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ABSTRACT
Environmental homogenization in coastal ecosystems impacted by human activities
may be an important factor explaining the observed decline in fish species richness.
We used fish community data (>200 species) from extensive surveys conducted in
two biogeographic provinces (extent >1,000 km) in North America to quantify the
relationship between fish species richness and local (grain <10 km2) environmental
heterogeneity. Our analyses are based on samples collected at nearly 800 stations over
a period of five years. We demonstrate that fish species richness in coastal ecosystems
is associated locally with the spatial heterogeneity of environmental variables but not
with their magnitude. The observed effect of heterogeneity on species richness was
substantially greater than that generated by simulations from a random placement
model of community assembly, indicating that the observed relationship is unlikely
to arise from veil or sampling effects. Our results suggest that restoring or actively
protecting areas of high habitat heterogeneity may be of great importance for slowing
current trends of decreasing biodiversity in coastal ecosystems.

Subjects Biodiversity, Biogeography, Conservation Biology, Ecology, Environmental Sciences
Keywords Aquatic community assembly, Conservation biology, Random placement model,
Diversity, Heterogeneity hypothesis, Simulation

INTRODUCTION
The environmental heterogeneity hypothesis (MacArthur & MacArthur, 1961; MacArthur

& Wilson, 1967; Ricklefs, 1977) states that species richness increases with the number

of ecological niches; that is, species coexistence is facilitated in more heterogeneous

environment because different taxa can capitalize on different environmental conditions.

The hypothesis has been tested using many taxonomic groups across different spatial

grains (average distance among observations) and extents (size of the whole study area)

ranging from meters to thousands of kilometers. An extensive meta-analysis by Field et

al. (2009) found that environmental heterogeneity was the primary factor driving species

richness for 63 of the 273 cases (23%) assessing the relative importance of environmental

heterogeneity versus other environmental factors. Environmental heterogeneity, however,

had a stronger effect on species richness in studies conducted at small grain sizes (39% of
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the cases), suggesting that the relationship is contingent on the spatial scale. Furthermore,

only 4 of the 393 relationships (1%) were from surveys of aquatic ecosystems having small

grain size (<10 km2) and large geographical extent (>1,000 km). Thus, there appears to be

no consensus on the effects of small-grain environmental heterogeneity on species richness

when investigated over large geographical areas.

This paucity of broad-scale studies may be related to the difficulties faced by aquatic

ecologists in quantifying heterogeneity across different temporal and spatial scales (Ko-

valenko, Thomaz & Warfe, 2011; Yeager, Layman & Allgeier, 2011; Tisseuil et al., 2013)

possibly reflecting the difficulties of obtaining the data needs to quantify such relationship.

As a consequence, the term ‘heterogeneity’ has been used rather loosely, as it could refer

to habitat complexity, habitat diversity or environmental variability in both space and

time (Palmer, Menninger & Bernhardt, 2010). For example, Oberdorff et al. (2011) assessed

habitat heterogeneity at the continental scale using the proportion of different biomes

found within river drainage basins, whereas Guégan, Lek & Oberdorff (1998) used the

mean annual flow discharge as a proxy for environmental heterogeneity in 183 rivers

throughout the world. Although these two studies found a positive relationship between

heterogeneity and fish species richness, their measures of environmental heterogeneity

were confounded with biogeographic factors, such as the size of the drainage area and with

other global environmental descriptors including seasonality of rainfall in lotic systems.

Recent meta-analyses of the relationship concluded that environmental homogenization

has a consistent and negative impact on animal diversity (Smokorowski & Pratt, 2007;

Seiferling, Proulx & Wirth, 2014).

