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The orientation of vascular canals in primary bone may reflect differences in growth rate

and/or adaptation to biomechanical loads. Previous studies link specific canal orientations

to bone growth rates, but results between different taxa are contradictory. Circularly-

oriented vascular canals (forming laminar bone) have been hypothesized to reflect either

(or both) rapid growth rate or locomotion-induced torsional loading. Previous work on the

hindlimb biomechanics in the emu shows that the femur and tibiotarsus experience large

shear strains, likely resulting from torsional loads, that increase through ontogeny. Here,

we test how growth rate and biomechanical loading affect bone laminarity in wing and

hindlimb elements from growing emu (2 - 416 wks). If bone laminarity is purely an

expression of growth rate, it should be most elevated at the growth spurt and decrease

with age at a time when shear strains increase in the emu femur and tibiotarsus.

Alternatively, if laminar bone reflects biomechanical accommodation, it should become

more abundant with age. Transverse mid-shaft histological sections from the limb bones

(femur, tibiotarsus, humerus, ulna, and radius) were prepared and imaged. Growth rates

were measured using fluorescent bone labels. Vascular canal orientation was quantified

using laminarity index (proportion of circularly oriented canals). Growth rates were found

to be highest in young individuals for all five skeletal elements. Laminarity significantly

decreased with increasing growth rate in hindlimb elements, but no relationship was seen

between laminarity and growth rate in forelimb elements. In the femur and tibiotarsus,

laminarity significantly increased with increasing shear strain, which supports the

hypothesis that laminar bone is a feature of torsionally loaded bone. A moderate amount

of bone laminarity was found in the humerus and ulna, despite emu wings being vestigial

and likely to experience minimal biomechanical loading, suggesting that laminar bone may

in some cases be a retained ancestral feature. In conclusion, torsional loading appears to

have a greater impact on vascular canal orientation than growth rate in the femur and
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24 ABSTRACT 

25 The orientation of vascular canals in primary bone may reflect differences in growth rate 

26 and/or adaptation to biomechanical loads. Previous studies link specific canal orientations to 

27 bone growth rates, but results between different taxa are contradictory. Circularly-oriented 

28 vascular canals (forming laminar bone) have been hypothesized to reflect either (or both) rapid 

29 growth rate or locomotion-induced torsional loading. Previous work on the hindlimb 

30 biomechanics in the emu shows that the femur and tibiotarsus experience large shear strains, 

31 likely resulting from torsional loads, that increase through ontogeny. Here, we test how growth 

32 rate and biomechanical loading affect bone laminarity in wing and hindlimb elements from 

33 growing emu (2 - 416 wks). If bone laminarity is purely an expression of growth rate, it should 

34 be most elevated at the growth spurt and decrease with age at a time when shear strains increase 

35 in the emu femur and tibiotarsus. Alternatively, if laminar bone reflects biomechanical 

36 accommodation, it should become more abundant with age. Transverse mid-shaft histological 

37 sections from the limb bones (femur, tibiotarsus, humerus, ulna, and radius) were prepared and 

38 imaged. Growth rates were measured using fluorescent bone labels. Vascular canal orientation 

39 was quantified using laminarity index (proportion of circularly oriented canals). Growth rates 

40 were found to be highest in young individuals for all five skeletal elements. Laminarity 

41 significantly decreased with increasing growth rate in hindlimb elements, but no relationship was 

42 seen between laminarity and growth rate in forelimb elements. In the femur and tibiotarsus, 

43 laminarity significantly increased with increasing shear strain, which supports the hypothesis that 

44 laminar bone is a feature of torsionally loaded bone. A moderate amount of bone laminarity was 

45 found in the humerus and ulna, despite emu wings being vestigial and likely to experience 

46 minimal biomechanical loading, suggesting that laminar bone may in some cases be a retained 
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47 ancestral feature. In conclusion, torsional loading appears to have a greater impact on vascular 

48 canal orientation than growth rate in the femur and tibiotarsus of the emu.

