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ABSTRACT
The arrival of large masses of drifting Sargassum since 2011 has caused changes
in the natural dynamics of Caribbean coastal ecosystems. In the summer of 2015,
unprecedented and massive mats of S. fluitans and S. natans have been observed
throughout the Mexican Caribbean including exceptional accumulations ashore.
This study uses stable isotopes to assess the impact of Sargassum blooms on the
trophic dynamics of the Diadema antillarum sea urchin, a keystone herbivore on many
Caribbean reefs. Bayesian models were used to estimate the variations in the relative
proportions of carbon and nitrogen of assimilated algal resources. At three lagoon reef
sites, the niche breadth of D. antillarum was analysed and compared under massive
influx of drifting Sargassum spp. vs. no influx of Sargassum blooms. The effects of the
leachates generated by the decomposition of Sargassum led to hypoxic conditions on
these reefs and reduced the taxonomic diversity of macroalgal food sources available to
D. antillarum. Our trophic data support the hypothesis that processes of assimilation
of carbon and nitrogen were modified under Sargassum effect. Isotopic signatures of
macroalgae associated with the reef sites exhibited significantly lower values of δ15N
altering the natural herbivory of D. antillarum. The Stable Isotopes Analysis in R
(SIAR) indicated that, under the influence of Sargassum blooms, certain algal resources
(Dictyota,Halimeda andUdotea) were more assimilated due to a reduction in available
algal resources. Despite being an abundant available resource, pelagic Sargassum was
a negligible contributor to sea urchin diet. The Stable Isotope Bayesian Ellipses in R
(SIBER) analysis displayed differences between sites, and suggests a reduction in trophic
niche breadth, particularly in a protected reef lagoon.Our findings reveal that Sargassum
blooms caused changes in trophic characteristics ofD. antillarumwith a negative impact
by hypoxic conditions. These dynamics, coupled with the increase in organic matter in
an oligotrophic system could lead to reduce coral reef ecosystem function.
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INTRODUCTION
The arrival of massive amounts of pelagic Sargassum spp. has caused changes in the
natural benthic dynamics of Caribbean coastal ecosystems for the last nine years (Gower,
Young & King, 2013; Schell, Goodwin & Siuda, 2015). Pelagic Sargassum is a complex of two
species, namely S. fluitans and S. natans (Oyesiku & Egunyomi, 2014). Since 2011, extensive
masses of Sargassum appeared in unusual ways in oceanic waters off northern Brazil (De
Széchy et al., 2012; Sissini et al., 2017), along the West Indies and Caribbean coasts (Gower,
Young & King, 2013) from Trinidad to the Dominican Republic (Rodríguez-Martínez,
van Tussenbroek & Jordán-Dahlgren, 2016; van Tussenbroek et al., 2017), and along the
west African coast from Sierra Leone to Ghana (Smetacek & Zingone, 2013). Wang et al.
(2019) recorded that for June 2018, wet biomass reached more than 20 million tons in the
Caribbean Sea and Central Atlantic Ocean.

The Mexican Caribbean shores faced atypical massive mats of pelagic Sargassum in
the summer of 2015 (van Tussenbroek et al., 2017; Cuevas, Uribe-Martínez & Liceaga-
Correa, 2018; Arellano-Verdejo, Lazcano-Hernandez & Cabanillas-Terán, 2019). There was
a subsequent decrease during 2016 and 2017, but formost of 2018 and thus far in 2019 influx
has increased again. Several studies revealed that these massive mats of Sargassum have a
new possible distribution source different from the historic North Atlantic Recirculation
Region (NARR) known as ‘‘The Sargasso Sea’’ (Schell, Goodwin & Siuda, 2015). Instead, the
most probable origin of the massive influx on the Caribbean shores is the North Equatorial
Recirculation Region (NERR) (Johnson et al., 2013; Schell, Goodwin & Siuda, 2015). High
oceanic temperatures and nutrient inputs (Franks, Johnson & Ko, 2016; Wang et al., 2018),
among other oceanographic coupled patterns such as changes of surface currents, are
the most probable causes of this new region of Sargassum flourishment (Johnson et al.,
2013; Gower, Young & King, 2013; Sissini et al., 2017). A recent study by Wang et al. (2019)
revealed that increases of pelagic Sargassum are driven by upwelling off West Africa during
the boreal winter and by Amazon River discharge during the spring and summer. The
authors state that recurrent blooms in the Caribbean Sea and tropical Atlantic are likely,
highlighting the importance for understanding their effects on existing ecosystems for
future planning.

Changes in habitat structure can directly influence trophic dynamics (Hunter & Price,
1992; Sweatman, Layman & Fourqurean, 2017) and have been shown to cause synergistic
effects on coral reefs (Smetacek & Zingone, 2013). For example, harmfulmacroalgae blooms
have been recognized as drivers of degradation in coral reef habitats (Lapointe et al., 2005).
This has effects on the diversity of reef biota (Bauman et al., 2010; Louime, Fortune &
Gervais, 2017) like variations in the sea urchin populations (Lapointe et al., 2010). The
carbon and nitrogen flow by macroalgae blooms likely has adverse effects at different
scales. Such disturbances from Sargassum, coupled with pre-existing threats on coral reefs,
add to the drivers of Anthropocene reef degradation (Alvarez-Filip et al., 2011; Cramer et
al., 2012).

The massive decomposition of Sargassum has negative impacts not only on tourism
and local fisheries, but on nearshore ecosystems (Solarin et al., 2014; Louime, Fortune &

Cabanillas-Terán et al. (2019), PeerJ, DOI 10.7717/peerj.7589 2/32

https://peerj.com
http://dx.doi.org/10.7717/peerj.7589


Gervais, 2017). However, few studies assess the trophic impact of Sargassum blooms on
benthic communities. Pelagic Sargassum and their attached epiphytic algae can contribute
new organic matter to these communities (Rooker, Turner & Holt, 2006;Wang et al., 2018).
Therefore, we consider whether or not these new sources of nitrogen and carbon act
in a detrimental manner on the trophic chain of benthic communities. The beaching
and decomposing of massive Sargassum mats produce hypoxia in near-shore coral reef
communities (Rodríguez-Martínez et al., 2019). This effect coupled with high hydrogen
sulfide and ammonium concentrations have been shown to cause faunal mortality in
the Mexican Caribbean (Rodríguez-Martínez et al., 2019). As a consequence, the coastal
environment becomes even more sensitive to degradation agents. To assess these issues,
we included measurements of dissolved oxygen in our study.

