on anterior 5 chaetigers in 352 N. chinensis sp. nov. while on chaetigers 1–8 of N. oraria. N. chinensis sp. nov. also differs from N. dexterae in that: (1) lateral organs are situated in a pit in anterior abdomen in N. chinensis sp. 353 nov. while protruded above surface in N. dexterae; (2) abdominal hooks have four rows of small 354 355 teeth above main fang and angled node in N. chinensis sp. nov. instead of five rows of small 356 teeth and bulbous node as in *N. dexterae*. For more details, see Table 3.
- In terms of inhabiting environment, *N. chinensis* sp. nov. is described from shallow subtidal mud or muddy sand (7–12 m), *N. dexterae* inhabits intertidal sand, and *N. oraria* is mainly found

in muddy sediment at depths of 1–180 m. 359 Furthermore, N. chinensis sp. nov. has a distinct methyl green staining pattern: dark green 360 361 stain on chaetigers 7–8, medium green stain on chaetigers 11–12, and light green stain on the remaining segments (Fig. 9A–B). According to the original descriptions of type materials, N. 362 oraria has medium green stain from the postchaetal part of chaetiger 6 to prechaetal part of 363 364 chaetiger 10, and dark green stain on chaetigers 11 and 12 (Fig. 9C); N. dexterae has medium green stain on chaetigers 9-13, and two dark dorsolateral bands from the third abdominal 365 chaetiger (Fig. 9E). 366 According to "Checklist of marine biota of China seas" (Liu, 2008), a total of 17 capitellid 367 species was recorded from Chinese waters, represented by ten genera, including Capitella, 368 369 Dasybranchus, Heteromastus, Leiochrides, Mastobranchus, Neoheteromastus, Neomediomastus, 370 Notomastus, Parheteromastus, and Rashgua. In this study, Notodasus is recorded for the first 371 time in Chinese waters. 372 373 On the generic definition of *Notodasus* 374 The genus *Notodasus* was originally erected by Fauchald (1972), distinct from other capitellid 375 genera mainly by having only capillaries on all 11 thoracic chaetigers as well as on the first two 376 abdominal ones. Since then, eight *Notodasus* species had been added to the genus, all in agreement with the generic definition. The genus *Dodecaseta* was initially established by 377 378 McCammon & Stull (1978), then its definition was expanded by Green (2002) as having first one or two abdominal chaetigers with capillaries instead of first abdominal chaetiger as in the 379 380 original definition. Of the three known *Dodecaseta* species, *D. eibyejacobseni* completely matched the generic diagnosis of *Notodasus*. The remaining two species, *D. oraria* and *D.* 381 382 fauchaldi, agree well with the generic definition of Notodasus except that they bear abdominal 383 capillaries only on first abdominal chaetiger instead of on first two abdominal chaetigers as in Notodasus. García-Garza et al. (2017) believed that the above morphological difference might be 384 385 due to the fact that these two *Dodecaseta* species were described based on immature specimens. 386 It is well known that the replacement of hooded hooks by capillaries occurs in some capitellid 387 genera during ontogeny (Ewing, 1982; Blake, 2000), and the number of chaetigers with

capillaries will change until the adult condition is reached. Based on the high morphological

similarity, García-Garza et al. (2017) considered *Dodecaseta* as a junior synonym of *Notodasus*, without any technical change in the generic definition.

In addition to the presence of capillaries on all 11 thoracic chaetigers and first two abdominal chaetigers, *Notodasus* bears other distinctive characteristics: partially developed neuropodia and protruded lateral organs on the last one or two chaetigers with capillaries (Green, 2002). In this study, one of the newly described species, *N. celebensis* sp. nov., completely matches the generic diagnosis of *Notodasus*. However, the other species, *N. chinensis* sp. nov., agrees with the generic diagnosis of *Notodasus* in most morphological characteristics except that all examined specimens are characterized by the presence of capillaries on first abdominal chaetiger and absence on the following abdominal segments, irrespective of body size. Given that the specimens of *N. chinensis* sp. nov. were collected in different seasons (October 2017, January 2018, and April 2018), we believe that *N. chinensis* sp. nov. has capillaries restricted to chaetigers 1–12, including 11 thoracic chaetigers and first abdominal chaetiger. Therefore, we suggest expanding the generic definition of *Notodasus* to have capillaries on all 11 thoracic chaetigers as well as on first one or two abdominal chaetigers, to accommodate the new species. To better clarity the chaetal arrangement of the first two abdominal chaetigers during ontogeny, more specimens of *Notodasus* species at different development stages are required.

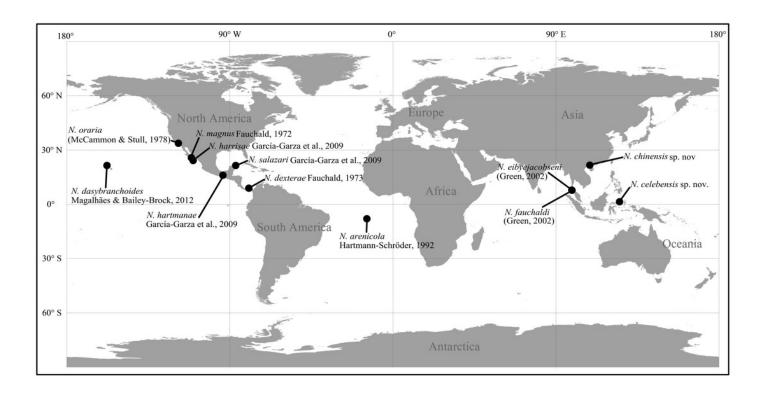
408 Conclusions

Located between the Pacific Ocean and the Indian Ocean, the Central Indo-Pacific region is an important marine biodiversity hotspot with especially rich marine life. In this region. *Notodasus* is an uncommon and poorly known group. Prior to this study, there is no taxonomic report of *Notodasus* species in this region. The discovery of new *Notodasus* species in Sulawesi Island and southern China indicates that there is higher diversity within the genus than expected, and this contributes to better understanding of *Notodasus* diversity worldwide. Besides, this study provides more data to the study of the ecological characteristics of *Notodasus*. However, more future efforts should be devoted to the taxonomy of polychaete fauna in this region due to relatively scant information on the polychaeta.