49

50 INTRODUCTION

51 Avian bone tissue is highly vascularized with a fibrolamellar structure, which allows for 

52 rapid growth by depositing randomly arranged woven bone initially, then filling in with stronger 

53 more organized lamellar bone (Curry, 2002). Primary osteons are deposited around central canals 

54 that house blood vessels and nerves. These vascular canals vary in orientation and bones can be 

55 classified based on the predominant canal orientation. Laminar bone has an abundance of 

56 circular canals, those that in a bone cross section are oriented parallel to the periosteal surface of 

57 the bone. Additional canal orientations include: radial, those orthogonal to the periosteal surface; 

58 longitudinal, those running parallel to the long axis of the bone; and oblique, all other 

59 orientations (de Ricqlès et al., 1991). Avian bone tissue largely retains its primary structure 

60 throughout growth and adulthood (Enlow and Brown, 1957). It has been hypothesized that 

61 differences in primary vascular canal orientation might be a reflection of the functional demands 

62 placed on the bone, growth rate, or phylogenetic relationships.

63 Amprino (1947) first suggested that the organization of bone microstructure may be 

64 influenced by bone growth rate, such that woven bone is deposited during rapid growth and 

65 lamellar bone during slow growth (de Ricqlès et al., 1991). Further studies have investigated 

66 whether specific primary vascular canal orientations in fibrolamellar bone are also associated 

67 with slow or fast growth by directly comparing microstructure with bone growth rates measured 

68 through the use of injectable fluorochromes (Castanet et al., 2000; de Margerie, 2002; de 

69 Margerie et al., 2004). Rapidly growing hindlimb bones of ratites have been found to exhibit 
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70 structure that is laminar and reticular (bone with an abundance of obliquely oriented canals) 

71 (Castanet et al., 2000), whereas the much slower growing wing elements of the ratites exhibit 

72 reticular and longitudinal canal structure. This suggests that laminar bone, in part, may reflect 

73 faster growth rates. This result was supported in a recent study of pigeon wing elements, which 

74 showed that peak laminarity (proportion of laminar bone) coincides with the growth spurt in each 

75 element (Ourfalian, Ezell & Lee, 2016). However, work on mallard long bones showed no 

76 relationship between growth rate and predominant vascular canal orientation (de Margerie, 

77 2002). And in the king penguin, radially-oriented canals dominated in the fastest growing 

78 sections, not circular canals (laminar bone) as was hypothesized. (de Margerie et al., 2004). 

79 Likewise, chickens selected for fast growth showed tibiotarsi with more radial canals (Williams 

80 et al., 2004).

81 Laminar bone has been hypothesized to better resist torsional loading. In laminar bone, 

82 the bone tissue is arranged in ‘sheets’ or ‘plates’ between layers of circular canals. Shear strain is 

83 thought to flow continuously within these ‘sheets’, and thus the concentrated stresses on the bone 

84 tissue surrounding the canals is reduced (de Margerie et al., 2004). Indeed, elements that are 

85 predominantly experiencing torsional loads have been found to exhibit laminar bone. Laminar 

86 bone is found to be most abundant in the humerus, ulna, and femur in a large sample of flighted 

87 bird species (de Margerie, 2002; de Margerie et al., 2005). In vivo strain gauge studies have 

88 shown that at least two of these elements, the humerus in the pigeon during flapping flight and 

89 the femur in the chicken and emu during terrestrial running, experience predominantly torsional 

90 loads (Biewener and Dial, 1995; Carrano and Biewener, 1999; Main and Biewener, 2007). 

91 Changes in posture affect the amount of torsion experienced, such that when the center of mass 

92 of white leghorn chickens was modified, the femur experienced higher torsional loads due to its 
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93 more horizontal orientation. In addition, it has been hypothesized that specific wing shape and 

94 the locomotor style associated with it may affect how much torsional load is placed on limb 

95 elements. For example, laminarity in the humerus of birds that utilize flapping and static soaring 

96 is higher than in the humerus of birds that use dynamic soaring (de Margerie et al, 2005; Simons 

97 and O’Connor, 2012). 

98 A limitation of previous studies of laminar bone is the indirect comparison of bone 

99 histology in one species with bone growth rates and/or in vivo strain gauge measures taken from 

100 different species. In this study, we present an analysis of laminar bone in a species in which bone 

101 growth rate and in vivo bone strain data were directly measured. The emu (Dromaius 

102 novaehollandiae, Order Struthioniformes, Family Dromaiidae) is a flightless bird endemic to 

103 Australia, but widely farmed in the US. The individuals included in this study comprise a growth 

104 series that were previously injected with fluorescent bone labels and surgically implanted with 

105 gauges to measure in vivo locomotor strains in the femur and tibiotarsus (Main and Biewener, 

106 2007). These strains were predominantly shear (produced by torsional loads) and increased from 

107 juveniles to adults (Main and Biewener, 2007). Although the wings of these individuals were not 

108 measured for bone strain, they are extremely reduced and have no known function other than 

109 being raised to aid thermoregulation (del Hoyo et al., 1992; Maxwell and Larsson, 2007). 