Empirical evidence of the relationship between local (small grain) fish species richness

and environmental heterogeneity remains sparse for aquatic ecosystems of broad spatial

extent. Further evaluation of the relationship is needed, especially when considering that:

(1) species richness is declining in both freshwater and marine ecosystems (Ricciardi &

Rasmussen, 1999; Worm et al., 2006), and (2) aquatic ecosystems are increasingly impacted

by human activities, such as systematic embankment, river damming and seafloor trawling

that are causing environmental homogenization (Lotze et al., 2005; Jackson, 2008) as well

as changes in water quality variables (Rabalais, 2002). Fish communities are affected by

structural characteristics of the environment such as reef structure and the presence

of vegetation (Kuffner et al., 2006) and also by water quality variables such as salinity,

turbidity, and oxygen concentration (Rabalais, 2002; Bejarano & Appeldoorn, 2013). The

objective of this study was to evaluate the effect of local environmental heterogeneity in

environmental variables (spatial grain <10 km2) on fish species richness at the scale of

biogeographic regions (spatial extent >1,000 km). We used data on fish communities (26

orders, 73 families, 136 genera, 204 species), obtained from extensive surveys in two coastal

ecosystems of North America. Using a set of environmental variables routinely measured

by monitoring programs, we demonstrate that fish species richness in coastal ecosystems

responds positively to the spatial heterogeneity of environmental conditions and quantify

the magnitude of this effect. We implemented a random placement model of community
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Figure 1 Spatial distribution of sampling sites. (A) Virginian and (B) Louisianan biogeographic
provinces. Surveys were conducted by the U.S. Environmental Protection Agency’s Environmental Mon-
itoring and Assessment Program (EMAP) between 1990 and 1994.

assembly to ensure that the empirical relationship found between species richness and

environmental heterogeneity did not result of a veil or sampling effect.

MATERIAL AND METHODS
Study site and data collection
Fish abundances and environmental measurements were obtained from two extensive

surveys conducted by the U.S. Environmental Protection Agency’s Environmental

Monitoring and Assessment Program (EMAP). The first data set consisted of four

sampling campaigns conducted in the Virginian biogeographic province between 1990 and

1993 (Hale et al., 2002). Stations were located along the coastline and in large river estuaries

of the East Coast (Delaware, Hudson, Potomac, York; Fig. 1A). The second data set was

assembled from four sampling campaigns conducted in the Louisianan biogeographic

province between 1991 and 1994. Stations were located along the Gulf of Mexico from

the Rio Grande, Texas, to Anclote Island, Florida (Fig. 1B). Field campaigns in the two

biogeographic provinces were carried out between July and September of each year.
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Fish were sampled using balloon trawls (funnel-shaped nets, 4.9 m wide with 2.5 cm

stretched mesh) deployed from a research vessel using a hydraulic–powered boom in the

vicinity of the sampling stations. The duration of the trawl was 10 ± 2 (mean ± SD)

minutes at a speed of 2–3 knots. This corresponds to a length of 0.77 ± 0.15 (mean

± SD) km. Following a successful trawl, the net was hauled aboard and the catch was

released into a plastic trough, or a fish sorting table, where species composition and

abundance were recorded (see Appendix S1). A total of 2,237 individuals (fork length:

min. = 2.2 cm; max. = 91.18 cm; mean ± SD = 12.08 ± 7.33 cm) were captured from

the Louisianan biogeographic province and 1,883 individuals (fork length: min. = 2.5 cm;

max. = 92.6 cm; mean ± SD = 16.03 ± 10.37 cm) were captured from the Virginian

biogeographic province, yielding a total of 4,120 individuals (Table 1, Appendix S1).

The environmental data comprised physical and chemical measurements. Dissolved

oxygen concentrations (mg × L−1) were determined using an air-calibrated oxygen

meter (Yellow Springs Instruments, Yellow Springs, OH, USA) on surface water samples

(625 mL) obtained with a Go-Flo bottle (General Oceanics, Miami, Florida, USA). Salinity

(ppt), temperature (◦C), pH, transmissivity (% of ambient light transmitted through

the water column), photosynthetically active radiation (µE × m−2
× s−1), fluorescence

(unitless) and water density (σ t, kg × m−3
− 1,000) were measured using a SeaBird

CTD meter (Sea-Bird Electronics, Bellevue, Washington, USA) lowered through the water

column at a rate of approximately 0.25 m × s−1 until it reached the bottom (Table 1).