Key to *Notodasus* species (modified from García-Garza et al., 2009)

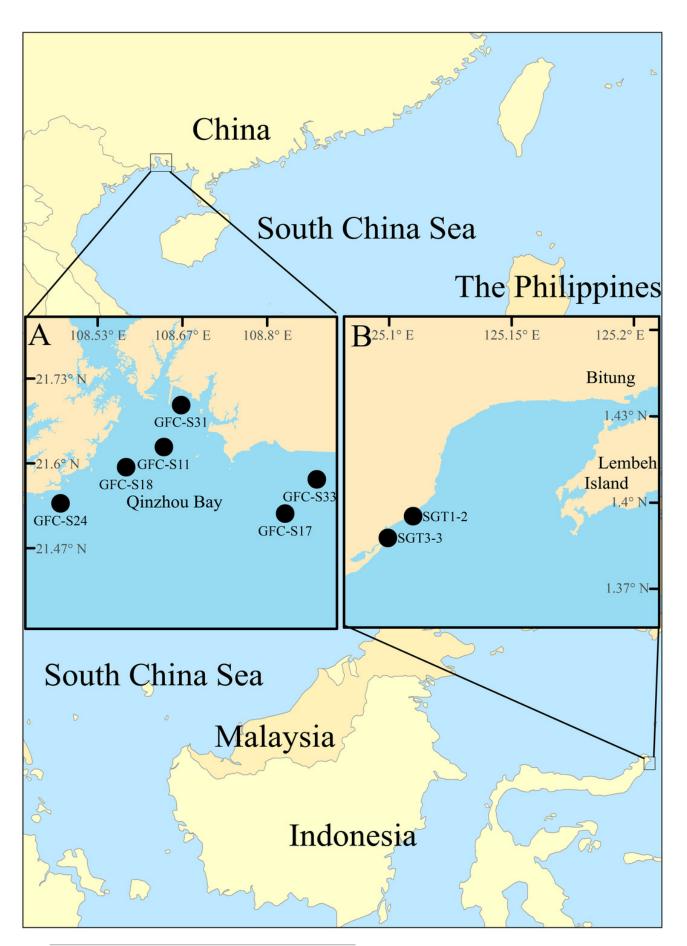
420	1.	Epithelium longitudinally striated on all or part of thoracic segments2
421	_	Epithelium tessellated on all or part of thoracic segments
422	2.	Epithelium longitudinally striated throughout the thorax
423	_	Epithelium longitudinally striated not exceeding chaetiger 9
424	3.	Notopodial lobes completely free throughout the abdomen
425	_	Notopodial lobes fused dorsally in anterior abdomen
426	4.	Fascicles of notopodial hooded hooks forming a continuous line in anterior abdomen,
427		abdominal neuropodial lobes fused ventrally, hooded hooks with three rows of teeth above
428		main fangN. harrisae García-Garza, Hernández Valdez & de León González, 2009
429	_	Fascicles of notopodial hooded hooks clearly separated along the abdomen, neuropodial
430		lobes separated mid-ventrally along the abdomen, hooded hooks with four rows of teeth
431		above main fang
432	5.	Epithelium tessellated along the entire thorax
433		hartmanae García-Garza, Hernández Valdez & de León González, 2009
434	_	Epithelium tessellated in anterior thorax6
435	6.	Notopodial lobes completely free throughout the abdomen
436	_	Notopodial lobes fused dorsally in anterior abdomen9
437	7.	Thoracic epithelium tessellated on segments 1-8, hooded hooks with three rows of teeth
438		above main fang and angled node, first two abdominal chaetigers stained dark
439		green
440	_	Thoracic epithelium tessellated on segments 1–6, hooded hooks with two rows of teeth above
441		main fang and indistinct node, first two abdominal chaetigers stained light green or do not
442		stain8
443	8.	Abdominal lateral organs protruded, dark green stain on chaetiger 14 and following segments
444		except for parapodial tori
445	_	Abdominal lateral organs situated in deep pits, no distinct staining
446		pattern
447	9.	Posterior neuropodial lobes small, fused mid-ventrally, hooded hooks with four rows of teeth
448		above main fang and angled node
449	_	Neuropodial lobes separated mid-ventrally