Evaluating consumers and resources through a trophic approach by tracking the
relationships between consumers and prey provides relevant information on the trophic
structure and dynamics of a benthic community (Minagawa &Wada, 1984; Vanderklift,
Kendrick & Smit, 2006; Behmer & Joern, 2008). Stable isotopes of carbon (δ13C) and
nitrogen (δ15N) have been used in marine ecosystems to determine the feeding habits
of species (Peterson & Fry, 1987), nutrient migrations within food webs, trophic position of
organisms and their contribution at all trophic levels (Vander Zanden & Rasmussen, 1996).
It is also possible to trace the origin and transformation of the ingested organic matter and
to detect changes in the trophic positions of organisms that coexist in the same habitat
(Hobson, 1999; Vanderklift, Kendrick & Smit, 2006; Rodríguez-Barreras et al., 2016).

Stable carbon and nitrogen isotope ratios provide time-integrated information regarding
feeding relationships and energy flow through food webs (DeNiro & Epstein, 1981; Peterson
& Fry, 1987; Vander Zanden & Rasmussen, 2001). Moreover, stable isotopes can be used
to study the trophic niche breadth of a species (Bearhop et al., 2004; Parnell et al., 2010;
Phillips et al., 2014). This is directly influenced by consumers and resource input, providing
a quantitative assessment of trophic conditions (Newsome et al., 2007; Boecklen et al., 2011).
Stable isotope analyses are useful for assessing the health of ecosystems because it is possible
to associate the consumers trophodynamics and niche breadth with habitat disturbances
(Layman et al., 2007b; Hamaoka et al., 2010). It is also possible to detect changes in the
trophic spectrum from anthropogenic impacts or unusual conditions that cause shifts in
ecosystems (Wing et al., 2008; Prado, Alcoverro & Romero, 2010; Tomas, Box & Terrados,
2011). In light of the massive arrival of pelagic macroalgae, sea urchin herbivory is a good
model to understand variability in the benthic trophic chain, as sea urchins are considered
generalist consumers with a plastic feeding habit (Lawrence, 1975; Vanderklift, Kendrick
& Smit, 2006). Echinoids have the capability to modify the community structure through
foraging behaviour (Carpenter, 1986; Hay & Fenical, 1988; Sala et al., 1998; Eklöf et al.,
2008). Thus, the relative position of δ13C vs. δ15N echinoids displayed in a bi-plot can give
insights about organism responses to niche shifts, diet variability and habitat modification
(Layman et al., 2007a; Layman et al., 2007b; Layman et al., 2012; Sweatman, Layman &
Fourqurean, 2017).

The effect of Sargassum and their leachates on the diet of D. antillarum can improve
our understanding on the impact on trophic ecology of one of the most important sea
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urchins of the Mexican Caribbean. The main reason to focus this study on D. antillarum
is that this species is and was the major shallow-hard-bottom grazer in our study sites
(Jorgensen, Espinoza-Ávalos & Bahena-Basave, 2008; Jordán-Garza et al., 2008). One of the
most dramatic events in the Caribbean resulted from the pathogen-driven reduction in the
populations ofD. antillarum (Lessios et al., 1984) with detrimental ecological consequences
like coral-algal phase-shifts. The southern part of Quintana Roo is not an exception
encompassing with the effects of the abrupt coastal development and watershed pollution
as key drivers along the Costa Maya (Arias-González et al., 2017).

The overarching aim of this study was to determine variations in the relative proportions
of carbon and nitrogen of assimilated algal resources and the niche breadth ofD. antillarum
under massive influx of drifting Sargassum spp. vs. no influx of Sargassum at back reefs.
We also aimed to determine whether pelagic Sargassum was a substantial source of energy
for D. antillarum. To do this, we compared δ15N and δ13C values of D. antillarum with
and without influx of Sargassum to track changes in this species trophic ecology (diet,
trophic position and niche breadth). Ultimately, we tested the hypothesis that an influx in
Sargassum in coastal ecosystem creates a significant change in the available algal sources
and a shift in the trophic structure.

MATERIAL & METHODS
Study sites
We determined the stable isotopes of carbon and nitrogen for D. antillarum at three reef
lagoons (Mahahual, Xahuayxol, and Xcalak) with different distances from the beach to
the reef crest (Fig. 1). The main strategy implemented by local authorities at some beaches
with the massive arrival of macroalgae included the removal and disposal of Sargassum
in the highest part of the beach or in places determined ex profeso. This contributed to
a continuous accumulation of Sargassum masses on the beach. However, the Sargassum
removal was not quantified and the information regarding removal included here is only
preliminary.

Mahahual (18◦42′16.96′′N 87◦42.619′W) is located in the northern part of the
Mesoamerican Barrier Reef System (MBRS) in the state of Quintana Roo. Mahahual
is a former fishing village but during the last two decades has undergone reef degradation
due to anthropogenic impact (Martínez-Rendis et al., 2016). It has a narrow reef lagoon
(230–450 m). Sargassummanagement in this locality was active through removing it from
the beach and ex situ disposition.

Xahuayxol (18◦30′21.78′′N; 87◦45′24.84′′W) located south of Mahahual, has a larger
reef lagoon measuring 300 to 500 m from the beach to the reef crest. Sargassum was not
removed from the beach in any systematic way and remained accumulated on the shore.
This reef is the northern limit of the marine protected area Parque Nacional Arrecifes de
Xcalak (PNAX) and human activities are less salient than in Mahahual (Schmitter-Soto et
al., 2018).

Xcalak (18◦14′7.68′′N; 87◦50′1.46′′W), at the southern limit of the Mexican Caribbean,
is part of PNAX since 2000. It is also part of the MBRS (Hoffman, 2009). It has a wide reef
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Figure 1 Study sites. Study area and sampling localities at the south coast of Quintana Roo: Mahahual
(A), Xahuayxol (B) and Xcalak (C). The green polygon represents the marine protected area Parque Na-
cional Arrecifes de Xcalak (PNAX). Figure credit: Alejandro A. Aragón-Moreno.

Full-size DOI: 10.7717/peerj.7589/fig-1

lagoon (950–1,200 m), and Sargassum was accumulated along the shore in large amounts.
There was active but less intense Sargassum management in place at Xcalak, where final
disposal was in situ on the highest part of beach.

At all sampled sites, the dominant forcing mechanism was reef lagoon circulation from
wave action (Mariño-Tapia et al., 2010). In our study area, during the period from June to
August has the wave orbital velocity over the threshold of motion (Maldonado-Sánchez et
al., 2019), indicating active circulation in the reef lagoons.

