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ABSTRACT
Zooplankton exported from lentic systems provision lotic systems with easily
captured, consumed, and assimilated prey items. Previous studies have demonstrated
that the community composition of zooplankton exports (CCZE) vary over time,
which introduces temporal differences in lotic resource availability (zooplankton
prey) in downstream habitats. In the study presented here, we monitored variation in
CCZE from a polymictic reservoir outfall in response to physical–chemical and
atmospheric conditions bi-hourly over three different 24-h periods. Community
composition of zooplankton export varied over the course of the day, and exports
were most closely associated with wind directionality. Future studies of temporal
variation in CCZE should incorporate wind conditions, especially in shallow systems
where holomixis occurs frequently. Polymictic reservoirs are becoming increasingly
common as the global pace of small dam construction quickens, making both the
identification of factors influencing CCZE and the impact of zooplankton exports on
local biodiversity and ecosystem function increasingly important to understand.
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INTRODUCTION
Zooplankton are exported from lentic to lotic systems by water currents and the energy
contained in their tissues can alter downstream resource availability (Akopian, Garnier &
Pourriot, 1999), in turn altering ecosystem functions and the community structure of
lotic consumers (Richardson, 1984; Richardson & Mackay, 1991; Brunke, 2004; Doi et al.,
2008). Lotic filter-feeders can utilize a wide range of zooplankton types (Wotton, 1994),
suggesting that the community composition of zooplankton exports (CCZE) is less
important to lotic communities than abundance. This is a facile argument because
zooplankton differ in the energy their bodies contain; larger zooplankters contain more
energy (Walks & Cyr, 2004) and are more easily detected by visual predators (Brooks &
Dodson, 1965). In fact, larger zooplankton are both preferentially (Chang et al., 2008;
Czerniawski, Sługocki & Kowalska-Góralska, 2016) and rapidly (Czerniawski & Domagała,
2013) consumed downstream of lentic outlets, indicating that CCZE is important to the
ecology of downstream consumers.
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Zooplankton exports vary temporally at both seasonal (Portinho, Perbiche-Neves &
Nogueira, 2016) and daily scales (Czerniawski, Sługocki & Kowalska-Góralska, 2016).
Seasonal change in CCZE is likely to be the result of well-known patterns of seasonal
succession in the plankton, but the mechanisms driving daily temporal variation in CCZE
have not been fully explored. Zooplankton possess a number of behavioral adaptations
including current avoidance (Fleminger & Clutter, 1965; Singarajah, 1969; Singarajah, 1975),
shelter-seeking (horizontal migration; Burks et al., 2002; Walks & Cyr, 2004), and diel
vertical migration (reviewed by Cohen & Forward (2009)) that could influence CCZE on a
daily basis and all benefit zooplankters by increasing residence time in the lentic
environment (Wicklum, 1999; Hülsmann & Wagner, 2007).

Humans are rapidly building new reservoirs in stream channels globally (Lehner et al.,
2011), increasing the number of lotic/lentic transitions, which makes both the identification
of factors influencing zooplankton exports and the impact of those exports on local
biodiversity and ecosystem function increasingly important to understand. For zooplankton
to be exported from lentic to lotic systems, adaptive behaviors need to be overcome, and
an obvious mechanism by which that might occur is mixing. Mixing in lentic systems is
usually associated with wind disturbance and is a function of the speed of the wind, strength/
stability of vertical density gradients, depth, and fetch (Kalff, 2002). Mixing may also
occur due to hydrological inputs that can vary from whole-system turnover (washout or
“flushing”; Kalff, 2002) to isolated density interflows along the thalweg (Ford, 1990).
Regardless of the mixing vector, mixing can cause zooplankton to be redistributed
throughout the epilimnion (Hart, 1978), likely modifying zooplankton exports downstream.

In the study presented here, we monitored variation in CCZE bi-hourly over
24-h periods at a single location immediately below a reservoir outfall in response to
atmospheric and physical–chemical conditions. We hypothesized that daily variation in
CCZE would be structured by wind conditions.