450	10. Notopodial fascicles almost touching each other in anterior abdomen; the epithelium
451	tessellated on the dorsum of chaetigers 11–12
452	- Notopodial fascicles separated in anterior abdomen; chaetigers 11–12 smooth11
453	11. Fused notopodial lobes without a median constriction, hooded hooks with five rows of teeth
454	above main fang
455	- Fused notopodial lobes with a median constriction, hooded hooks with four rows of teeth
456	above main fang
457	
458	
459	Acknowledgements
460	We are grateful to Mr. Heshan Lin and Mr. Zhiyuan Ma for their assistance with field sampling
461	when in Indonesia. We thank Dr. Xikun Song from Xiamen University, China for his assistance
462	in SEM observations, Dr. Kun Liu for the suggestion for preparing Figure 1 and 2, and Dr.
463	Zhong Pan for editing of the manuscript. We also thank Leslie Harris (LACM-AHF) for her help
464	during one of our authors (M.E. GG.) visit to the museum.
465	
466	
407	References
467	
468	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China
468	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China
468 469	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. <i>Raffles Bulletin of Zoology, Supplement</i> 11: 25–45.
468 469 470	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. <i>Raffles Bulletin of Zoology, Supplement</i> 11: 25–45. Blake JA. 2000. Family Capitellidae Grube, 1862. In: Blake JA, Hilbig B, Scott PV, eds.
468 469 470 471	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. <i>Raffles Bulletin of Zoology, Supplement</i> 11: 25–45. Blake JA. 2000. Family Capitellidae Grube, 1862. In: Blake JA, Hilbig B, Scott PV, eds. <i>Taxonomic atlas of the benthic Fauna of the Santa Maria Basin and the western Santa</i>
468 469 470 471 472	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. <i>Raffles Bulletin of Zoology, Supplement</i> 11: 25–45. Blake JA. 2000. Family Capitellidae Grube, 1862. In: Blake JA, Hilbig B, Scott PV, eds. <i>Taxonomic atlas of the benthic Fauna of the Santa Maria Basin and the western Santa Barbara Channel. Volumen</i> 7. <i>The Annelida part 4, Polychaeta: Flabelligeridae to</i>
468 469 470 471 472 473	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. <i>Raffles Bulletin of Zoology, Supplement</i> 11: 25–45. Blake JA. 2000. Family Capitellidae Grube, 1862. In: Blake JA, Hilbig B, Scott PV, eds. <i>Taxonomic atlas of the benthic Fauna of the Santa Maria Basin and the western Santa Barbara Channel. Volumen 7. The Annelida part 4, Polychaeta: Flabelligeridae to Sternaspidae.</i> California: Santa Barbara Museum of Natural History, 47–96.
468 469 470 471 472 473 474	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. <i>Raffles Bulletin of Zoology, Supplement</i> 11: 25–45. Blake JA. 2000. Family Capitellidae Grube, 1862. In: Blake JA, Hilbig B, Scott PV, eds. <i>Taxonomic atlas of the benthic Fauna of the Santa Maria Basin and the western Santa Barbara Channel. Volumen 7. The Annelida part 4, Polychaeta: Flabelligeridae to Sternaspidae.</i> California: Santa Barbara Museum of Natural History, 47–96. Caullery M. 1915. Sur les Térébelliens du genere Pista Malmgr. Et en particulier sur les uncini
468 469 470 471 472 473 474 475	AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. <i>Raffles Bulletin of Zoology, Supplement</i> 11: 25–45. Blake JA. 2000. Family Capitellidae Grube, 1862. In: Blake JA, Hilbig B, Scott PV, eds. <i>Taxonomic atlas of the benthic Fauna of the Santa Maria Basin and the western Santa Barbara Channel. Volumen 7. The Annelida part 4, Polychaeta: Flabelligeridae to <i>Sternaspidae</i>. California: Santa Barbara Museum of Natural History, 47–96. Caullery M. 1915. Sur les Térébelliens du genere Pista Malmgr. Et en particulier sur les uncini de ces annelids. <i>Bulletin de la Societe Zoologique de France</i> 40: 68–78.</i>
468 469 470 471 472 473 474 475 476 477	 AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. Raffles Bulletin of Zoology, Supplement 11: 25–45. Blake JA. 2000. Family Capitellidae Grube, 1862. In: Blake JA, Hilbig B, Scott PV, eds. Taxonomic atlas of the benthic Fauna of the Santa Maria Basin and the western Santa Barbara Channel. Volumen 7. The Annelida part 4, Polychaeta: Flabelligeridae to Sternaspidae. California: Santa Barbara Museum of Natural History, 47–96. Caullery M. 1915. Sur les Térébelliens du genere Pista Malmgr. Et en particulier sur les uncini de ces annelids. Bulletin de la Societe Zoologique de France 40: 68–78. Caullery M. 1944. Polychètes Sédentaires de l'Expédition du Siboga: Ariciidae, Spionidae, Chaetopteridae, Chlorhaemidae, Opheliidae, Oweniidae, Sabellariidae, Sternaspidae, Amphictenidae, Ampharetidae, Terebellidae. Siboga-Expeditie Uitkomsten op Zoologisch,
468 469 470 471 472 473 474 475 476 477	 AI-Hakim Inayat, Glasby CJ. 2004. Polychaeta (Annelida) of the Natuna Islands, South China Sea. Raffles Bulletin of Zoology, Supplement 11: 25–45. Blake JA. 2000. Family Capitellidae Grube, 1862. In: Blake JA, Hilbig B, Scott PV, eds. Taxonomic atlas of the benthic Fauna of the Santa Maria Basin and the western Santa Barbara Channel. Volumen 7. The Annelida part 4, Polychaeta: Flabelligeridae to Sternaspidae. California: Santa Barbara Museum of Natural History, 47–96. Caullery M. 1915. Sur les Térébelliens du genere Pista Malmgr. Et en particulier sur les uncini de ces annelids. Bulletin de la Societe Zoologique de France 40: 68–78. Caullery M. 1944. Polychètes Sédentaires de l'Expédition du Siboga: Ariciidae, Spionidae, Chaetopteridae, Chlorhaemidae, Opheliidae, Oweniidae, Sabellariidae, Sternaspidae,