110 Presumably, shear strains are negligible in the wing elements. Therefore, if laminarity is an 

111 adaptation to torsion-induced shear strains, we predict that hindlimb bone laminarity will 

112 increase from juveniles to adults. Moreover, we expect little to no laminar bone in the vestigial 

113 wing elements. Alternatively, if bone laminarity reflects rapid growth, it should be abundant in 

114 juveniles and decrease with age as growth slows in adults. In addition, hindlimb elements in emu 

115 grow at a faster rate than wing elements (Castanet et al., 2000), so we predict overall greater 
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116 laminarity in hindlimb than forelimb elements. Having access to growth rate measurements, 

117 direct biomechanical data, and direct histological work to classify laminarity makes this study a 

118 first of its kind that will be able to clarify which factors have the most impact on vascular canal 

119 orientation in emu limbs. 

120

121 MATERIALS & METHODS

122 This study samples forelimb and hindlimb elements from ten emus ranging in age from 2 

123 to 416 weeks (Table 1). Birds used in this study were euthanized as part of a previous study 

124 (Main and Biewener, 2007) and the selected elements stored frozen. Emus were originally 

125 obtained as hatchlings by R.P. Main (at the time at Harvard University) from commercial farms 

126 (Songline Emu Farm, Gill, MA, USA; Scattered Oaks Emu Farm, Iola, TX, USA; Deep Hollow 

127 Farm, Oakdale, CT, USA) and raised at Harvard University’s Concord Field Station (Bedford, 

128 MA, USA)(Harvard FAS IACUC AEP 23-15). For the first eight weeks of life the emus were 

129 held in indoor enclosures, and then moved into large outdoor enclosures. All birds had free 

130 access to commercial ratite diet (Mazuri, PMI Nutrition International, LLC, Brentwood, MO, 

131 USA) and water. Male and female birds were included based on availability. Emus exhibit a 

132 minor degree of sexual dimorphism, with females being slightly larger on average (del Hoyo et 

133 al., 1992). The difference in size is not large enough to be considered a confounding factor for 

134 this study. 

135 As a part of a previous study (Main and Biewener, 2007), each bird was given a single 

136 intramuscular injection of xylenol orange (80mg/kg) followed by calcein (30mg/kg) according to 

137 an injection schedule. Injections were given one week apart in birds less than 16 weeks of age, 

138 two weeks apart in birds between 16 and 65 weeks of age, and four weeks apart in birds older 
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139 than 65 weeks. Xylenol and calcein are fluorescent labels that incorporated rapidly into newly 

140 mineralizing surfaces of bone at the time of injection (An and Martin, 2003). Thus, the time 

141 elapsed and the space between xylenol and calcein labels allows the calculation of periosteal 

142 (radial) growth rate. One week after the last injection, surgery was performed to attach strain 

143 gauges to the cranial, caudal, and lateral aspects of the left femur and the cranial, caudal, and 

144 medial aspects of the left tibiotarsus. Single element strain gauges were used on the lateral femur 

145 and cranial and medial tibiotarsus. Rectangular rosette gauges were used on the cranial and 

146 caudal femur and caudal tibiotarsus. Rosette strain gauges allow both tensile and compressive 

147 principal strains and their orientations to be measured, and were placed so the central element of 

148 the gauge was parallel to the long axis of the bone. One day after surgery, the birds were run on a 

149 treadmill over a wide range of speeds and gaits. The raw data produced from the strain gauges 

150 was converted from voltages into microstrain using a custom MATLAB program. Shear strains 

151 were calculated from the rosette strain gauges using standard equations (Biewener and Dial, 

152 1995). High quality shear strain data were most consistently collected from the caudal cortices of 

153 the femur and tibiotarsus and that is what is reported here.  Trials in which the birds ran with a 

154 duty factor near 0.50 are included in the shear strain analysis (mean + SD: 0.50 + 0.02). Each 

155 trial was represented by five footfalls and, generally, two trials were collected for each bird. 

156 Following bone strain data collection, animals were euthanized. After death, whole wings were 

157 removed from the individuals and stored frozen. Histological sections of the femora and 

158 tibiotarsi were prepared (see Main and Biewener, 2007 for details) and shipped with the frozen 

159 wings to Midwestern University.