METHODS
Study site
Palatine Lake (39.541747�N, −75.169077�W; Fig. 1; Table 1) is a small polymictic reservoir
located in Pittsgrove Township, Salem County, New Jersey (USA) that is owned and
operated by the Palatine Lake Village Homeowners Association (PLVHA). The PLVHA
gave us permission to use their facilities for this study and to sample the lake/outfall.
Palatine Lake is fed primarily by Muddy Run and Palatine Branch, which together drain a
watershed composed mostly of agricultural lands (53.0%) and wetlands (30.6%), but
there are also relatively large areas of forest (7.2%) and urban (10.8%) habitat. Muddy
Run continues downstream of Palatine Lake after passing through one of two outfalls on
the dam, both of which are in continuous (concurrent) operation. All samples in the
study presented here were taken from one site located in the confluence of the two outfalls
(Fig. 1). The confluence pool has a natural bottom and edge that is pool-like, but the
reservoir outfalls induce a strong mid-stream current that is run-like. Under base-flow
conditions at the sampling location, the confluence has a width of 23.9 m, mean
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Figure 1 Map of Palatine Lake and the sampling location at the outfall confluence. There are two
outfalls (short black lines) and a road (long black line) on the dam. Palatine Lake is fed primarily by
Muddy Run (MR) and Palatine Branch (PB). An unnamed tributary (UT) drains a small watershed to the
East of the lake. Full-size DOI: 10.7717/peerj.7611/fig-1

Table 1 Palatine Lake characteristics.

Lake metric Value

Watershed area (WA) 65.01 km2

Lake area (LA) 0.31 km2

WA:LA ratio 210:1

Volume 305,981 m3

Mean depth 1 m

Maximum depth 1.8 m

Length of shoreline 6.3 km

Maximum fetch 1,097 m

Operational fetch 305 m

Ruhl et al. (2019), PeerJ, DOI 10.7717/peerj.7611 3/14

http://dx.doi.org/10.7717/peerj.7611/fig-1
http://dx.doi.org/10.7717/peerj.7611
https://peerj.com/


cross-sectional depth of 100.1 cm, and maximum cross-sectional depth of 158.5 cm.
The maximum depth for the entire confluence is 214.0 cm.

Field methods
Thirteen bi-hourly samples were collected during each of three 24-h periods: 12–13 June,
10–11 July, and 8–9 August 2017. Each bi-hourly sample is an integrated sample of
five discrete casts of a bucket into the middle of the outfall stream (into the current) such
that the benthos was not disturbed. The discrete casts were all collected within 5 min
of each other and filtered through a 63-micron Nitex mesh. The total volume of water
filtered for each bi-hourly sample was 38 liters. Samples were preserved with a stepped
preparation of ~50% isopropyl alcohol in the field followed by further concentration and
preservation in the lab to ~90%.

For each bi-hourly zooplankton sample, corresponding environmental data were
collected either on-site or from a nearby environmental monitoring station (more details
on specific sampling devices are given in Table 2). On-site atmospheric data were collected
using a handheld anemometer measuring maximum wind speed (Variable: Maximum
Gust) and air temperature. A variety of handheld meters were used to collect in-situ

Table 2 Environmental variables used to explain variation in CCZE.

Environmental variable Data collection notes Fitted units Device/Sensor

Dissolved oxygen (DO)a In-situ mg/L YSI 55

pHa In-situ log H+ YSI Ecosense pH100a

Conductivitya Ex-situ (+20 min) uS/cm Eureka Manta 1

Total dissolved solids
(TDS)a

Ex-situ (+20 min) mg/L Eureka Manta 1

Turbiditya Ex-situ (+20 min) NTU Oakton T100

Water temperaturea In-situ C YSI Ecosense pH100a

Air temperaturea Unshaded temperature C Origlam Handheld Anemometer

Maximum gusta 3-min max m/sec Origlam Handheld Anemometer

Mean precipitationb 5-min mean Mm Texas Electronics TR-525I-HT

Mean solar radiationb 5-min mean W/m2 Apogee SP110 Pyranometer

Total solar radiationb 5-min sum W/m2 Apogee SP110 Pyranometer

Mean temperatureb 5-min mean C Vaisala HMP45C

Count wind directionsb 5-min max # bearings RM Young Company 05103

Mean wind directionalityb 5-min mean mean #
bearings

RM Young Company 05103

Maximum wind speedb 5-min maximum m/sec RM Young Company 05103

Wind mean speedb 5-min mean m/sec RM Young Company 05103

Mean dischargec Daily ft3/sec USGS Flood Gage

Maximum dischargec Daily ft3/sec USGS Flood Gage

Notes:
a Measurements taken on-site at Palatine Lake concurrent with sampling.
b Measurements take off-site at weather station operated by Rutgers University (see text) 3.28 km SW of Palatine Lake.
These variables were summarized at a variety of time lags before being fitted against the community ordinations. Time
lags were 30 min concurrent with sampling and 30, 60, and 120 min prior to sampling.