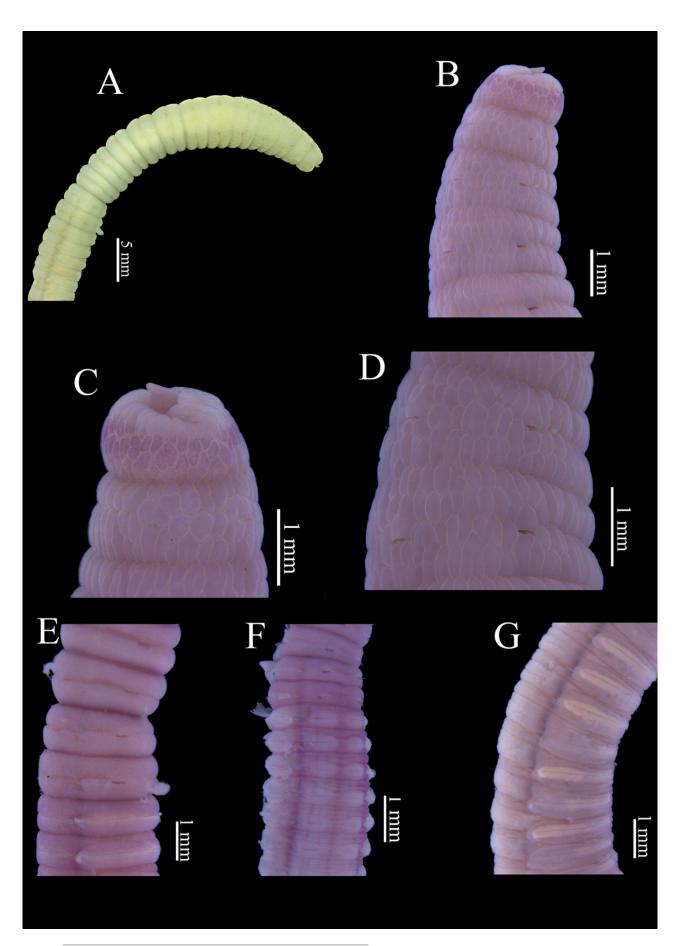

- 481 Ewing RM. 1982. A partial revision of the genus *Notomastus* (Polychaeta: Capitellidae) with a
- description of a new species from the Gulf of Mexico. *Proceedings of the Biological Society*
- 483 *of Washington* 95(2): 232–237.
- 484 Fauchald K. 1972. Benthic polychaetous annelids from deep waters off Western Mexico and
- adjacent areas in the Eastern Pacific Ocean. Allan Hancock Monographs in Marine Biology
- 486 7: 1–575.
- 487 Fauchald K. 1973. Polychaetes from central American sandy beaches. Bulletin of the Southern
- 488 *California Academy of Sciences* 72: 19–31.
- 489 Fauchald K. 1977. The Polychaete Worms. Definitions and keys to the orders, families and
- 490 genera. Natural History Museum of Los Angeles County, Science Series 28: 1–190.
- 491 García-Garza ME, de León-González JA. 2011. Review of the Capitellidae (Annelida,
- Polychaeta) from the Eastern Tropical Pacific region, with notes on selected species.
- 493 *Zookeys* 151: 17–52. https://doi.org/10.3897/zookeys.151.1964
- 494 García-Garza ME, de León-González JA, Harris LH. 2017. Relocation of Dodecaseta
- 495 McCammon & Stull, 1978 (Annelida, Capitellidae) in Notodasus Fauchald, 1972. ZooKeys
- 496 715: 93–101. https://doi.org/10.3897/zookeys.715.13936
- 497 García-Garza ME, de León-González JA, and Tovar-Hernández. 2019. Catalogue of *Notomastus*
- M. Sars, 1851 (Annelida, Capitellidae) and the description of a new species from the Gulf of
- 499 California. *Zootaxa* 4577(2): 249–273. https://doi.org/10.11646/zootaxa.4577.2.2
- 500 García-Garza ME, Hernández-Valdez VD, de León-González JA. 2009. Generic revision of
- Notodasus Fauchald, 1972 (Polychaeta: Capitellidae) with descriptions of four new species
- from the coasts of Mexico. Scientia Marina 73(4): 809–823.
- 503 https://doi.org/10.3989/scimar.2009.73n- 4809
- Green KD. 2002. Capitellidae (Polychaeta) from the Andaman Sea. In: Eibye Jacobsen D, ed.
- Proceedings of the international workshop on the Polychaetes of the Andaman Sea.
- 506 Thailand: Phuket Marine Biological Center Special Publication, pp 249–343.
- 507 Grube AE. 1862. Noch ein Wort über die Capitellen und ihre Stelle im Systeme der Anneliden.
- Berlin: Archiv für Naturgeschichte, 378pp.
- 509 Hartmann-Schröder G. 1992. Die Polychaeten der Amsterdam-Expedition nach der Insel
- Ascension (Zentral-Atlantik). *Bijdragen Tot De Dierkunde* 61: 219–235.
- 511 Horst R. 1903. New species of the genus Euphrosyne from the Siboga Expedition with a table of

- the species hitherto known. *Notes from the Leyden Museum* 23: 213–222.
- 513 Horst R. 1910. On the genus *Chloeia*, with some new species from the Malay-Archipelago,
- partly collected by the Siboga Expedition. *Notes from the Leyden Museum* 32: 169–175.
- Horst R. 1912. Polychaeta errantia of the Siboga Expedition. Part 1, Amphinomidae. Siboga-
- Expeditie Uitkomsten op Zoologisch, Bonatisch, Oceanographisch en Geologisch gebied
- 517 verzameld in Nederlandsch Oost-Indië 1899–1900 24a: 1–43, 10 plates. available online at
- https://biodiversitylibrary.org/page/2187401
- Horst R. 1915. On new and little-known species of Polynoinae from the Netherlands' East-Indies.
- 520 Zoologische Mededeelingen (Leiden) 1: 2–20.
- Horst R. 1916a. On a new genus of Aphroditidae from the Netherlands East Indies. Zoologische
- *Mededeelingen (Leiden)* 2: 63–64.
- 523 Horst R. 1916b. Malayan species of the genera Aphroditella, Hermione, Laetmonice and
- Aphrogenia. Zoologische Mededeelingen (Leiden) 2(2): 65–77.
- 525 Horst R. 1917. Polychaeta Errantia of the Siboga Expedition. Part 2. Aphroditidae and
- 526 Chrysopetalidae. Siboga-Expeditie Uitkomsten op Zoologisch, Bonatisch, Oceanographisch
- 527 en Geologisch gebied verzameld in Nederlandsch Oost-Indië 1899–1900 24b: 1–140.
- Horst R. 1924. Polychaeta errantia of the Siboga Expedition, Part 3. Nereidae and Hesionidae.
- 529 Siboga-Expeditie Uitkomsten op Zoologisch, Bonatisch, Oceanographisch en Geologisch
- 530 *gebied verzameld in Nederlandsch Oost-Indië 1899–1900* 24(1c): 145–198, pls 30–36.
- 531 Hutchings P, Fauchald C. 2000. Class Polychaeta. Definition and general description. In:
- Beesley PL, Ross GJB, Glasby CJ, eds. Polychaetes & allies: the southern synthesis.
- Melbourne: CSIRO Publishing, pp 1–3.
- Hutchings P. 2000. Family Capitellidae. In: Beesley PL, Ross GJB, Glasby CJ, eds. *Polychaetes*
- & Allies: The Southern Synthesis. Fauna of Australia. Vol. 4A Polychaeta, Myzostomida,
- *Pogonophora, Echiura, Sipuncula*. Melbourne: CSIRO Publishing, pp 67–72.
- Magalhães WF & Bailey-Brock JH. 2012. Capitellidae Grube, 1862 (Annelida: Polychaeta) from
- the Hawaiian Islands with description of two new species. *Zootaxa* 3581: 1–52.
- 539 Magalhães WF & Blake JA. 2017. Capitellidae Grube, 1862. In: Westheide W & Purschke G,
- eds. Handbook of Zoology Online, a Natural History of the Phyla of the Animal Kingdom—
- 541 Annelida, Polychaetes. Boston: De Gruyter, Berlin.
- https://www.degruyter.com/view/Zoology/bp 029147-6 76.