Collecting and processing data
This study covers two periods: Under Sargassum effect (USE) during the months of July–
August 2015 and without Sargassum effect (WSE) in July–August 2016. USE sampling for
stable isotope analysis included drifting Sargassum (mixture of S. fluitans and S. natans),
turf associated pelagic Sargassum, benthic macroalgae, local turf and 19 individuals of
D. antillarum. WSE sampling included benthic macroalgae, local turf and 15 individuals
of D. antillarum (see sampling details ST1). Samples sizes were based on previous studies
to obtain sufficient data for statistical analysis (Rodríguez, 2003; Tomas et al., 2006; Wing
et al., 2008; Rodríguez-Barreras et al., 2016). The sampling sites were at coastal lagoons
in the back reef zone (section c, Fig. 2), zone with no visible presence of Sargassum
leachates (van Tussenbroek et al., 2017) and where D. antillarum is distributed (Steneck &
Lang, 2003; Jorgensen, Espinoza-Ávalos & Bahena-Basave, 2008; Jordán-Garza et al., 2008;
Maldonado-Sánchez, 2018).
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Figure 2 Lagoon reef-scape showing the sections with Sargassum blooms. Lagoon reef-scape showing
the sections: a: decomposing Sargassum spp., Section b, leachates (dark brown water) and section c, back
reef, areas without visible leachates. Based on van Tussenbroek et al. (2017).

Full-size DOI: 10.7717/peerj.7589/fig-2

Under Sargassum effect (USE) measurements
USE included measurements of dissolved oxygen (mg l−1) recorded with a calibrated
Multi-parameter water quality checker HORIBA 50 at Mahahual, Xahuayxol and Xcalak.
Measurements of dissolved oxygen were made at points distributed in three sections from
areas with decomposing Sargassum (section a), leachates (section b -dark brown water-)
and reef lagoon areas without Sargassum leachates (section c) (Fig. 2).

Pelagic Sargassum spp., turf (benthic turf and the associated turf to pelagic Sargassum)
and macroalgae samples were collected in coral reef patches of section c (back reef zone)
for each sampling site.

Under and without Sargassum effect (USE and WSE) measurements
We collected algal samples to obtain biomass, and for stable isotope analysis using nine
quadrats (50× 50 cm) per site. Pelagic Sargassum biomass was calculated based on sunken
thalli and overlaid on reef substrates inside the quadrats. The quadrats were located
randomly within the sea urchin habitat (radius of 15 m from collected echinoids). The
substrate inside each quadrat was scrapped, carefully removed, collected in bags, and frozen
for later analysis.

Macroalgaewere identified according toLittler & Littler (2000). Analyseswere performed
to genus level. For biomass estimates samples were dried for 48 h in an oven at 60 ◦C.
Samples were weighed with a digital balance (standard error = 0.0001 g). To determine
D. antillarum differential algae assimilation considering USE and WSE, algae samples were
pooled per site. The sampled echinoids and algal species for this study are not threatened.
The collection permit was obtained from the Comisión Nacional de Acuacultura y Pesca
(CONAPESCA, PPF/DGOPA-002/17).

The collected individuals of D. antillarum were at the same depth range (1.5–2.5 m)
and only individuals greater than 5.0 cm in test diameter were collected to avoid any
ontogenic effect. Samples were frozen shortly after collection and processed later at the
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laboratory. The muscles of Aristotle’s lanterns were carefully removed and washed from
the stomach contents to estimate algal assimilation by D. antillarum because this tissue
offers a time-integrated measure of carbon and nitrogen assimilated sources (Polunin et
al., 2001; Ben-David & Schell, 2001; Phillips & Koch, 2002).

Macroalgae and local turf, pelagic Sargassum species (S. fluitans and S. natans), turf
associated to pelagic Sargassum, and echinoids muscle samples were rinsed with filtered
water, dried at 50 ◦C during 48 h, grounded to a fine powder and placed in glass vial
for isotope analyses. To remove carbonates from some algal species (eg., Halimeda spp.
Penicillus spp., etc.), the samples were washed with diluted HCl at 1 N prior to drying to
avoid disturbance in the mass spectrometer reading.

A subsample of each algae and muscle (1mg) was taken to evaluate the 13C/12C
and 15N/14N ratios using a Delta V Plus Mass Spectrometer. Catalyzers silvered
cobaltous/cobaltic oxide and chromium oxide were used. Carbon and nitrogen samples
were analysed in a dual isotope mode at the Centro Interdisciplinario de Ciencias Marinas
from Instituto Politécnico Nacional. Isotope samples were loaded into tin-capsules and
placed in a 50-position automated Zero Blank sample carousel on a COSTECH 4020
elemental analyzer. The carbon and nitrogen isotopic results were expressed in standard
delta notation relative to Vienna Pee Dee Belemnite (VPDB) and to atmospheric air.

δ
13C=


(

13C
12C

)
Sample(

13C
12C

)
Standard

−1
×1000(h)

and

δ
15N=


(

15N
14N

)
Sample(

15N
14N

)
Standard

−1
×1000(h)

.

The standard deviations of δ13C and δ15N replicate analyses were estimated; the
precision values were 0.2h for carbon and nitrogen isotope measurements. In addition, we
calculated the trophic level (TL) according to Hobson & Welch (1992) for every individual
of D. antillarum in each site, expressed as:

TL=
1+ (Nm−Nb)

TEF
.

Where Nm is the mean δ15N ratio of each sea urchin, Nb is average basis δ15N value of
the algal community, and TEF is the given value for the trophic enrichment factor (TEF).
We assumed a TEF of 2.4 followingMoore & Semmens (2008).

Data analysis
Dissolved oxygen data were summarized to obtain average values (± standard error) by
section (sections a, b, c in Fig. 2) and reef lagoons (Mahahual, Xahuayxol, and Xcalak). We
evaluated differences among sections and at the reef lagoons (sections a, b, c, in Fig. 2). We
plotted raw data of dissolved oxygen as a function of distance to coast to visualize the low
to high values gradient related to that distances in every reef lagoon.
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The relative contribution of algae to the diet of the sea urchins D. antillarum was
estimated with a Bayesian isotopic mixing model (SIAR Parnell & Jackson, 2013), which
included the isotopic signatures, fractionation and variability to estimate the probability
distribution of the contribution of the food source to a mixture. This procedure supplied
accurate information about the contribution of algal species to the sea urchin tissues, as it
provided the proportion for every source and recognized the main sources as important
components of the diet (Peterson, 1999; Fry, 2006;Wing et al., 2008) at three different sites,
and under and without Sargassum effect. To run the model, the isotopic discrimination
factor values used were 2.4 ± 1.6h (mean ± SD) for δ15N, and 0.4 ± 1.3h (mean
± SD) for δ13C (Minagawa &Wada, 1984; Fry & Sherr, 1989; Moore & Semmens, 2008;
Cabanillas-Terán et al., 2016).