c Measurements taken off-site at stream station operated by USGS 9.4 km SE of Palatine Lake. These variables were
summarized for the week leading up to sampling.
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physical–chemical water quality data including dissolved oxygen (DO), water temperature,
and pH. Conductivity, total dissolved solids, and turbidity were measured ex-situ within
20 min of sample collection.

Off-site weather data were obtained from a weather station located 3.28 km to the southwest
(39.524351�N, −75.200927�W) of our sampling location; the weather station is operated by
the Rutgers University Agricultural Extension (Upper Deerfield, NJ Mesonet Station;
https://www.njweather.org/station/284). The weather station variables we used were
precipitation, total solar radiation, mean solar radiation, wind speed, and wind direction
(Table 2). Numerical weather station data were collected at 5-min intervals, binned at a
variety of time-periods relative to when on-site zooplankton sampling occurred (30 min
concurrent with sampling and at 30, 60, and 120min leading up to zooplankton sampling), and
summarized (maximum, mean, or sum). Binning of data at a variety of time lags was done to
account for possible discontinuity in timing between environmental conditions at the weather
station and the response of zooplankton exports to changing conditions.

Wind direction data (categorical headings) obtained from the weather station were
reported as a single direction (1 of 16 possible directions) for a 5-min period (a 5-min mean).
These categorical wind directions were transformed to measures of variability in the
direction of the wind (directionality) by expressing the data as (1) a count of how
many different wind directions were observed prior to sampling (Maximum = 16; Variable:
Count Wind Directions, Table 2) and (2) as a count of how many different wind directions
were observed prior to sampling divided by the number of observations (Variable:
Mean Wind Directionality, Table 2). The number of observations (5-min means) varied by
the time period being considered (binning by 30, 60, or 120 min). For both wind
directionality variables, higher values indicate winds blowing from an inconsistent direction
whereas lower values indicate the wind is blowing from a consistent direction.

Hydrological data were collected from a USGS stream gauge in an adjacent watershed
9.4 km to the southeast (39.495750�N, −75.076496�W) of our sampling location;
these data include mean and maximum daily discharge (given as ft3/second and fitted
as m3/second) for the week (7 days) leading up to sampling.

Lab methods
Field-preserved samples were concentrated using a 63-micron Nitex mesh and
preserved at a final concentration of ~90% isopropyl alcohol. The water volume filtered
(38 L) and the final concentrated sample were standardized across all samples (n = 39;
13 bi-hourly samples per 24-h period) to allow for comparisons of abundance between
samples. Zooplankton were identified according to Haney (2019) under 40× magnification
using a one mL Sedgwick-Rafter counting chamber that was loaded from a well-mixed
sample (McCauley, 1984). For samples with low abundance, the sub-sample was drawn
entirely from the sample (one mL of mixed sample directly into the counting chamber).
For samples with high abundance, the sub-sample was diluted in the counting chamber
(e.g. 1:1 = 0.5 mL sub-sample + 0.5 mL isopropyl alcohol). For each sample, at least six
sub-samples were counted. Dilutions of 1:1 and 1:3 were typical dilutions (maximum
dilution 1:20 for one sample). In the final analysis density was standardized to individuals/liter.
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Zooplankton were identified to the following taxonomic groups: copepod nauplii
(Naup), adult copepods and copepodites (Cop), Bosmina (Bos; a cladoceran genus),
Chydorids (Chy; a cladoceran family), other cladocerans (Clad), rotifers (Rot), midges
(Midge; Chaoborus, a genus of planktivorous midge larvae that are members of the
zooplankton), and ostracod (Ostra). These taxonomic groups were chosen a priori based
on a combination of factors including confidence of taxonomic identification at 40�
magnification, minimizing the undue influence of rare species on ordinations, and on
known behavioral/ecological responses to environmental conditions.