Fluorescence and water density data were not available for the Louisianan surveys. Implicit

to our approach is that the gradient of environmental conditions captures a range of

habitat and resource types. For example, temperature and dissolved oxygen may to some

degree correlate with water depth or nutrient loading, whereas the photosynthetically

active radiation is a more direct measure of primary production in the water column.

Other variables, such as salinity, impose physiological constraints to the distribution of fish

species in coastal transition zones. Detailed information about the sampling and analytical

procedures can be found on the EMAP web site (http://www.epa.gov/emap/index.html).

Although other environmental variables such as macrophyte cover might be important

determinants of environmental heterogeneity, the selected variables are known to affect the

ecology of individual fish species (Mandrak, 1995).

Environmental heterogeneity
To represent the gradient of environmental conditions among stations of the same

biogeographic province, we used the scores of a principal component analysis (PCA)

performed on the environmental variables. The first three PCA axes (Table 1) were retained

based on Kaiser’s criterion (Kaiser, 1960) and explained nearly 75% of the environmental

variability in both Virginian (PC1 = 42.28%, PC2 = 19.7%, PC3 = 12.6%) and Louisianan

(PC1 = 32.5%, PC2 = 23.8%, PC3 = 19.6%) biogeographic provinces. We quantified the

degree of local spatial autocorrelation in environmental conditions near each station as a

reciprocal measure of environmental heterogeneity.
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Table 1 Loadings and summary statistics for environmental variables. The first three principal components generated from environmental variables were retained
based on Kaiser’s criterion. These components explained 75% of the total environmental variability in both biogeographic provinces.

Virginian Louisianan

Variable Loadings Loadings

Comp. 1 Comp. 2 Comp. 3 Mean Std. Dev. Range
(min–max)

Comp. 1 Comp. 2 Comp. 3 Mean Std. Dev. Range
(min–max)

Water density (σt) −0.49 0.02 0.12 9.08 8.68 −4.36–23.94

Dissolved oxygen
(mg L−1)

−0.10 −0.69 0.03 6.90 1.25 3.0–11.2 −0.42 0.55 −0.10 6.89 1.33 3.4–14.8

Fluorescence 0.28 −0.34 0.42 11.82 7.70 0–30

PAR (µ−2s−1) −0.05 −0.27 −0.85 545.76 464.29 9–3621 −0.51 −0.41 −0.10 813.25 477.61 12–1,870

pH −0.28 −0.53 0.16 7.93 0.48 6.3–9.4 −0.40 0.47 0.41 8.00 0.46 5.3–9.5

Salinity (ppt) −0.49 0.00 0.11 16.18 11.05 0.03–32.89 −0.06 −0.14 0.84 13.47 10.70 0.01–37.35

Temperature (◦C) 0.39 −0.21 −0.16 25.40 2.46 11.80–30.85 −0.50 0.02 −0.32 29.77 1.41 24.7–34.0

Transmissivity (%) −0.44 0.10 −0.14 53.37 23.19 0–93 −0.39 −0.54 0.11 63.97 16.12 2–133
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We calculated the local Moran I statistic on the scores of the first three PCA axes using

the localmoran function of the spdep package in R (Bivand et al., 2013; Bivand & PIras,

2015). Only the first PCA axis was retained for further analysis because we did not find

any relationship between Moran’s I calculated for PCA axes 2 or 3 and species richness.

The Moran I statistic identifies station neighborhoods where environmental conditions

of similarly high or low values cluster spatially (high I), as well as neighborhoods

where environmental conditions are more contrasted (low I). High I values indicate

low heterogeneity (positive autocorrelation), whereas values around zero indicate high

heterogeneity. Negative I values indicate local over-dispersion patterns (i.e., negative

autocorrelation), which are rarely observed in nature (Borcard, Gillet & Legendre, 2011).

The I statistic is given by Anselin (1995):

I = (n − 1)
xi − X̄

n
i=1

(xi − X̄)2

n
j=1

wij(xj − X̄) (1)

where xi is the value of the observation i, X̄ is the mean of the variable, wij is the spatial

weight (1/distance2) between observations i and j, and n is the number of stations

sampled. Each I (one per station) have been calculated by including all surrounding

neighbours in a 75 km radius using the dnearneigh function of the spdep package.