The following algal taxa/groups were considered for the mixing models analyses:
Caulerpa, Codium, Dictyota, Halimeda, Laurencia, Lobophora, Padina, Penicillus, Sargas-
sum polyceratum, Stypopodium, turf, and Udotea. The sources for the model were selected
following the theoretical geometric assumptions of the mixing model according to Phillips
et al. (2014) and Rodríguez-Barreras et al. (2015) to ensure reliable resources. Samples of
D. antillarum did not require lipid extraction since C:N ratios of Aristotle lantern’s muscle
were lower than 3.5 (Post et al., 2007).

We performed a comparison USE and WSE between the niche width and overlap for
D. antillarum by using Stable Isotope Bayesian Ellipses in R (SIBER) (Jackson et al., 2011)
from the SIAR package (Parnell & Jackson, 2013). This procedure performs metrics based
on ellipses and provides the standard ellipse corrected area (SEAc) used as the trophic
niche breadth and the overlap between ellipses, presuming that values close to 1 exhibit a
higher trophic overlap. Models were run with 200,000 iterations and a burn in of 50,000.

Homogeneity and normality of variance were tested by performing a Kolmogorov–
Smirnov and a Cochran’s test (Zar, 1999). Nitrogen data followed the premises of
parametric analysis, but the carbon, dissolved oxygen and biomass data required a power
transformation for reaching normality and homogeneity of variance (Box & Cox, 1964).
We ran two-way ANOVA to evaluate dissolved oxygen data differences among sections
in the reef lagoons and we performed a post hoc comparison using Tukey-HSD test. The
functions aov and glm from the Gaussian family were used to test the differences in isotopic
ratios of carbon and nitrogen values to compare the effect (WSE and USE) between sites
and their interaction. Statistics were performed with α < 0.05 (R Core Team, 1.0.153,
2017).

RESULTS
The dissolved oxygen values USE indicated that the effects of the leachates generated by the
decomposition process, togetherwith the organicmaterial carried in their vegetal structures,
reduced the values of dissolved oxygen in the reef lagoonwater. The decomposing Sargassum
area (section a, Fig. 2) showed an average range from 1.01 (S.E. ± 0.30) mg l−1at Xcalak
to 1.88 (S.E. ± 0.37) mg l−1 at Mahahual. The leachates area (section b, Fig. 2) showed
an average range from 2.42 (S.E. ± 0.32) mg l−1 at Xahuayxol to 3.66 (S.E. ± 0.42)
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mg l−1at Mahahual. The back reef area (section c, Fig. 2) showed an average range from
4.1 (S.E. ± 0.34) mg l−1at Mahahual to 4.8 (S.E. ± 0.22) mg l−1at Xcalak. The two-way
ANOVA indicated significant differences between reef lagoons (p< 0.05) and sections
(p< 0.01); Mahahual was significantly different to Xcalak, but Mahahual and Xcalak were
not significantly different to Xahuayxol (Post-hoc HSD of Tukey test, 95% confidence).
The three sections at the three reefs were significantly different, except the sections b
and c of Mahahual (Post-hoc HSD of Tukey test, 95% confidence). Therefore dissolved
oxygen data showed a gradient significantly different between sections. The overall values
of dissolved oxygen displayed the lowest concentrations for section a, near the shoreline
and higher values beyond the back reef section c (Fig. 3).

Biomass, δ15N and δ13C of macroalgae
Biomass data for benthic taxa displayed no significant differences between USE and
WSE, but significant differences were found among localities (ANOVA, df = 2, F = 8.24,
p< 0.0001). Mahahual had the highest mean benthic biomass values (55.2 dry weight m−2)
followed by Xahuayxol with (38.8 dry weight m−2) and Xcalak (16 dry weight m−2 ±).
WSE biomass average values for local benthic algae ranged from 3.01 dry weight m−2 ±0.95
(Codium spp. at Xcalak) to 133.50 dry weight m−2 ±30.29 (Halimeda spp. at Mahahual).
USE values ranged from 7.75 dry weight m−2 ±5.4 (Caulerpa at Xcalak) to 145.99 dry
weight m−2 ± 36.21 (Halimeda spp. at Mahahual, Table 1). Genus-level biomass of pelagic
taxa showed no significant differences per site neither at genus level, however Sargassum
fluitans displayed the highest biomass values.

Under and without Sargassum effect values revealed significant differences in overall
benthic algae values of δ15N (ANOVA, df = 1, F = 20.27, p< 0.0001). Specifically under
Sargassum bloomsmost of the algae exhibited isotopic signatures with significantly depleted
δ15N like Dictyota and turf across the lagoon reef sites (Table 2). The overall macroalgal
δ15N under Sargassum fluctuated from 0.023 to 2.08h. At Xcalak Caulerpa displayed the
highest mean values of nitrogen with 2.02 ± 0.08h. Local Turf USE displayed negative
values and overall turf values fluctuated from −0.97h to 0.42h. Xahuayxol displayed
the most negative δ15N mean value of local turf (−0.51 ± 0.02h). Without Sargassum
effect the mean algal genus δ15N fluctuated from 0.06 ± 0.08 with Penicillus at Xcalak,
and Xahuayxol displayed the highest mean value of δ15N with Caulerpa (5.68 ± 0.01h)
(Table 2).

As for δ13C USE ratios fluctuated from −21.98 to −9.23h and WSE from −20.90
to −5.65h. Considering only the algae presented in both sampling periods (WSE and
USE) there was no significant difference in δ13C among sites (ANOVA, df = 2, F = 0.55,
p> 0.05) neither was significant difference analysing the effect (ANOVA, df = 1, F = 1.14,
p> 0.05) and their interaction (ANOVA, df = 2, F = 0.86, p> 0.05).

Overall USE pelagic Sargassum δ13C values fluctuated from −17.95h to −15.24h.
S. natans exhibited the most negative mean values of δ13C (−17.44± 0.71h) at Mahahual
(Table 2). There was no difference in δ13C among sites (ANOVA, df = 2, F = 0.05,
p> 0.05) but there were significant differences δ13C between species (ANOVA, df = 2,
F = 7.57, p= 0.01). Sargassum’s associated turf δ13C values fluctuated from −18.65h
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Figure 3 Dissolved Oxygen values under Sargassum effect (USE).Dissolved oxygen (mgl−1) values
along the distance to shoreline at (A) Mahahual (blue), (B) Xahuayxol (purple) and (C) Xcalak (green)
considering the sections depicted in Fig. 2: dissolved oxygen< 2 mgl−1: decomposing Sargassum spp; dis-
solved oxygen between 2–4 mgl−1: leachates (dark brown water) and dissolved oxygen> 4 mgl−1: back
reef, areas without visible leachates.