160 Histological Preparation

161 Emu wings were thawed and feathers, skin, muscles, and tendons were reflected to 
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162 expose the skeletal elements. Both right and left wings were used based on availability. Using 

163 digital calipers, total length of each bone was measured and recorded. A 37-mm segment was 

164 removed using a Dremel tool from the mid-shaft region of the humerus, ulna, and radius. For two 

165 and four week old individuals whole elements were harvested due to their small size. Segments 

166 were marked to maintain orientation. Dissected bone segments were placed in 10% neutral 

167 buffered formalin for fixation, then dehydrated in a graded ethanol series (70%, 85%, 100%) 

168 under vacuum. Segments were cleared with a xylene-substitute (Histo-clear; National 

169 Diagnostics, Atlanta, Georgia, USA). The bone segments were then vacuum- infiltrated and 

170 embedded in glass vials using Osteo-Bed Plus Resin, a two-part methyl methacrylate 

171 (Polysciences Inc.). Vials were placed in a 32˚ C bead bath to fully harden. 

172 Once the resin hardened, vials were broken and two roughly 800-um transverse sections 

173 were cut using a diamond blade saw (Isomet 1000; Buehler, Lake Bluff, Illinois, USA). These 

174 sections were glued onto frosted glass slides using two-ton epoxy (Devcon, Milpitas, California, 

175 USA), keeping consistent spatial orientation. Slides were then ground to a thickness of 

176 100±10um using a graded scale of grit paper on a stand grinder (Metaserv 250; Buehler, Lake 

177 Bluff, Illinois, USA) and coverslipped with Permount (Fisher Scientific). The histological 

178 preparation was modified from An and Martin (2003) and closely followed Lee and Simons 

179 (2015). 

180 Image Collection

181 The undecalcified sections contain xylenol (orange) and calcein (green) fluorochromes 

182 that were incorporated into newly mineralizing bone at the time of injection (see above for 

183 injection schedule). These fluorochromes create stable long lasting tags (van Gaalen et al., 2010) 

184 and were examined under bright-field and fluorescent illumination with a motorized 
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185 epifluorescent microscope (IX73, Olympus). The xylenol (orange) and calcein (green) tags were 

186 revealed using the TRITC and FITC filter cubes, respectively, and a multichannel (red, green, 

187 bright-field) image of each section was generated with imaging software (cellSens, Olympus). 

188 Sufficient optical resolution (10X UPlanAPO ≈ 0.84 μm; 20X UPlan S-APO ≈ 0.45 μm) allowed 

189 the dual color-monochrome camera (DP80, Olympus) to capture high quality images (10X = 

190 1.02 µm/pixel; 20X = 0.51 µm/pixel). 

191 Data Analysis

192 Bright-field and fluorescent images were obtained from the wing and hindlimb elements 

193 (Figs. 1 and 2) and divided into equal octants from the estimated bone centroid. Four octants 

194 representing the cardinal anatomical positions (wing elements: cranial, caudal, dorsal, ventral; 

195 hindlimb elements: cranial, caudal, lateral, medial) were extracted. Using ImageJ, each extracted 

196 octant was then uncurved using the “Straighten” function. The purpose of straightening was to 

197 standardize the periosteal tangent line so that appropriate measurements could be made in 

198 classifying the orientation of the vascular canals (Lee and Simons, 2015). To ensure there was 

199 minimal deformation of the image during the straightening process, known test angles were 

200 placed upon the image and measured in relation to the periosteal surface after the straightening 

201 function had been applied. Only those images with an average deformation less than or equal to 

202 10° were accepted. 

203 Within each of the four octants, the calcein green and xylenol orange tags were outlined 

204 with two reference lines. The distance between reference lines was measured at 10 random 

205 points in each octant. Growth rate was measured by taking the mean distance between 

206 consecutive fluorescent tags divided by number of days between injections (Fig. 2).

207 Degree of laminarity (Laminarity Index, LI) for each octant was assessed in two distinct 
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208 sample areas. To address the growth hypothesis, laminarity was measured in the area between 

209 the fluorochrome reference lines in all four octants. To address the biomechanical hypothesis, 

210 laminarity was measured in four sample boxes (1.5 x 1.5 mm each) placed in the caudal bone 

211 cortex to represent the entire bone cortex (hindlimbs only). To measure laminarity, an ellipse was 

212 drawn in each primary vascular canal in the designated sample area of the straightened octant. 