Statistical methods
The role of environmental variables in structuring CCZE was explored via ordination of
the export community (indirect gradient analysis approach; non-metric multi-dimensional
scaling (NMDS); metaMDS function in the Vegan package of R; Bray–Curtis
dissimilarity). For each of the three 24-h periods, temporal shifts in CCZE were
visualized by plotting bi-hourly samples with an NMDS ordination and then vector-fitting
environmental variables to the underlying ordination to independently assess their
predictive power for CCZE. In these analyses (for each 24-h period), space is held as constant
(the same location is repeatedly sampled) and time is assumed to vary (points in the
ordination diverge because of differences in time). Environmental variables (Table 2) were fit
to the NMDS ordination using the envfit function in the Vegan package of R. Some turbidity
values during 10–11 July as well as conductivity and TDS values during 8–9 August
were not useable, so these variables were not fitted to the corresponding 24-h ordinations
or to the combined seasonal (comparing 24-h periods) ordination detailed below. The
hydrological data were not fit to NMDS ordinations because of the potential for
discontinuity between measurements from a different watershed at nearly 10 km distance
from the location where CCZE was being assessed. Likewise, species vectors are not
displayed in the NMDS ordinations because it is difficult to interpret species vectors
relative to environmental vectors in an unconstrained ordination.

Seasonal (between sampling period) differences in the CCZE were explored for each
taxonomic group via Kruskal–Wallis test by ranks with Steel-Dwass pairwise tests (JMP 13,
SAS Institute) and a NMDS ordination using all bi-hourly samples (all three 24-h sampling
periods combined; R). This ordination contrasts samples taken at two different time
scales (bi-hourly and monthly across 24-h sampling periods) and has utility for assessing
differences in CCZE between months (factor-fit). The fit of environmental variables to this
ordination was assessed conservatively using a = 0.001 instead of 0.05 to avoid a type 1
error associated with using data collected at multiple scales in the same ordination.
Comparison of hydrological data between 24-h sampling events (months) was conducted
using Kruskal–Wallis test by ranks and Steel-Dwass pairwise tests, a = 0.05.

RESULTS
Fit of environmental variables to CCZE
Non-metric multi-dimensional scaling ordinations were plotted in two dimensions
(stress: June = 0.112; July = 0.106; August = 0.119) and environmental explanatory
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variables were fit to the underlying ordination (see Appendix Table A1, for fitting
statistics and p-values for all environmental variables). No light variables were significant
predictors of CCZE during any 24-h period (June, July, or August). Mean wind
directionality measured concurrently with on-site zooplankton sampling was correlated
with the zooplankton community ordinations in both June (Fig. 2A, r2 = 0.535, p = 0.023)
and July (Fig. 2B, r2 = 0.510, p = 0.031). Additional wind directionality variables were
significantly correlated with the June ordination (Fig. 2A; 60-min mean wind directionality,
r2 = 0.496, p = 0.031; 120-min mean wind directionality, r2 = 0.574, p = 0.012) and July
ordination (Fig. 2B; 30-min count wind directions, r2 = 0.476, p = 0.039; 120-min count wind
directions, r2 = 0.515, p = 0.029). No measured environmental variables were significant
predictors of CCZE in August.

Differences in zooplankton exports between 24-h periods (months)
Zooplankton density (all taxa of zooplankton combined) was highest in July
(significantly higher in July than in June, p = 0.008), but was highly variable between
samples and between 24-h sampling periods (months; Tables 3 and 4). Naupliar density
increased significantly across months while midge density decreased. Peak density for
most groups occurred in July; some groups (Bosmina and cladoceran) were

Figure 2 NMDS bi-plots of zooplankton export. NMDS bi-plots of zooplankton exports during
12–13 June (A) and 10–11 July (B) with significant environmental variables fitted to the ordination as
vectors. Significant environmental vectors were mean wind directionality measured concurrently with
zooplankton sampling (a) and during the 60 (b) and 120 (c) min leading up to zooplankton sampling as
well as count wind directions in the 30 (d) and 120 (e) min leading up to zooplankton sampling. Fitting
statistics are given in Appendix 1 and the text. Full-size DOI: 10.7717/peerj.7611/fig-2
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significantly more common in July samples than in either June or August samples
(p < 0.001). Copepods significantly increased in density from June to July but, while
density was much lower in August than in July, this decrease was only marginally
significant (p = 0.079). Midge and ostracod density decreased significantly between the
July and August sampling periods, while rotifer and chydorid groups did not differ
between months.