Full-size DOI: 10.7717/peerj.7589/fig-3

to −15.37h. The most negative δ13C mean value was displayed at Mahahual (−18.3 ±
0.5h) for Sargassum’s associated turf.

Overall pelagic Sargassum δ15N values ranged from −2.87h to −0.30h. The less
negative mean value was exhibited at Mahahual (−0.53 ± 0.26h) for S. fluitans. There
was no significant difference for δ15N among sites (ANOVA, df = 2, F = 3.90, p= 0.05),
but there was a remarkable trend to depleted δ15N at Xcalak where S. fluitans displayed
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Table 1 Algal biomass values. Mean± standard deviation values of algal biomass (grams dry weight m−2) at Mahahual, Xahuayxol and Xcalak. Genus considered for
the mixing models analysis. Data below the grey line belongs to pelagic taxa.

Mahahual Xahuayxol Xcalak

Genus WSE USE Genus WSE USE Genus WSE USE

Caulerpa 39.49± 20.79 19.82± 6.48 Caulerpa 5.38± 0.93 Caulerpa 7.97± 3.51 7.75± 5.4
Dictyota 19.92± 11.69 20.40± 5.41 Dictyota 6.61± 2.49 20.36± 5.96 Codium 3.01± 0.95
Halimeda 133.50± 30.29 145.99± 36.21 Halimeda 118.07± 29.43 89.18± 9.998 Dictyota 21.99± 5.99 17.76± 2.34
Laurencia 14.73± 22.15 Laurencia 8.49± 4.10 Lobophora 26.96± 4.30
Stypopodium 95.41± 66.10 Lobophora 19.933±11.50 Padina 12.62± 4.30
Turf 24.69± 9.17 19.042± 6.045 Penicillus 12.88± 3.94 Penicillus 27.49± 3.51 26.23± 2.45
Udotea 59.79± 45.74 Sargassum 14.26± 4.42 Sargassum 15.01± 4.30

Stypopodium 10.06± 12.13 Turf 12.00± 3.51 11.40± 4.21
Turf 5.886± 2.83 14.26± 7.84
Udotea 39.13± 14.76 34.02± 16.54

S. fluitans 12.39± 8.33 S. fluitans 11.86± 2.75 S. fluitans 13.00± 6.99
S. natans 4.92± 3.14 S. natans 7.07± 3.26 S. natans 10.03± 7.94
Sargassum’s
associated
turf

3.10± 1.21 Sargassum’s
associated
turf

3.23± 1.28 Sargassum’s
associated
turf

1.98± 1.29
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Table 2 Mean± standard deviation values of δ13C and δ15N of algal genus considered in the mixing model analysis taken fromMahahual, Xahuayxol and Xcalak,
the asterisks represent the sources under Sargassum effect.

Mahahual Xahuayxol Xcalak

Genus δ13C δ15N Genus δ13C δ15N Genus δ13C δ15N

Caulerpa −9.89 ± 0.15 2.22± 0.01 Caulerpa −8.86 ± 0.19 5.68± 0.01 Caulerpa −12.60 ± 0.04 1.00 ± 0.10
Caulerpa* −16.22± 0.55 0.93±0.08 Dictyota −15.71± 0.90 2.29 ± 0.41 Caulerpa* −9.63± 0.02 2.02± 0.08
Dictyota −16.38± 1.23 1.56 ±1.37 Dictyota* −16.31± 0.95 0.71± 0.02 Codium −12.17± 0.07 1.25± 0.07
Dictyota* −15.95± 0.04 0.82± 0.04 Halimeda* −12.61± 1.70 0.88± 0.01 Dictyota −15.47± 0.68 0.67± 0.03
Halimeda −7.01± 1.25 0.29± 0.43 Laurencia −14.81± 0.23 1.36± 0.71 Dictyota* −15.69± 0.20 0.04± 0.06
Halimeda* −8.39± 0.69 0.68± 0.12 Lobophora* −10.49± 1.35 0.33± 0.64 Lobophora −14.15± 0.53 0.77± 0.33
Laurencia −16.16± 0.90 2.61± 1.41 Penicillus −11.51± 8.28 1.84± 0.30 Padina −10.18± 0.18 0.25± 0.19
Stypopodium −11.33± 0.52 0.67± 0.05 Sargassum −14.65± 1.82 3.21± 0.23 Penicillus −14.50± 0.08 0.06± 0.08
Turf −13.44± 0.00 3.03± 0.02 Stypopodium −16.80± 1.40 1.47± 0.56 Penicillus* −9.75± 0.14 1.98± 0.04
Turf* −16.54± 0.22 −0.51± 0.02 Turf −16.43± 1.32 1.84± 0.30 Sargassum* −14.76± 0.87 0.37± 0.08
Udotea −12.86± 0.42 2.19± 0.03 Turf* −18.56± 0.04 −0.89± 0.11 Turf −17.44± 0.48 4.59± 0.64

Udotea −11.62± 1.34 2.42± 1.12 Turf* −21.98± 0.10 0.41± 0.01
Udotea * −12.65± 0.20 2.65± 0.77

S. fluitans −16.03± 0.99 −0.53± 0.26 S. fluitans −16.36± 0.15 −1.74± 0.38 S. fluitans −16.26± 0.17 −2.51± 0.52
S. natans −17.44± 0.71 −1.59± 0.70 S. natans −16.82± 0.73 −1.49± 0.42 S. natans −17.28± 0.81 −1.62± 0.55
Sargassum’s
associated
turf

−18.29± 0.51 −1.13± 0.05 Sargassum’s
associated
turf

−15.93± 0.79 −0.47± 0.07 Sargassum’s
associated
turf

−16.27± 0.63 −0.96± 0.01
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the lowest mean values of δ15N (−2.51 ± 0.52h). Turf associated to floating Sargassum
δ15N values fluctuated from−0.42h to−1.17h. The most depleted δ15Nwas exhibited at
Mahahual (−1.13 ± 0.05h) and the less negative mean value was displayed in Xahuayxol
(−0.47 ± 0.07h).

Sea urchins
There were significant differences δ15N among sites (ANOVA df = 2, F = 6.473, p= 0.005)
and the interaction between site*effect (USE and WSE) showed significant differences
(ANOVA, df = 2, F = 7.321, p= 0.003).