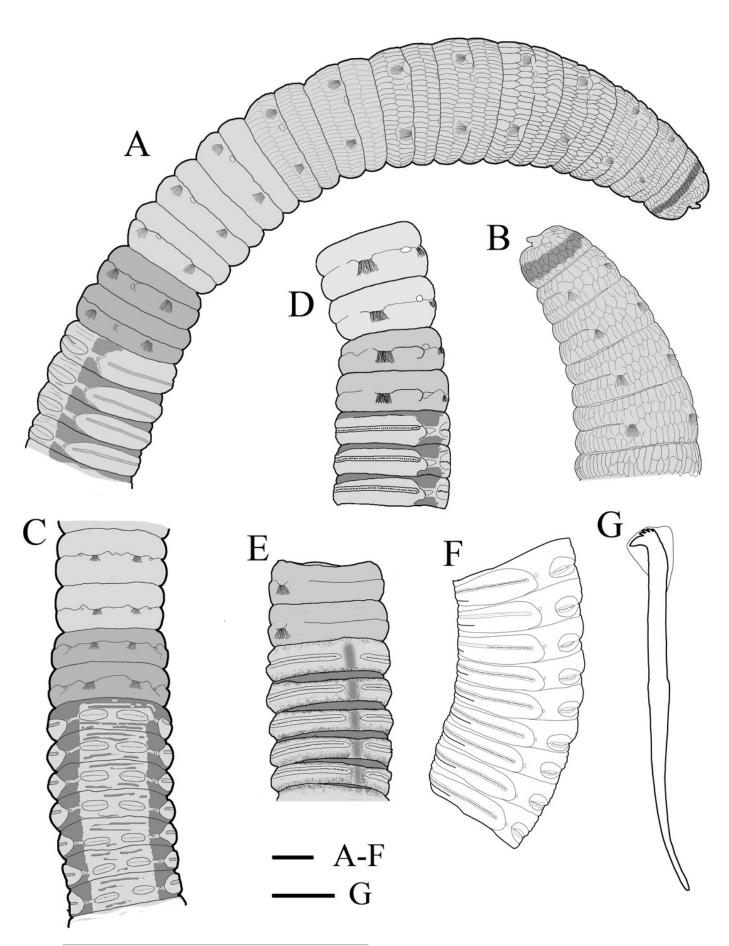
- Liu Ruiyu (ed). 2008. Checklist of marine biota of China seas. China Science Press, Beijing. (in
- 544 Chinese)
- 545 McCammon JA, Stull JK. 1978. A new genus and species of Capitellidae (Polychaeta) from
- California. *Bulletin of the Southern California Academy of Sciences* 77(1): 40–43.
- Pamungkas J. 2015. The description of a new species *Polymastigos javaensis* n. sp. (Annelida:
- Capitellidae) from the Segara Anakan mangroves, Central Java, Indonesia. *Zootaxa* 3980(2):
- 549 279–285. https://doi.org/10.11646/zootaxa.3980.2.8.
- Pamungkas J. 2017. Capitella ambonensis: a new polychaete species (Annelida: Capitellidae)
- collected from a mangrove habitat on Ambon Island, Indonesia. *Zootaxa* 4227(4): 573–582.
- Pearson TH & Rosenberg R. 1978. Macrobenthic succession in relation to organic enrichment
- and pollution of the marine environment. Oceanography and Marine Biology, Annual
- 554 *Review* 16: 229–311.
- Pettibone MH. 1970. Polychaeta errantia of the Siboga Expedition. Part IV. Some additional
- polychaetes of the Polynoidae, Hesionidae, Nereidae, Goniadidae, Eunicidae and Onuphidae,
- selected as new species by the late Dr. Hermann Augener, with remarks on other related
- species. In: Weber M, Beaufort LF, Stock JH, eds. Siboga-Expeditie Uitkomsten op
- Zoologisch, Bonatisch, Oceanographisch en Geologisch gebied verzameld in Nederlandsch
- 560 *Oost-Indië 1899–1900*. Leiden, E.J. Brill, 199–270.
- Pettibone MH. 1971. Partial revision of the genus *Sthenelais* Kinberg (Polychaeta: Sigalionidae)
- with diagnoses of two new genera. Smithsonian Contributions to Zoology 109: 1–40.
- available online at http://si-pddr.si.edu/dspace/handle/10088/5688
- 564 Read G & Fauchald K. (Ed.) 2018. World Polychaeta database. Capitellidae Grube, 1862.
- Accessed at: http://marinespecies.org/polychaeta/aphia.php?p=taxdetails&id=921 (accessed
- 566 31 December 2018)
- Reish DJ. 1980. The effect of different pollutants on ecologically important polychaete worms.
- 568 U.S.E.P.A. Report, EPA-600/3-80-053. 138pp.
- Warren LM. 1991. Problems in capitellid taxonomy. The genera Capitella, Capitomastus and
- 570 *Capitellides* (Polychaeta). *Ophelia* 5: 275–282.
- Warren LM, Hutchings PA, Doyle S. 1994. A revision of the genus *Mediomastus* Hartman, 1944
- 572 (Polychaeta: Capitellidae). Records of the Australian Museum 46(3): 227–256.
- 573 https://doi.org/10.3853/j. 0067-1975.46.1994.6