The chosen radius was large enough to include a sufficient number of neighboring

stations in the calculation of Moran’s I (average number of stations: Virginian = 54.3;

Louisianan = 52.7), while small enough to prevent the inclusion of stations that are only

remotely connected. Spatial weights were scaled as 1/distance2 in Eq. (1), thus varying

the search radius had little effect on I values. Because we could not determine whether

patterns of over-dispersion should be associated with high or low levels of environmental

heterogeneity, the few stations (less than 4%) with negative I values were removed from

subsequent statistical analyses. We did not find substantial differences between results

for I calculated using all the data pooled at the biogeographic level (spatio-temporal

I) and I calculated for each sampling year separately (spatial I). Consequently, we view

I as a measure of spatial heterogeneity in local environmental conditions across space

(Appendix S2, Fig. 1, Eq. (1)).

Numerical simulations
We developed a random placement model of community assembly to determine the

heterogeneity–species richness relationship in the absence of explicit habitat selection

mechanisms. The model has two main components: (1) environmental heterogeneity

and (2) species richness, each being simulated independently of the other on a two-

dimensional surface (Fig. 2). This approach has been successfully used in various ecological

studies aiming to highlight the effect of landscape structures on different aspects of animal

biodiversity (McGill, 2011; Campos et al., 2013).

The first model component simulates the spatial patterns of environmental conditions

(Fig. 2A). Environmental spatial patterns can be modeled as a fractional Brownian
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Figure 2 Framework of the random placement model of community assembly used to determine the
relationship between fish species richness (S) and habitat heterogeneity in the absence of any partic-
ular habitat selection mechanisms. Both environmental scores (A) and the species spatial distributions
(B) were generated independently and parameterized using observed data. Habitat heterogeneity (C) and
species richness (D), the two resulting model components, were superimposed such that each Moran’s
I value on the grid was associated to a value of species richness (E). Smin and Smax represent the range
spanned by a fitted GLM negative binomial regression (red curve). To simulate possible artifacts due to
unsampled fish (false 0), we added a veil effect threshold to the data generated by the model. A total of
10,000 simulation were produced.
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function. The spectral density S(f ) of a two-dimensional surface follows a power spectrum

S(f ) ∝ 1/f β (Keitt, 2000), where f is frequency and β = 1 + 2H. The Hurst exponent (H)

controls the degree of auto-correlation in environmental conditions; a large H(H −→ 1)

results in relatively homogeneous spatial patterns, whereas a lower H(H −→ 0) produces

more heterogeneous patterns. To generate the environmental spatial patterns in our

simulations, we used the Matlab function noiseonf, which uses the inverse Fourier

transformation of a power spectrum with a predetermined Hurst exponent (Kovesi, 2000).

This procedure generates ‘neutral’ landscapes (e.g., With, 1997; Keitt, 2000) that share

several statistical properties with environmental patterns observed in nature. The Hurst

exponent of the simulated surface was parameterized using the linear slope of the log–log

semi-variogram (Gallant et al., 1994) computed on the scores of the first axis of the PCA of

environmental conditions, yielding values of H ≈ 0.4 in both biogeographical provinces.

The second component (Fig. 2B) of our model simulates the random placement of

species with different distribution ranges. We based our random placement model of

community assembly on two premises (McGill & Collins, 2003; McGill, 2010): (1) the

centroid of each species range is determined by sampling from a uniform distribution

over the surface and (2) the range size of species is distributed according to a power

distribution. McGill & Collins (2003) reported that implementing either a log-normal

or a power distribution did not affect the results of random placement model. Each of

our simulation runs proceeded as described in Algorithm 1. Local species richness is then

calculated by summing the overlap of different species ranges. On the basis of the observed

regional distributions of the sampled species (Appendix S2, Fig. 3), we used the following

parameters to implement the random placement model: G = 1,000, rmin = 10 km and

rmax = 1,000 km.