D. antillarum exhibited no differences among sites for δ13C values p> 0.05. However, we
found significant differences analysing the USE andWSE effect (ANOVA df = 1, F = 5.301,
p =0.03). The isotopic ratios ofD. antillarum (USE) varied from 3.83h to 6.13h for δ15N,
while δ13C ranged from −9.41h to −13.62h. Mahahual was the site with the highest
average values for δ15N 5.80 ± 0.30h, while Xcalak displayed the lowest average value
4.38 ± 0.29h. The isotopic ratios of D. antillarum (WSE) ranged from 4.69h to 6.16 for
δ15N, while δ13C fluctuated from −8.83h to −13.42h. We found significant differences
for δ15N for sea urchins between sites (USE, ANOVA, df = 2, F = 6.47, p< 0.005).-Xcalak
showed particularly low values under Sargassum effect (average value 4.38 ± 0.29h versus
WSE average value 5.44 ± 0.36h). Nevertheless, δ13C exhibited no significant differences
although we noticed a negative trend in the values of δ13C under Sargassum effect (USE).

Algal source contributions (SIAR)
Mixing models provided evidence for the contribution of different algal resources for
three sites USE and WSE (Table 3). SIAR analysis showed that D. antillarum behaved as
an opportunistic grazer under the Sargassum effect, it is important to note that pelagic
Sargassum, despite being one of the most abundant available resources, was not the most
assimilated resource (Fig. 4). Relatedely, there was a reduction in benthic food sources
USE (Fig. 4). Without Sargassum effect D. antillarum consumed, Laurencia, Stypopodium
and Udotea (12–15% in average) at Mahahual; Caulerpa, Laurencia, Penicillus, Sargassum
and Stypopodium (8–14% in average) at Xahuayxol; and Codium, Lobophora and Padina
(13–15% in average) at Xcalak. Nevertheless, those resources were absent in the diet of
D. antillarum under Sargassum effect (Table 3). Hence, the species displayed differential
resource assimilation and Caulerpa was the most important resource for D. antillarum in
Mahahual WSE (up to 37%), followed by Turf (up to 34%) and Halimeda and Udotea (up
to 29% for both). USE the most important resource was Halimeda (up to 44%) followed
by Caulerpa and Dictyota (both up to 31% of contribution). S. fluitans and S. natan s were
no important sources (0–28% and 0–23% respectively), and turf associated to Sargassum
blooms was the lesser assimilated resources by D. antillarum from 0 up to 22% (Table 3).

At Xahuayxol WSE D. antillarum showed Caulerpa was the most important resource
for D. antillarum (from 2 up to 25%) and for the rest of algae there were very similar
algal contribution (from 0 up to 23%). The main macroalgal contributor of USE was
Udotea with up to 61%, followed by Halimeda and Lobophora (with up to 35% and 38%
respectively) as secondary resources. Sargassum’s associated turf showed evidence of low
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Table 3 Average percentage (%) contribution of algal genus to the diet of the sea urchinsD. antillarum considering the effect of Sargassum:
without Sargassum effect (WSE) and under Sargassum effect (USE) at Mahahual, Xahyayxol and Xcalak produced by the SIARmodel using iso-
tope values from algae. Minimum and maximum values for each algae are shown in parentheses.

Mahahual Xahuayxol Xcalak

Genus WSE USE Genus WSE USE Genus WSE USE

Caulerpa 19 (1–37) 14 (0–31) Caulerpa 14 (2–25 ) – Caulerpa 14 (0–29) 22 (0–40)
Dictyota 9 (0–22) 14 (0–31) Dictyota 11 (0–22) 9 (0–23) Codium 15 (0–30) –
Halimeda 16 (1–29) 31 (17–44) Halimeda 10 (0–19) 17 (0–35) Dictyota 12 (0–26) 11 (0–26)
Laurencia 12 (0–25) – Laurencia 11 (0–21) – Lobophora 13 (0–27) –
Stypopodium 12 (0–25) – Lobophora – 20 (0–38) Padina 15 (0–29) –
Turf 17 (0–34) 11(0–26) Penicillus 8 (0–18) – Penicillus 12 (0–26) 22 (4–39)
Udotea 15 (0–29) – Sargassum 12 (0–23) – Turf 19 (0–45) 8 (0–19)
S. fluitans – 12(0–28) Stypopodium 11 (0–21) – Sargassum – 13 (0–29)
S. natans – 9(0–23) Turf 11 (0–22) 6 (0–16) S. fluitans – 7 (0–18)
Sargassum’s
associated
turf

– 9 (0–22) Udotea 12 (0–23) 28 (2–61) S. natans – 8 (0–19)

S. fluitans – 6 (0–17) Sargassum’s
associated
turf

– 9 (0–23)

S. natans – 6 (0–17)
Sargassum’s
associated
turf

– 8 (0–21)

contribution (from 0 up to 21%) and S. fluitans, S. natan s had negligible contribution to
D. antillarum diet with a maximum of 17% of the proportional contribution (Table 3).

Turf was the main algal resources for D. antillarum in Xcalak WSE (up to 45%)
followed by Caulerpa, Codium and Padina as secondary resources (close to 30%maximum
of contribution); contrasting USE the main macroalgal contributors in Xcalak were
Penicillus and Caulerpa with up to 39% and 40% respectively. Likewise Dictyota and
Sargassum polyceratium ( benthic Sargassum) were secondary resources up to 26% and
29%, respectively. The pelagic components in the other reef lagoons were negligible
contributors for D. antillarum diet with just 18–23% of maximum contribution (Table 3,
Fig. 4).

Trophic Levels
The overall trophic level data for D. antillarum (TL) ranged from 1.97 to 3.22. The species
exhibited significant differences among sites (ANOVA df = 2, F = 10.63, p= 0.0004),
and exhibited significant differences between WSE and USE (ANOVA, df = 1, F = 17.7,
p= 0.0003). Likewise, calculating the interaction between site*effect (USE and WSE)
revealed significant differences (ANOVA, df = 2, F = 12.65, p= 0.0001). The highest TL
values were reported for Mahahual USE, while the lowest one was recorded in Xahauayxol
WSE. At Mahahual, the TL mean value of D. antillarum was 2.35 ± 0.18 WSE and 3.08 ±
0.13 USE; at Xahuayxol, the TL mean value was 2.13 ± 0.30 WSE and 2.49 ± 0.27 USE,
and at Xcalak TL mean value was 2.62 ± 0.15 WSE and 2.45 ± 0.12 USE (Table 4).
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Figure 4 Algal resources proportions consumed byDiadema antillarum. Contribution rates of algae to
the diet of Diadema antillarum in the two scenarios (WSE and USE). Results are shown as 25% (light er-
ror bars), 75% (grey error bars) and 95% (dark error bars) of credibility intervals. (A) Represents the con-
tribution for D. antillarum at Mahahual without Sargassum effect (WSE), (B) represents D. antillarum at
Mahahual under Sargassum effect (USE); (C) represents D. antillarum in Xahuayxol WSE, (D) represents
D. antillarum in Xahuayxol USE; (E) represents D. antillarum in Xcalak WSE and (F) represents D. an-
tillarum in Xcalak USE. Bloom turf is the Sargassum’s associated turf. The blue bar represents the pelagic
sources USE.