Type localities of described species of Notodasus worldwide

Map of survey areas


(A) sampling stations in the Qinzhou Bay, the southern coast of China, and (B) sampling stations in mixed-species seagrass beds of northern Sulawesi Island, Indonesia

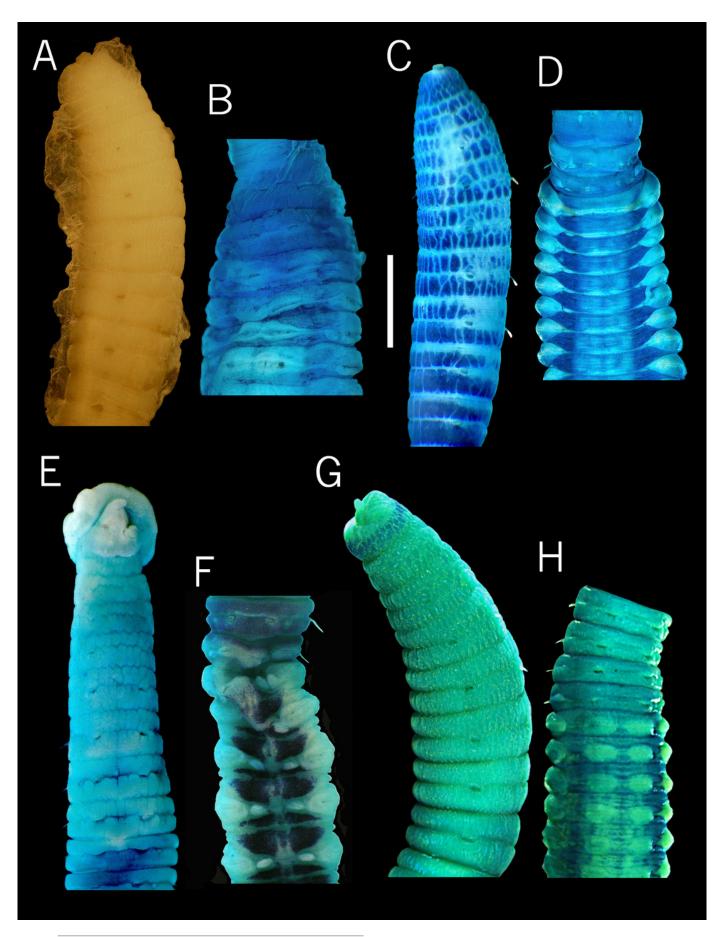
Photomicrographs of Notodasus celebensis sp. nov.


(A) Thorax and anterior abdomen, lateral view. (B) Anterior end, lateral view. (C) Prostomium with digitate palpode, lateral view. (D) Longitudinally striated epithelium, lateral view. (E) Transition between thorax and abdomen, lateral view. (F) Anterior abdomen, dorsal view. (G) Posterior part, lateral view. Abbreviations: pro: prostomium; lo: lateral organ; cc: capillary chaetae; hh: hooded hook; ch: chaetiger.

Holotype of *Notodasus celebensis* sp. nov.

(A) Anterior 17 chaetigers, lateral view. (B) Anterior end, lateral view. (C) Chaetigers 10–20, dorsal view, showing transition between thorax and abdomen. (D) Chaetigers 10–16, lateral view. (E) Chaetigers 12–18, ventrolateral view. (F) Chaetigers 32–40, lateral view. (G) Neuropodial hook from chaetiger 40. Shading on A–E indicates methyl green staining. Scale bars: A–F, 1 mm; G, 20 μ m.

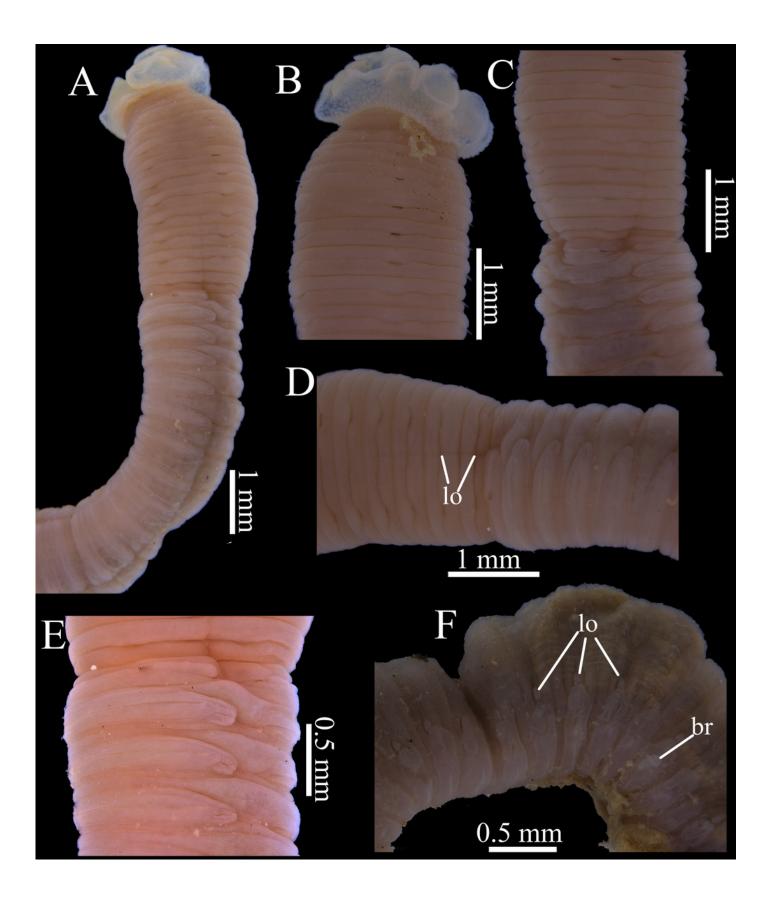
Notodasus species with longitudinally striated epithelium


Holotype of N. magnus: (A) Anterior end, lateral view. (B) Chaetigers 12-17, dorsal view.