213 The angle at which the ellipse sat in relation to the straightened periosteal surface was measured. 

214 We used the criteria set forth by de Margerie (2002) to classify the orientation of the vascular 

215 canals: (1) circular canals are oriented parallel (0° ± 22.5°) to the periosteal surface of the bone; 

216 (2) radial canals are orthogonal (90 ± 22.5°) to the periosteal surface; (3) longitudinal canals run 

217 parallel to the long axis of the bone and have ellipses with an aspect ratio of less than 3; (4) 

218 oblique canals are all other orientations. Only primary vascular canals were measured. Any 

219 secondary osteons in the sample area were excluded. Laminarity index (proportion of circular 

220 canals to the total number of canals) was calculated using the Wilson estimate to account for bias 

221 from small sample sizes (Lee and Simons, 2015). 

222 Statistical analyses were performed using R (R Development Team, 2017). Logistic 

223 regression was used because laminarity index is a proportion and may not be normally 

224 distributed; logistic regression relaxes the assumption that the data are normally distributed 

225 (Warton and Hui, 2011; Ourfalian, Ezell & Lee, 2016). To test the growth hypothesis, we 

226 performed logistic regression between laminarity indices of each bone and growth rate. To test 

227 for correlation between laminarity and shear strain, we focused on the data obtained from the 

228 caudal cortex in the femur and tibiotarsus. Average laminarity indices from the four sample 

229 boxes placed in the caudal octant of the hindlimb elements for each bird were logistically 

230 regressed against a mean for the caudally measured shear strains from two experimental trials, 
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231 previously collected by Main and Biewener (2007).  

232

233 RESULTS

234 Measured growth rates ranged from 1.33 um/day (radius of 48 week old individual) to 

235 162.62 um/day (femur of 4.6 week old individual) (Table 2). Negligible growth was recorded in 

236 the eight-year-old individuals. Laminarity indices range from 0.02 to 0.58 as measured for the 

237 growth hypothesis (Table 2) and 0.03 to 0.79 as measured for the biomechanical hypothesis 

238 (Table 3). 

239 Logistic regression between LI and growth rate (GR) showed a significant negative 

240 relationship in the femur (p<0.001) and tibiotarsus (p<0.001) (Fig. 3, Table 2). No significant 

241 relationship was found between laminarity and growth rate in wing elements (Fig. 4, humerus: 

242 p=0.08, ulna: p=0.29, radius: p=0.52).

243 Logistic regression between caudal octant LI and shear strain showed a significant 

244 positive relationship in both the femur (p < 0.001) and tibiotarsus (p<0.001) (Fig. 5, Table 3).

245

246 DISCUSSION

247 Does bone laminarity reflect fast growth?

248 The fastest growth rate in all elements was found in the 4.6-week old individual (Table 

249 2). As expected, hindlimb elements had higher growth rates than forelimb elements, reaching a 

250 maximum of 163 um/day in the femur and 99 um/day in the tibiotarsus.  The humerus grew the 

251 fastest of the wing elements, reaching a maximum rate of 25 um/day measured in the 2.3 and 4.6 

252 week old individual. Birds older than 8 weeks experienced a drastic decrease in bone growth rate 

253 in both hindlimb and forelimb elements. Previous analysis of emu somatic growth rate showed 
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254 the maximum velocity of growth (inflection point) to be about 15-17 weeks of age 

255 (Goonewardene et al., 2003). Our results suggest maximum bone growth occurs much earlier 

256 (about 5 weeks) and is not an accurate proxy for the somatic growth inflection.

257 There was a significant negative relationship between bone laminarity and growth rate in 

258 both hindlimb elements (Fig. 3). In the hindlimb, the lowest laminarity was found in the 

259 youngest birds, where the growth rate was the fastest. This is consistent with findings in the king 

260 penguin that also reported laminar bone to be associated with slower growth rates in four limb 

261 bones: femur, tibiotarsus, humerus, and radius (de Margerie et al., 2004). Notably, our results 

262 differ from those previously reported for young emu bones in which laminar and reticular bone 

263 was found in the fastest growing hindlimb bones (Castanet et al., 2000). In particular, Castanet et 

264 al. (2000) found laminar bone to be most abundant in the femur and tibiotarsus of emu less than 

265 2 months of age, which corresponds to the youngest individuals in our study. The emus included 

266 in our study grew in mass about 3 times faster than the emus in the Castanet et al. (2000) study. 