Full-size DOI: 10.7717/peerj.7589/fig-4

Table 4 Trophic level ofD. antillarum. Mean Trophic level (TL), and δ15N and δ13C± standard deviation of D. antillarum without Sargassum
effect (WSE) and under Sargassum effect (USE) at Mahahual, Xahuayxol and Xcalak.

Site TLWSE TL USE δ15NWSE δ15NUSE δ13CWSE δ13CUSE

Mahahual 2.35± 0.18 3.08± 0.13 5.22± 0.43 5.8± 0.3 −10.46± 0.6 −12.32± 0.95
Xahuayxol 2.13± 0.3 2.49± 0.27 5.09± 0.71 4.9± 0.24 −11.5± 0.81 −11.21± 1.48
Xcalak 2.62± 0.15 2.45± 0.12 5.44± 0.18 4.38± 0.29 −10.58± 2.01 −12.02± 0.89
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Table 5 Trophic niche breadth of sea urchins without Sargassum effect (WSE) and under Sargassum
effect (USE) at Mahahual, Xahuayxol and Xcalak calculated by SIBER analysis of muscle values. SEAc,
corrected standard ellipse area.

Niche breadth Mahahual Xahuayxol Xcalak

WSE USE WSE USE WSE USE

SEA 0.62 0.71 1.79 2.97 2.32 2.32
SEAc 0.83 0.89 2.68 3.57 3.48 0.14

Isotopic Niches
Table 5 shows data on isotopic niche breadth as measured by the corrected standard
ellipse area (SEAc). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis suggested
a reduction in trophic niche particularly in Xcalak. This site showed the main difference
in the trophic niche breadth with SEAc of 3.48 and 0.14 (WSE and USE respectively). An
overlap of isotopic niches between WSE and USE was only found in Xahuayxol (Fig. 5).
SEAc was higher USE in this site with 3.57 versus 2.68 SEAc WSE (Fig. 5).

DISCUSSION
Our results provide evidence of the detrimental effect of Sargassum blooms on the
physicochemical water properties and ecological processes in near-shore coral reef
communities as recently has been identified in our study area (Rodríguez-Martínez, van
Tussenbroek & Jordán-Dahlgren, 2016; van Tussenbroek et al., 2017;Cuevas, Uribe-Martínez
& Liceaga-Correa, 2018). Particularly, the results provide evidence for the input of external
carbon and nitrogen resulting from Sargassum blooms on benthic communities that alter
the nutrient inputs and trophic niche for D. antillarum. These findings contribute to the
growing recognition of the role of exogenous nutrient enrichment in modifying natural
sources in a food web. Hence the organic matter inputs from Sargassum coupled with
hypoxia leads to modification of natural algal resources for D. antillarum. Considering the
detrimental effects this likely represents a nutrient limitation to sea urchin herbivory.

Onshore Sargassum exhibits physical processes of fragmentation, decomposition and
remineralization by bacteria, meiofauna and grazers (Colombini & Chelazzi, 2003). The
algae-derived organicmatter, product of that decomposition, has an effect on in situ oxygen
availability (Haas et al., 2010). Sargassum blooms clearly showed a negative impact hypoxic
conditions found at the three studied reef lagoons (Fig. 3). This could ultimately drive the
success of the communities’ nitrogen fixation, evidenced by depleted values of δ15N as
reported by Dorado et al. (2012) and France (1995).

The dissolved oxygen values in the back reefs of our study areas were lower than
the standard values for coral reefs dominated by algae (7.9 ± 0.5 mg l−1) according
to Haas et al. (2010) and values reported by Camacho-Cruz et al. (2019) for Xahuayxol
and Mahahual. This supports ideas from Kendrick et al. (2000) and Haas et al. (2010), who
argue that benthic communities linked to reef lagoons are very susceptible to environmental
degradation. Some benthic algae play an important play in the transfer of energy and can
be catalyzers of oxygen dynamics in reefs due to coral reef associated algae-derived organic
matter (Wild et al., 2010).
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Figure 5 Isotope niche breadth of the sea urchinDiadema antillarum. Isotope niche breadth of the sea
urchin Diadema antillarum at Mahahual (A), Xahuayxol (B) and Xcalak (C). Dotted lines are without Sar-
gassum effect (WSE) and solid lines under Sargassum effect (USE).

Full-size DOI: 10.7717/peerj.7589/fig-5

Cabanillas-Terán et al. (2019), PeerJ, DOI 10.7717/peerj.7589 17/32

https://peerj.com
https://doi.org/10.7717/peerj.7589/fig-5
http://dx.doi.org/10.7717/peerj.7589


Isotopic variations in the algal resources
We found that the composition of benthic macroalgae assemblages were different under
Sargassum and without Sargassum effect. USE showed a reduction in the taxonomic
diversity of macroalgal food sources available toD. antillarum and isotope values presented
substantially lower δ15N values (Table 2). The fact that there were fewer available algal
sources in the USE condition implies that the trophic chain becomes less complex as the
interaction of primary consumers with their resources is reduced (Phillips & Gregg, 2003).

Overall δ13C values ranged from −21.98 to −5.65h are similar to ranges reported
by Fry & Sherr (1984) and Morillo-Velarde, Briones-Fourzán & Álvarez Filip (2018). Those
authors reviewed the δ13C data of benthic algae, noting that values ranged between −30
and 5h. δ15Noverall algae values fluctuated from 0.02 to 5.68h. Despite these values agree
with the variation reported in other studies like Owens (1987) and France (1995), we found
USE very low, ergo according to Lapointe et al. (2005) and France et al. (1998). These low
15N:14N ratios can be indicative of macroalgae living in oligotrophic reefs which experience
nitrogen fixation (Montoya, Carpenter & Capone, 2002). In the presence of the leachates of
decomposing Sargassum, it is possible that anaerobic bacteria gained significance over other
benthic groups (Table 2), (Carpenter & Cox, 1974; Rooker, Turner & Holt, 2006), and could
be the cause of the low macroalgal isotopic signatures. On the other hand, high values of
δ15N in macroalgae are linked to land-based N enrichment sources, being a good indicator
of anthropogenic nitrogen inputs (Umezawa et al., 2002) such as sewage discharges (Risk
et al., 2009; Lapointe et al., 2011).