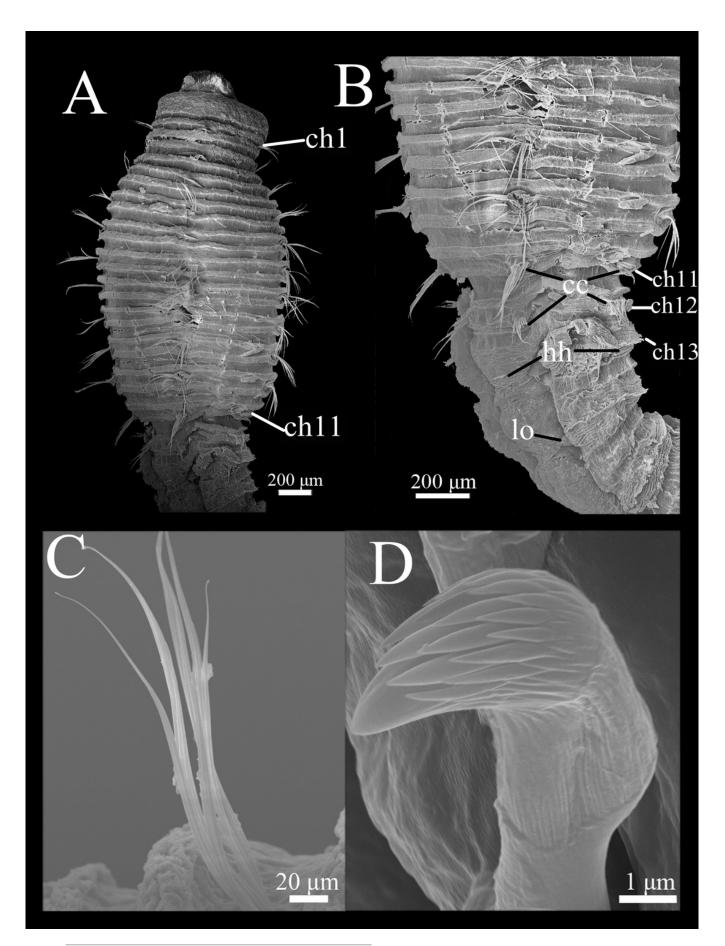
Holotype of N. harrisae: (C) Anterior end, lateral view. (D) Chaetigers 11-22, dorsal view.

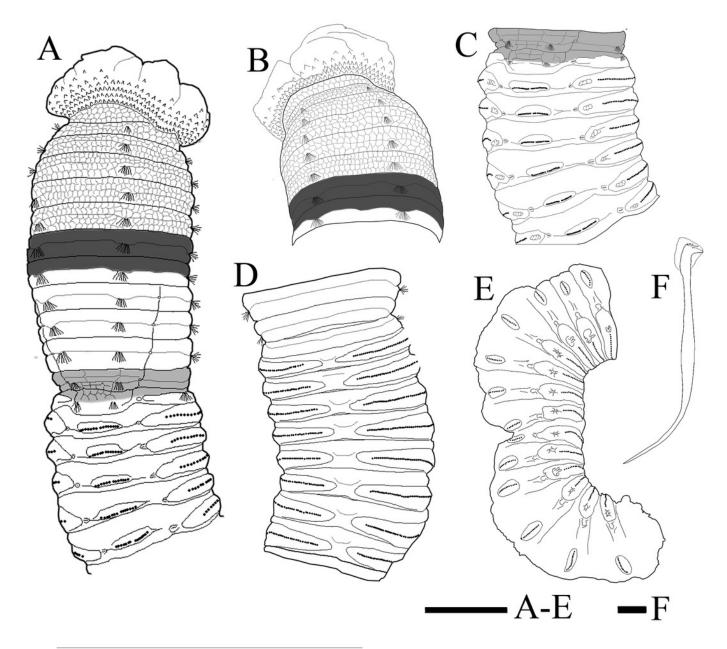
Paratype of N. fauchaldi: (E) Anterior end, dorsal view. (F) Chaetigers 11-17, dorsal view.

Holotype of N. celebensis sp. nov., (G) Anterior end, lateral view. (H) Chaetigers 10-19, dorsal


view. Methyl green stain: B-H. Scale bars: A-H, 1 mm.

Photomicrographs of *Notodasus chinensis* sp. nov.


(A) Thorax and anterior abdomen, lateral view. (B) Anterior thorax, dorsolateral view. (C) Transition between thorax and abdomen, dorsolateral view. (D) Transition between thorax and abdomen, lateral view. (E) Anterior abdomen, showing branchial pores, lateral view. (F) Posterior part of holotype, showing retractile branchiae and lateral organs, lateral view.


Scanning electron micrographs of *Notodasus chinensis* sp. nov. (TIO-BTS-Poly-106)

(A) Anterior end, dorsolateral view. (B) Transition between thorax and abdomen, dorsolateral view. (C) Capillary chaetae from chaetiger 9. (D) Abdominal hooded hooks.

Holotype of *Notodasus chinensis* sp. nov.

(A) Anterior 17 chaetigers, dorsolateral view. (B) Anterior end, lateral view. (C) Chaetigers 11–18, dorsolateral view, showing transition between thorax and abdomen. (D) Chaetigers 10–20, ventral view. (E) Chaetigers 55–67, lateral view. (F) Neuropodial hook from chaetiger 40. Shading on A–C indicates methyl green staining. Scale bar: A-E=1 mm; F=10 μ m.

Methyl green staining patterns

(A–B) *Notodasus chinensis* sp. nov. (A) Anterior end, dorsolateral view (TIO-BTS-Poly-106). (B) Anterior end, dorsal view (TIO-BTS-Poly-110). (C) *N. oraria* holotype, anterior end, dorsolateral view. (D–E) *N. dexterae* holotype. (D) Anterior end, lateral view. (E) Chaetigers 11–17, dorsal view.