For the seasonal (all months combined) NMDS ordination (stress = 0.165), CCZE
varied significantly between months (Appendix 1 and Fig. 3; months, r2 = 0.652, p = 0.001).
A few environmental variables were significant predictors of the NMDS ordination at
the alpha = 0.05 level, but only physical–chemical parameters were significant at an
adjusted alpha of 0.001 (DO, r2 = 0.320, p < 0.001; pH, r2 = 0.397, p < 0.001; water temperature,

Table 3 Mean bi-hourly abundance (density; ind./l lake water) and SD of zooplankton during each
24-h sampling period.

Group June July August

Mean SD Mean SD Mean SD

Nauplii 4.751 2.465 36.984 11.242 49.644 20.107

Copepod 1.899 2.757 15.505 18.229 2.560 2.829

Bosmina 0.526 0.820 89.082 46.809 0.213 0.554

Chydorid 0.434 0.667 13.513 2.346 0.142 0.347

Cladoceran 0.341 1.018 6.935 7.315 0 0

Rotifer 175.895 133.257 365.005 547.424 307.110 361.392

Midge 0.605 0.605 0.356 0.601 0 0

Ostracod 4.296 4.794 6.259 5.354 1.849 1.645

All groups 188.747 134.075 521.476 583.128 361.520 372.404

Note:
“All groups” give the mean abundance (density) and SD of zooplankters in bi-hourly samples from all taxonomic groups
combined.

Table 4 Results of a non-parametric multiple comparisons analysis (Steel-Dwass) of exported
zooplankton density (bi-hourly abundance) for each taxonomic group between 24-h periods
(months).

Group June–July June–August July–August

Z p Z p Z p

Nauplii 4.311 <0.001 4.312 <0.001 1.898 0.139

Copepod 2.532 0.031 1.178 0.466 2.158 0.079

Bosmina 4.371 <0.001 1.248 0.425 4.479 <0.001

Chydorid 0.088 0.996 1.146 0.486 1.476 0.303

Cladoceran 3.871 <0.001 1.757 0.184 4.329 <0.001

Rotifer 1.692 0.208 1.487 0.297 0.667 0.783

Midge 1.153 0.482 2.086 0.093 3.234 0.004

Ostracod 1.361 0.361 1.116 0.504 2.589 0.026

All groups 2.974 0.008 2.051 0.100 2.154 0.079

Note:
Z is reported as the absolute value. Significant differences are indicated in bold. “All groups” give the mean abundance
(density) and SD of zooplankters in bi-hourly samples from all taxonomic groups combined.
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r2 = 0.356, p < 0.001). Hydrological conditions were significantly different between monthly
24-h sampling events (Fig. 4; Kruskal–Wallis comparing 24-h sampling period between
months, p < 0.001; absolute value of Z in Steel-Dwass test; June–July: Z = 3.066, p = 0.006;
June–August: Z = 2.814, p = 0.014; July–August: Z = 3.06998, p = 0.006).

Figure 3 NMDS bi-plot for all three 24-h sampling periods (months) combined. Variables from
Table 2 with a significant fit (p < 0.001; Appendix 1) are shown. Ellipses represent 95% confidence of
factor (month) centroids. Samples from June are indicated with squares, July with triangles, and August
with circles. Full-size DOI: 10.7717/peerj.7611/fig-3

Figure 4 Mean reservoir discharge. Mean reservoir discharge leading up to sampling was significantly
different between all months (Kruskal–Wallis: p < 0.001). Full-size DOI: 10.7717/peerj.7611/fig-4
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DISCUSSION
Our results indicate that wind variables were significantly correlated with the underlying
community structure in the NMDS ordinations (Fig. 2), suggesting CCZE may be
structured by wind-generated mixing in a shallow polymictic reservoir. To the best of our
knowledge, this is the first time that CCZE has been linked to wind conditions. If wind
disturbance modulates CCZE, then the susceptibility of a given lentic system to wind
mixing likely influences lotic resource availability and introduces variation in lotic
ecosystem function downstream of lentic outlets/outfalls.