267 If laminarity is associated with slower growth rates, the youngest emus we studied may have 

268 been growing too fast for laminar bone to form. In contrast, Castanet et al. (2000) found reticular 

269 bone to be more abundant in the humerus. Our study did not specifically address reticular bone, 

270 but by taking the proportion of oblique vascular canals (a “reticular index”), we found the 

271 amount of reticular bone in the fastest growing individual to be low in the hindlimb elements 

272 (femur and tibiotarsus: 0.17), and moderate to high in the wing elements (humerus: 0.62, ulna: 

273 0.58, radius: 0.45). This result is, at least, consistent with the previous study. The data analysis in 

274 the earlier emu study (Castanet et al., 2000) was conducted before a more rigorous method for 

275 measuring vascular canals was developed (de Margerie, 2002), which may also affect differences 

276 seen between the two separate emu populations. Regardless, the results of the direct laminarity 
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277 indices and growth rates measured here do not support the hypothesis that high laminarity 

278 reflects rapid growth in the emu.

279 Does bone laminarity reflect biomechanical load?

280 Within the caudal octants of the hindlimb elements, we found a positive correlation 

281 between laminarity and shear strain (Fig. 5). This result supports the hypothesis that laminar 

282 bone may reflect a specific type of biomechanical load - torsion. The amount of shear strain 

283 occurring at the midshaft of the emu femur and tibiotarsus has been found to significantly 

284 increase with age by 2-3 times, whereas body mass increases by 46 times. Laminar bone, in 

285 combination with increased bone mineralization and decreased bone curvature during growth, 

286 may help mitigate shear strains despite the large increase in mass (Main and Biewener, 2007). 

287 Our results support the hypothesis that laminar bone is a feature of torsionally loaded 

288 bone and strengthens the premise that bone histology can be used to estimate the degree of shear 

289 strain experienced by bones during different types of locomotion, such as flight modes (de 

290 Margerie et al., 2005; Simons and O’Connor, 2012). Although strain gauge technology is 

291 improving, shear strains are not easily measured for some types of locomotion, especially flight. 

292 In addition, this correlation between laminarity and shear strain could help researchers better 

293 understand locomotive patterns of extinct animals that are closely related to Aves, such as other 

294 extinct maniraptorans (the clade of dinosaur that includes birds). Not all members of the 

295 maniraptoran clade were flighted animals (Makovicky and Zanno, 2011), but as one moves up 

296 the phylogeny from non-flighted to flighted animals we may expect to see an increase in 

297 laminarity within at least the humerus an adaptation to the larger expected torsional loads 

298 experienced during active flight. Indeed, the humerus of Archaeopteryx appears to have 

299 predominately longitudinal canals despite having cross-sectional geometry similar to birds that 
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300 use active flapping (Voeten et al., 2018), but further up the paravian tree, Confuciusornis shows 

301 laminar-reticular bone in the humerus (de Ricqles et al. 2003).

302 However, this histological proxy for torsional load should be used with caution. Previous 

303 studies have shown that when wings have the same general shape, laminarity in wing bones is 

304 similar despite differences in primary flight mode (Simons and O’Connor, 2012; Marelli and 

305 Simons, 2014).  In addition, preferred flight mode may only have subtle effects on overall 

306 loading of the bones, with the dominant loads being the high strains present during take-off 

307 (Biewener and Dial, 1995). There is also at least one example of a bone loaded in predominantly 

308 torsion that does not exhibit laminar bone. The humeri of bats show an absence of laminar bone 

309 despite being loaded in torsion during flapping flight, presumably due to the slow somatic 

310 growth rates of bats (Swartz, Bennet & Carrier, 1992; Lee and Simons, 2015). Additionally, 

311 laminar bone may be present in the absence of dominant torsional loads. The radius of the goat 

312 qualitatively appears laminar during growth and early adulthood despite experiencing 

313 predominantly bending loads (Main, 2007). 

314 The mean laminarity across all ages of emu was statistically larger for the femur (0.41) 

315 than the tibiotarsus (0.28, p=0.007). Generally, the femur has also been shown to experience a 

316 larger magnitude of shear strain than the tibiotarsus (Main and Biewener, 2007). Both elements 

317 exhibited a large degree of variation, with the laminarity indices of the femur ranging from 0.02 - 

318 0.56 and the tibiotarsus from 0.02 - 0.58 through ontogeny (Table 2). Interestingly, in the 

319 tibiotarsus, a wide range of variation in laminarity can be seen for similar shear strain values 

320 (Fig. 5). Laminarity measured on a histological section is a 2-dimensional representation of a 3-

321 dimensional meshwork of vascular canals in cortical bone. This research is limited by the 

322 assumption that one or two closely placed mid-shaft histological sections are an accurate 
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323 representation of vascular canal structure. Future studies should incorporate new methods, such 

324 as microCT (e.g., Pratt and Cooper, 2017), to assess how well laminarity measured on 

325 histological sections represents actual biological structure.