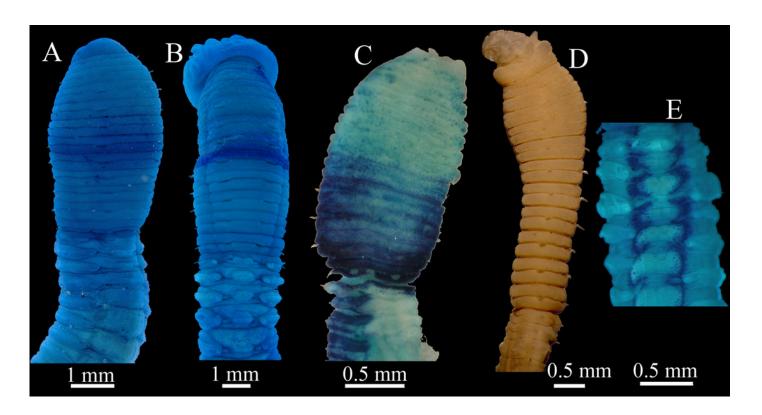


Table 1(on next page)

Sampling stations where *Notodasus* specimens were collected

Table 1 Sampling stations where Notodasus specimens were collected

T 124	S4 - 4*	Specimen	Date	Longitude	Latitude	Depth	Substrate
Locality	Station	amount	(dd/mm/yyyy)			(m)	
Sulawesi Island	SGT 1-2	1	23/05/2014	125°06′43″E	1°23′41″N	1	Fine sand
(Indonesia)	SGT 3-3	2	25/05/2014	125°06′08″E	1°23′11″N	1	Fine sand
Guangxi Province	GFC-S11	1	27/10/2017	108°38′15″E	21°37′33″N	12	Mud
(China)	GFC-S24	2	27/10/2017	108°28′29″E	21°32′14″N	11	Mud
	GFC-S31	5	26/01/2018	108°39′52″E	21°41′31″N	8	Mud
	GFC-S33	1	26/01/2018	108°52′41″E	21°34′30″N	7	Muddy sand
	GFC-S17	2	21/04/2018	108°49′42″E	21°31′16″N	7	Mud
	GFC-S18	1	22/04/2018	108°34′41″E	21°35′39″N	9	Muddy sand

3

4

Table 2(on next page)

Comparisons of closely related species in the genus

2 Table 2 Comparisons of closely related species in the genus

Morphological	N. celebensis sp. nov.	N. fauchaldi	N. harrisae	N. magnus	
characters	Holotype	(Green, 2002)	García-Garza et al., 2009	Fauchald, 1972	
		Paratype	Holotype	Holotype	
Body width in	2.8 mm	0.7 mm	2 mm	5 mm	
abdomen					
Eyespots	Absent	Present	Present	Absent	
Prostomium	Rounded with palpode	Conical with palpode	Conical with palpode	Conical with palpode	
Thoracic epithelium	Longitudinally striated	Longitudinally striated	Longitudinally striated	Longitudinally striated	
	through chaetiger 8	through chaetiger 7	through chaetiger 11	except for peristomium	
Degree of fused	Completely free	Notopodia fused dorsally	Notopodia fused dorsally	Notopodia fused dorsally	
notopodia in anterior		but chaetal fascicles	and chaetal fascicles almost	with a median	
abdomen		separated	fused	constriction, and chaetal	
				fascicles fused	
Dental structure of	Four rows of small	Four rows of small teeth	Three rows of small teeth	Three rows of small teeth	
hooded hooks	teeth above main fang	above main fang	above main fang	above main fang	
Shape of the shaft of	With angled node	With bulbous node	With angled node	With angled node	
hooded hooks					
Abdominal lateral	As a small	Protruded above surface	As a small protuberance in	Protruded above surface	
organs	protuberance in the pits		the pits		
Pygidium	Unknown	Unknown	Unknown	Unknown	
Branchiae	Unknown	Unknown	Evident from chaetiger 60,	Evident from chaetiger	
			with around 14 filaments	61, with around 6	
				filaments	
Habitat	1m; fine sand	21-55 m; sandy mud,	0-1 m; fine or coarse sand	29-35 m; mixed sediment	
		muddy sand, and sand		of sand, mud, and pebbles	
		with shell fragments			
Type locality	Sulawesi Island,	Andaman Sea, Thailand	Gulf of California	Gulf of California	
	Indonesia				
Reference	This study	García-Garza et al., 2017	García-Garza et al., 2009	García-Garza et al., 2009	

Table 3(on next page)

Comparisons of closely related species in the genus

2 Table 3 Comparisons of closely related species in the genus

Morphological	N. chinensis sp. nov.	N. oraria	N. dexterae	
characters	Holotype	(McCammon & Stull, 1978)	García-Garza et al., 2009	
		Holotype	Holotype	
Body width in abdomen	1.7 mm	0.8 mm	1 mm	
Eyespots	Present	Absent	Present	
Prostomium	Conical with short palpode	Conical with palpode	Conical with distal palpode	
Thoracic epithelium	Tessellated through chaetiger	Tessellated through chaetiger	tessellated through chaetiger	
	5	8	5	
Degree of fused	Notopodial lobes fused and	Notopodial lobes fused	Notopodial lobes fused	
notopodia in anterior	Chaetal fascicles almost	dorsally but chaetal fascicles	dorsally but chaetal fascicles	
abdomen	touching	separated	separated	
Dental structure of	Four rows of small teeth	Four rows of small teeth	Five rows of small teeth	
hooded hooks	above main fang	above main fang	above main fang	
Shape of the shaft of	With angled node	With bulbous node	With bulbous node	
hooded hooks				
Lateral organs	As a small protuberance in the	Protruded	Protruded above surface	
	pits but protruded above			
	surface in posterior segments			
Pygidium	Unknown	Unknown	Unknown	
Branchiae	Present, retractile	Present	Unknown	
Habitat	7-12 m; mud or muddy sand	1–180 m; mud	intertidal sand	
Type locality	Guangxi Province, China	Waters off California, USA	Naos Island, Pacific coast of	
			Panama	
Reference	This study	García-Garza et al., 2017	García-Garza et al., 2009	