Wind speed may be less important to governing CCZE than variation in the direction of
the wind. Mean wind directionality measured concurrently with zooplankton sampling
was significantly correlated to the underlying NMDS ordinations in both June and
July, suggesting that zooplankton exports are structured along a gradient from straight-line
to swirling winds. When wind directionality is low, the wind is blowing consistently in the
same direction, which causes mixing forces to be reinforced to depth (Kalff, 2002).
When wind directionality is high, the wind is swirling and blowing from an inconsistent
direction, which may cause mixing forces to be canceled out, and mixing may not occur
to depth.

Determining which wind variable(s) was most responsible for influencing community
composition is not straightforward and requires additional study. While the distance
between our sampling site and the weather station is not excessive and there are no major
topographic features (e.g. hills) to distort wind patterns in our study area, wind conditions
can vary greatly between nearby locations (e.g. Mahrt, 2010), so future studies would
benefit from an even closer pairing of zooplankton export data with on-site weather data
and instantaneous compass bearings.

Community composition of zooplankton export was significantly different between
the three different time periods of this study and physical–chemical variables (pH, water
temperature, and DO) were very strong explainers of those monthly differences as
evidenced by the consistency between ellipses and vectors in the combined NMDS analysis
(Fig. 3). Environmental variables cannot be used as response variables in this ordination
due to a disjunct in temporal distance between samples (bi-hourly or monthly), but
they can be used to differentiate between monthly classes of samples. August stands out as
different because some taxa that were present in June and July were no longer present in
exports (Table 3; other cladocerans and midges). Seasonal changes in the zooplankton
community are likely a natural feature of this reservoir (e.g. Sommer et al., 1986), but the
lake-wide application of herbicide to control macrophytes and limited littoral macrophyte
raking, which occurred between our July and August sampling, may help explain why
cladoceran and planktonic midge abundance was different in August. Negligible numbers
of planktonic midges during our August sampling could also have been caused by these
larvae emerging from the reservoir before our sampling took place.

Hydrological disturbance (Dickerson, Medley & Havel, 2010) and water residence time
(Jann & Bürgi, 1988; Burdis & Hirsch, 2017) have been linked to CCZE and may cause a
phenomenon known as “washout” whereby community composition is shifted toward
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quickly reproducing taxa (rotifers) that can complete their life cycle before being exported
(Lair, 2006; Perbiche-Neves & Nogueira, 2013). In our study, hydrological monitoring was
at a comparatively coarse scale (daily mean discharge), so we could not determine how
flow rate influenced our bi-hourly zooplankton samples. We chose to study a polymictic
reservoir because we felt that this type of lentic habitat was likely to exhibit a wind-induced
effect on community composition; natural lakes and lentic systems that mix less
frequently (e.g. dimictic lakes) might not exhibit wind-induced shifts in CCZE. Future
studies of zooplankton exports from deeper (more stably stratified) lentic systems should
directly monitor the thermal stratification regime in the pool.

In this study we did not detect a significant effect of light on CCZE, indicating that
diel migration was less important to structuring zooplankton exports than other forces
(i.e. wind). Diel migrations may be important factors in temporally structuring CCZE in
shallow systems that are not readily mixed by wind (e.g. canals), but we have little evidence
to suggest that diel migrations contributed to structuring exports in this study. We used
a coarse taxonomy to define CCZE in this study, so further study of the importance of
diel and wind factors on zooplankton export should explore whether the same patterns
occur at finer taxonomic scales and how different taxonomic groups are independently
influenced by wind mixing (i.e. constrained ordination).

Our results suggest that wind conditions could introduce temporal heterogeneity in
food resources to downstream communities which, in turn, should promote biodiversity
among consumers (Tylianakis et al., 2008; but see Cardinale et al., 2006). Conversely,
homogenization of food resources should promote competitive exclusion and a decrease
in biodiversity, which is the effect that reservoirs are generally thought to have on
downstream communities (Kalff, 2002). Small polymictic reservoirs may therefore not
have the same negative impacts that less-frequently mixed (deeper) or washed-out
(higher flow) reservoirs have on downstream communities. Identification of mechanisms
impacting zooplankton export from lentic to lotic systems is increasingly important as the
number of reservoirs continues to grow globally (Lehner et al., 2011).
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