Algorithm 1. Random placement of species (component 1, Fig. 2A)

1. Generate a surface of size G × G.

2. Randomly pick the distribution range r of a new species from a power function

f (r) = r−a where rmin ≤ r ≤ rmax (Appendix S2, Fig. 2).

3. Choose the species centroid randomly from a uniform distribution over the surface.

4. Repeat previous steps until the surface is completely covered by species ranges (ranges are allowed to

overlap).

To represent the range of each species on the surface, we used ellipses with major

axis length r and minor axis length sampled from a uniform in the interval [r/4,r/2] as

described in Proulx et al. (2014). To simulate an anisotropic spatial process, we placed

the elliptical ranges with their major axis oriented either horizontally (with probability =

0.75) or vertically (with probability = 0.25). This decision was motivated by the fact that

species ranges in both biogeographical provinces are preferentially oriented along rivers

and coastlines that broadly conform to the proposed alignment. Finally, to determine the

parameter α empirically, we calculated the range of all fish species in each biogeographical

province (Appendix S2, Fig. 3) and estimated the power coefficient of the frequency using

the log-ratio formula (Eq. (5) in Newman, 2005). We obtained values of α = 1.214 for
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Figure 3 Relationships between species richness (S) and PCA scores for the first axis (A and C)
and local Moran’s I (B and D) for the Virginian and Louisianan biogeographic provinces. The red
lines represent the fitted GLM negative binomial regressions between local Moran’s I and S (Virginian
p < 0.001, Louisianan p < 0.001). The right-margin insets in (B) and (D) show the amplitude of species
richness (ΔS) described by the regression curves.

the Virginian province and α = 1.189 for the Louisianan province, and therefore used

a value of 1.2 in our simulations. Using different combinations of ellipse shape ratio

and orientation, we found that the species richness was robust to these changes. Most

importantly, varying the shape ratio and orientation of the ellipse (species range) did

not affect the general direction and relative effect size of the simulated environmental

heterogeneity–species richness relationship. We generated the two model components

on grids of 1,000 × 1,000 cells (Figs. 2A and 2B). A total of 10,000 simulations where

performed according to Algorithm 2. It is to be noted that the model does not aim to

approximate the absolute number of species at each location. Consequently, we used

relative changes in species richness (ΔS) to compare modeled and observed results.

In each of the biogeographic provinces surveyed, approximately 5% of the stations

yielded species richness values of zero. These zeros may partly arise from a ‘veil

effect’ (Preston, 1948), and so reflect insufficient sampling effort rather than true absences.

Truncation of samples at the veil may induce a spurious negative relationship between

richness and predictor variables (Fig. 2E). To represent this effect in the simulated data,
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Figure 4 Results of 10,000 simulations showing the influence of quantile cut (veil effect) on modeled
species richness. The green, red and blue areas represent the distribution of ΔS under veil effects of
percentiles 0%, 5% and 15%. The numbers in parentheses represent the mean of ΔS for each veil
simulation. The arrows indicate the ΔS observed in the two biogeographic provinces.

we set three veil lines at percentiles 0%, 5% and 15% and excluded species richness values

below these thresholds (Fig. 4).

Algorithm 2. Global simulation procedure

1. Generate an environmental grid (component 1, Fig. 2A).

2. Generate a species placement grid (component 2, Fig. 2B).

3. Randomly subsample 400 grid cells (roughly corresponding to the

total number of sampling stations in each biogeographic province, Appendix S2, Fig. 4).

4. Calculate the local Moran’s I at each subsampled cell on the environmental grid following the procedure

described in the Environmental heterogeneity section (Eq. (1), Appendix S2, Fig. 3).

5. Pair each local I value to its associated species richness value on the environmental

and the species placement grid, respectively.

6. Fit a negative binomial regression between the paired values of local Moran’s I and species richness

(Fig. 2E).