326 Although there is no direct biomechanical data for the forelimb elements of these birds, 

327 the wing elements presumably experience minimal loading. The emu wing is extremely reduced 

328 in size, even when compared to other ratites, and no wing function has been observed except to 

329 be raised for thermoregulation (del Hoyo et al., 1992). Wing muscles of emu are primarily slow 

330 acting tonic muscle fibers that may not allow much wing movement (Maxwell and Larsson, 

331 2007), which suggests the underlying wing elements would experience minimal biomechanical 

332 loading. Interestingly, despite the assumption that the emu wing is under minimal load, a 

333 moderate to high degree of laminarity was found in at least the humerus and ulna (Table 2). 

334 Within the paleognaths, it has been hypothesized that at least three independent flight 

335 losses have occurred, with only one order (the tinamous) still retaining the ability (Harshman et 

336 al., 2008; Mitchell et al., 2014). The moderate/high wing bone laminarity may be a feature of the 

337 flighted common ancestor of paleognaths that is retained in the flightless descendants. Indeed, 

338 significant phylogenetic signal has been found in some osteohistological features in a sample of 

339 paleognaths (Legendre et al., 2014). Future studies should investigate the histological and in vivo 

340 loading of the flighted relatives of emus to better understand the potential influence of phylogeny 

341 on bone laminarity.

342

343 CONCLUSIONS

344 For the emu skeleton, torsional loading appears to have a greater impact on vascular 

345 canal orientation than growth rate. The increase of laminarity with increasing shear strain 
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346 suggests that laminar bone may be an adaptation to resist torsional loads in the femur and 

347 tibiotarsus. For the humerus and ulna, moderate to high laminarity may have been inherited from 

348 a flighted ancestor. Future studies should investigate laminarity in other palaeognathous birds to 

349 better understand the interplay among phylogeny, ontogeny, and torsional loading on bone 

350 laminarity. Other future work should focus on the experimental manipulation of biomechanical 

351 loads to observe the effects on vascular canal orientation in limb bones. This could be done using 

352 a similar study design, but with the addition of individuals that have been weighted (to increase 

353 normal biomechanical loads) and/or undergone limb immobilization (to reduce normal 

354 biomechanical loads) to better understand to what extent the amount of torsional load has on the 

355 development of limb bone laminarity.   It is also important that variation found between different 

356 populations be addressed and studied further. Emu body mass growth rates vary among 

357 populations (e.g. Goonewardene et al., 2003), but it is unknown if bone histology also varies 

358 with geography. 

359
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Figure 1

Representative histological sections of emu femora, tibiotarsi, and humeri from a range

of ages.

2.3 weeks (A, B, C), 8.1 weeks (D, E), 12 weeks (F), 16 weeks (G, H, I), 60 weeks (L), 416

weeks (J, K). Femora (A, D, G, J), tibiotarsus (B, E, H, K) and humeri (C, F, I, L). Scale bars

equal 1000 µm for femora and tibiotarsi, and 250 µm for humeri. Bright field images of non-

straightened caudal or medial octants (10x magnification).
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Figure 2

Histology of fluorescent-labelled bone.

On fluorescent images (A), the sample area was defined by outlining the periosteal extent of

the xylenol (appears red) and calcein (green/yellow) tags. Growth rate was measured by

taking the mean distance between consecutive fluorescent tags (white arrow) divided by

number of days between injections. On brightfield images taken under the same

magnification (B), laminarity was measured in the corresponding sample area.
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Figure 3(on next page)

Laminarity of the femur and tibiotarsus (tbt) plotted against growth rate.

Dark green and blue lines represent mean plot lines, shaded areas reflect 95% confidence

interval bands. Logistic regression shows significant negative relationship (femur, p<0.001;

tbt, p < 0.001; pseudo R2 = 0.78). As growth rate increases, bone laminarity decreases.

These results do not support the hypothesis that high laminarity is a result of fast growth rate

in the emu hindlimb.
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Figure 4(on next page)

Laminarity of the humerus, ulna, and radius plotted against growth rate.