7. Calculate the relative increase in species richness (ΔS) predicted by the regression curve.

Statistical analyses
We used regression analyses to examine the relationships between species richness and

the scores from the first PCA axis of environmental variables. To determine whether

environmental heterogeneity had an influence on species diversity for both observed and

simulated data, negative binomial regressions were fitted to the points above the veil effect
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Table 2 The probabilities of observing ΔS greater or equal than 56% (Virginian) or 136%
(Louisianan) due to sampling effect (i.e., random) under different scenarios of veil effects (0%, 5%,
15%). See ‘Methods’ and Fig. 4 for detailed information.

Veil at 0% Veil at 5% Veil at 15%

Virginian (56%) 4.68 3.70 2.12

Louisianan (136%) 0.05 0.01 0.00

threshold using the glm.nb function of the MASS package in R (version 3.0.1). We also

checked for the presence of spatial autocorrelation in the model residuals.

RESULTS
Fish species richness was not correlated with any of the first three principal components

from the analysis of environmental variables (Table 1; Figs. 3A and 3C), or with any of

the individual environmental variables (results not shown). However, species richness

was related to environmental heterogeneity (Figs. 3B and 3D). For both biogeographic

provinces, the negative binomial regressions showed that species richness was greater in

more heterogeneous environments (Figs. 3B and 3D). In the Virginian province (Fig. 3B),

the mean species richness increased from 4.1 in the most homogeneous environments

to 6.4 in the most heterogeneous environments, representing a gain of 2.3 ± 0.11 (95%

confidence limits) species which correspond to 56% relative increase. A similar pattern

was found for the Louisianan province (Fig. 3D) where mean species richness increased

from 3.6 in the most homogeneous environments to 8.5 in the most heterogeneous

environments, representing a gain of 4.9 ± 0.16 (95% confidence limits) species which

correspond to 136% relative increase. We did not find spatial autocorrelation in the model

residuals.

Averaging the results of 10,000 model simulations, the mean species richness relative

increase (ΔS) were of 3.25%, 5.28% and 6.66% for the 0%, 5% and 15% veil effects,

respectively (Fig. 4). The probabilities of observing ΔS greater or equal to 56% (Virginian

province) due to a sampling effect for different veils (0%, 5%, 15%) were of 4.68%, 3.7%

and 2.12%, respectively (Table 2). Considering a ΔS of 136% threshold (Louisianan

province), these probabilities dropped to 0.05%, 0.01% and 0% (Table 2).

DISCUSSION
Many factors, including environmental heterogeneity, have been reported to affect the

diversity of aquatic communities (Field et al., 2009). However, it is likely that the set of

factors influencing species richness differs across spatial and temporal scales (Fausch et

al., 2002). Moreover, environmental heterogeneity has been identified as a key factor

maintaining animal biodiversity in aquatic ecosystems (Levin et al., 2010). Our study

combines data from extensive surveys and simulations to demonstrate a strong positive

influence of environmental heterogeneity on the species richness of fish communities.

Interestingly, species richness was associated with the spatial heterogeneity of environ-

mental variables but not with their magnitude. For both biogeographic provinces, mean
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species richness in the most heterogeneous environments was markedly greater than in

the most homogeneous environments, as quantified by the negative binomial regressions.

Furthermore, the observed effect of heterogeneity on species richness was substantially

greater (Fig. 3) than that generated by the simulations based on a random community

assembly model, so it seems unlikely that the observed relationship arose solely as a

byproduct of veil or sampling effects.

Environmental variables
Climate, energy, and primary productivity have a major influence on species richness

at the regional, continental and global scales (Guégan, Lek & Oberdorff, 1998; Hawkins,

Field & Cornell, 2003; Field et al., 2009). Studies conducted at small grain also indicate

that environmental variables can influence the occurrence of species and abundance in

local fish communities in both space and time (Menge & Olson, 1990; Thiel et al., 1995;

Rodŕıguez & Lewis, 1997). In contrast to these findings, we did not observe any direct effect

of the magnitude of individual environmental conditions (Table 1), including salinity,

chlorophyll-a concentration and water temperature, on the species richness of local fish

communities in either the Virginian (Fig. 3A) or Louisianan (Fig. 3C) biogeographic

provinces.

In contrast with a simple randomization procedure, the simulation approach used in

the random placement models allowed us to make a number of assumptions regarding

the ecology of coastal fishes: (1) the spatial pattern of environmental conditions follows

a two-dimensional power spectrum; (2) the centroid of each species on the seascape is

determined by sampling from a uniform distribution and its range size by sampling from a

power distribution; (3) fish species richness is independent from environmental conditions

at the site of capture. We note that all three assumptions were supported by the empirical

data. Another major assumption of random placement models is that the probability of

finding a fish species at a particular site is independent of other species. Such ecological

independence between co-occurring species has been shown to accurately reproduce a

number of community patterns (McGill, 2010; McGill, 2011). For example, a recent study

of shrubland plant communities reported that only 7–19% of all species pairs showed

strong and consistent spatial associations, leading the authors to conclude that ecological

processes are left no discernible spatial signature (Perry et al., 2014). In contrast with these

findings, our results suggest that coastal fish communities may show a spatial signature,

as fish species richness was not associated locally with the magnitude of environmental

variables, but rather with their spatial heterogeneity.

Environmental heterogeneity
Environmental heterogeneity influences many ecological processes such as fluxes of

organisms, material and energy among riverscape elements (Pickett & Cadenasso, 1995).

Our results demonstrate that fish species richness responded positively to increased

environmental heterogeneity (Figs. 3B and 3D) in both the Virginian and Louisianan

biogeographic provinces. Simulations using a random placement model of community

assembly showed that species richness increased only slightly in more heterogeneous
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environments (Fig. 4). For instance, less than 5% of the 10,000 simulations generated ΔS

greater than the conservative value of 56% observed in the Virgina biogeographic province

(Figs. 3 and 4, Table 2). Hence, it is unlikely that the positive relationship observed between

environmental heterogeneity and species richness in both biogeographic provinces is the

result of a sampling effect (sensu McGill, 2011).

Aquatic ecologists often use the term ‘heterogeneity’ rather loosely to refer to habitat

complexity, habitat diversity or environmental variability over time (reviewed in Palmer,

Menninger & Bernhardt, 2010). For example, at small scales, heterogeneity usually refers

to the variability in structural physical properties of the aquatic habitat such as riparian

vegetation, channel configuration, artificial riffles and substrate granulometry (Palmer,

Menninger & Bernhardt, 2010). Conversely, studies conducted at regional or continental

scales have used large-grained variables such as percentage of different types of biome or

drainage area as a proxy for habitat heterogeneity (Guégan, Lek & Oberdorff, 1998; Field et

al., 2009; Oberdorff et al., 2011), possibly reflecting the difficulty of obtaining information

at a finer resolution. Consequently, studies conducted at regional or continental scales

are likely to capture broad-scale environmental heterogeneity that is coarse relative to the

local heterogeneity to which individual fish respond, particularly for species having ranges

smaller than the study grain size (O’Neill et al., 1986; Turner et al., 1989; Wiens, 1989).

However, the question of which scale is optimal for quantifying the heterogeneity-diversity

relationship is still open (Chase & Leibold, 2002; Durance, Lepichon & Ormerod, 2006;

Pittman et al., 2007).

Conclusions
Over the last century, coastal ecosystems have become increasingly impacted by anthro-

pogenic pressures (Lotze et al., 2006), including many human–driven activities that reduce

the temporal and spatial heterogeneity of coastal habitats. For example, commercial fish

trawlers are known to reduce the spatial heterogeneity of the sea floor structure (Helfman,

2007). Similarly, the temporal variability of water flows in many of the world’s largest

rivers are regulated by dams (Nilsson et al., 2005). This reduced variability in runoffs has

been shown to increase the homogeneity of water channels, as well as to degrade fish

habitats (see Moyle & Mount, 2007 and references therein). The current study shows that,

independently of the environmental conditions prevailing locally, more homogeneous

habitats can support fewer fish species. Hence, restoring or actively protecting areas of

high habitat heterogeneity appears to be of great importance for slowing actual trends of

decreasing biodiversity in coastal ecosystems.
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