Dark green, blue, and red lines represent mean plot lines. Logistic regression shows no

significant relationship between laminarity and growth rate in wing elements (humerus:

p=0.08, ulna: p=0.29, radius: p=0.52). These results do not support the hypothesis that high

laminarity is a result of fast growth rate in the emu forelimb.
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Figure 5(on next page)

Bone laminarity from the caudal octant of femur and tibiotarsus (tbt) plotted against

shear strains measured at the caudal periosteal surface.

Dark green and blue lines represent mean plot lines, shaded areas reflect 95% confidence

interval bands. Logistic regression shows significant positive relationship (femur: p<0.001;

tbt: p < 0.001; pseudo R2 = 0.60). As shear strain increases, bone laminarity increases. This

result supports the hypothesis that high laminarity is a feature of bones experiencing greater

shear strains.
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Table 1(on next page)

Emu identification number, age at sacrifice, and mass.
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1

Specimen
Age 

(weeks)

Mass 

(kg)

15 2.3 0.74

1c 2.4 0.94

17 4.6 1.53

14b 8.1 4.73

16 12 6.85

2a 15.9 11.13

21 48 28.9

23 60.1 29.4

27 416 50.9

28 416 51.7

2

3

4
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Table 2(on next page)

Growth rate and bone laminarity for specimens analyzed to address the growth

hypothesis.

Laminarity Index (LI, calculated using the Wilson’s estimate) was measured in a sample area

outlined by the periosteal extent of two fluorescent tags. No growth was present in adult

specimens #27 and 28. n/a indicates a specimen with no recorded circular canals.
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1

Specimen
Age 

(weeks)
Element

Growth 

Rate 

(um/day)

 LI 

Femur 130.16 0.05

Tibiotarsus 62.31 0.03

Humerus 25.44 0.24

Ulna 6.75 0.27

15 2.3

Radius 15.22 0.20

Femur 73.3 0.15

Tibiotarsus 53.82 0.13

Humerus 16.22 0.21

Ulna 11.57 0.29

1c 2.4

Radius 9.49 0.25

Femur 162.62 0.02

Tibiotarsus 99.11 0.02

Humerus 25.15 0.31

Ulna 11.54 0.19

17 4.6

Radius 9.36 0.23

Femur 101.14 0.14

Tibiotarsus 68.46 0.14

Humerus 23.83 0.34

Ulna 14.4 0.24

14b 8.1

Radius 14.14 0.21

Femur 38.25 0.48

Tibiotarsus 41.48 0.19

Humerus 12.17 0.57

Ulna 11.77 0.34

16 12

Radius 8.65 0.31

Femur 29.42 0.56

Tibiotarsus 29.2 0.35

Humerus 11.07 0.46

Ulna 3.36 0.38

2a 15.9

Radius 2.37 0.29

Femur 6.43 0.30

Tibiotarsus 4.94 0.39

Humerus 14.55 0.23

Ulna 2.18 0.44

21 48

Radius 1.33 0.33

PeerJ reviewing PDF | (2018:05:27991:0:1:NEW 7 May 2018)

Manuscript to be reviewed



Femur 5.9 0.51

Tibiotarsus 3.8 0.58

Humerus 1.7 0.25

Ulna 1.62 0.33

23 60.1

Radius 1.67 0.40

2
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Table 3(on next page)

Bone laminarity and caudal shear strain for specimens analyzed to address the

biomechanical hypothesis.

Shear strain data was previously collected by Main and Biewener (2007). Laminarity Index

(LI, calculated using the Wilson’s estimate) was measured in four representative sample

boxes (1.5 x 1.5 mm each) placed throughout the cortex on each caudal octant.

PeerJ reviewing PDF | (2018:05:27991:0:1:NEW 7 May 2018)

Manuscript to be reviewed



1

Specimen
Age 

(weeks)
Element  LI

Caudal Shear 

Strain 

(microstrain)

Femur 0.13 N/A15 2.3

Tibiotarsus 0.10 N/A

Femur 0.22 -3081c 2.4

Tibiotarsus 0.12 N/A

Femur 0.03 -150317 4.6

Tibiotarsus 0.04 -1397

Femur 0.14 -99714b 8.1

Tibiotarsus 0.09 -261

Femur 0.45 -149116 12

Tibiotarsus 0.18 -947

Femur 0.59 -16202a 15.9

Tibiotarsus 0.31 -293

Femur 0.66 -165721 48

Tibiotarsus 0.42 -1318

Femur 0.79 -228323 60.1

Tibiotarsus 0.55 N/A

Femur 0.53 -131927 416

Tibiotarsus 0.48 -1537

Femur 0.59 -185028 416

Tibiotarsus 0.57 -2310

2

3
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