France (1995) reported nitrogen ranges of marine macroalgae from −3 to 18h. The
inconsistencies in this pattern with values of δ15N close to atmospheric signature of 0%
suggest a fixation of nitrogen. Dorado et al. (2012) associated the depleted values of δ15N
with nitrogen fixation and its impact on the trophic position of consumers. So, temporal
difference between values in this study WSE and USE might be explained by the influence
of organic input derived from floating Sargassum dragged components. We considered that
it is likely that the Sargassum effect modifies organic matter dynamics. These modifications
stem from changes in the oxygen levels, which were consistently reflected in the low δ15N
values we recorded of for the primary producers.

Status of Diadema antillarum in the Mexican Caribbean
It is important to note that we focused our study on the most abundant species at the
three localities and the most important shallow-bottom herbivore on Caribbean reefs
(Carpenter, 1981; Hughes, 1994; Aronson & Precht, 2006; Kissling et al., 2014). For the
Mexican Caribbean, there has been considerable variation in D. antillarum population
data. Jordán-Garza et al. (2008) showed a high presence of D. antillarum with densities of
more than 7 indm−2 in several areas, including our study area. Jorgensen, Espinoza-Ávalos &
Bahena-Basave (2008) reported densities of 12.6 ind m−2 after hurricane Dean. According
to Maldonado-Sánchez (2018) population density of D. antillarum displayed <1 ind m−2

for five different habitats of the Parque Nacional Arrecifes de Xcalak (PNAX) reef lagoon
(back reef, seagrasses, sandy bottoms and reef patches) and the fore reef. The back reef
exhibited the highest abundance with an average of 0.5 ind m−2. However for Mahahual,
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we registered an average density of 0.6 ind m−2 (N Cabanillas-Terán, pers. obs., 2017),
because of the broad variability exhibited in D. antillarum populations from the back reef.

Trophic parameters of D. antillarum
Our results support the evidence that Sargassum blooms impacted δ15N differentially
among sites, as the ratios of δ15N and δ13C are determined by their resources (Phillips
& Gregg, 2003). It was conspicuous that D. antillarum showed higher δ15N values USE at
Mahahual.

Although some available resources (e.g., Dictyota and turf) were present in both
conditions (WSE and USE), measuring the contribution of algae to the sea urchin tissues
can display key information about how consumers assimilate habitat resources and this
could reveal information on the degree of disturbance (Layman et al., 2007b). Therefore,
it is possible that the ecological role of D. antillarum was different in each site and could
be explained by the variation in the number of available resources and a differential
assimilation (Table 3). The higher δ15N values USE in the muscle of D. antillarum were
a result of the synergistic effect determined by resource availability and disturbance
condition.

Pelagic sources may provide new sources of food and the possible nitrogen fixation
carried out by turf attached to pelagic Sargassum undoubtedly brought a new source
of organic matter to basal trophic levels (Rooker, Turner & Holt, 2006). However, those
sources were not major contributors for D. antillarum and appear to avoid the invasive
pelagic macroalgae. This is consistent with the feeding ecology by marine generalist
herbivores (Boudouresque & Verlaque, 2001) and such feeding response is in line with
evidence from other sea urchin species in the face of other invasive resources. The
experiments carried out by Tomas, Box & Terrados (2011) provide evidence that some
seaweed invaders were strongly avoided by Paracentrotus lividus and therefore escape
enemy control by reducing herbivore preference.

The trophic level metric is very useful because the classical discrete trophic level
definitions ignore the value of food web connections, omnivory, and diet changes (Polis &
Strong, 1996; Vanderklift, Kendrick & Smit, 2006). Generally the sea urchin D. antillarum
has been considered as a generalist herbivore (Ogden & Lobel, 1978; Sammarco, 1980;
Solandt & Campbell, 2001; Weil, Torres & Ashton, 2005). Morillo-Velarde, Briones-Fourzán
& Álvarez Filip (2018) found that for the North of Quintana Roo Mexico D. antillarum
occupied an herbivorous trophic position. However, invertebrate samples have been found
in the stomach contents this species in the Caribbean, suggesting omnivorous behaviour
(Rotjan & Lewis, 2008; Rodríguez-Barreras et al., 2015; Rodríguez-Barreras et al., 2016).

The mean trophic level for D. antillarum exhibited at Mahahual was 2.35 ± 0.18 WSE
up to 3.08 ± 0.13 USE. Hence, WSE supported the idea that this species occupies an
herbivorous position. However USE D. antillarum revealed that the species can occupy
different trophic niches when faced with resource limitation. Under Sargassum blooms,
D. antillarum displayed a position more in line with omnivorous conditions, suggesting
trophic level indicative of herbivorous behaviour tending towards omnivory, according
to Vander Zanden & Rasmussen (1999). These authors stated that primary consumers
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have a trophic position of 2.0 (strictly herbivorous); but if organisms assimilate primary
consumers, they are considered to be a trophic level of 3.0. The results for Mahahual
are consistent with Andrew (1989) who argued that sea urchins could take advantage of
ecosystem changes through omnivory if variation exists in the availability of resources. Our
results suggest that D. antillarum behave as a facultative omnivore depending on patterns
of nutrient availability. δ15N signatures for D. antillarum in Mahahual suggest a different
carbon source USE. These signatures are also likely the result of anthropogenic nitrogen
inputs, as this site has a high eutrophication, being an area with elevated touristic demand
(Martínez-Rendis et al., 2016; Arias-González et al., 2017). Furthermore, possible nitrogen
fixation by anaerobic bacteria as an important factor in the variation of available sources
of food.

Regarding the TL values exhibited for D. antillarum in Mahahual USE 3.08 ± 0.13
versus 2.35 ± 0.18 for WSE would place D. antillarum in an omnivorous position tending
towards carnivory. Similar values were obtained from Mediterranean sea urchins as a
strategy to avoid exclusion by sympatric species (Wangensteen et al., 2011). However,
we cannot state that D. antillarum is carnivorous in Mahahual. This would require a
more complete temporal study, and an adjustment of a new δ15N baseline for primary
producers, considering that 15N/14N ratios can vary spatially and temporally (Jennings et
al., 1997; Vanderklift, Kendrick & Smit, 2006).

The results for Xahuayxol showed also a trend towards higher δ15N. However by
analyzing the condition of D. antillarum in Xahuayxol no significant differences were
observed. We can assume that this locality was least changed in its foraging behavior
position against the nutrients modification and the species occupied a lower trophic
level WSE. Meanwhile, Xcalak displayed the opposite trend compared to Mahahual and
Xahuayxol and USE D. antillarum trophic level was lower than WSE. Our results suggest
that for Xcalak the effect of Sargassum blooms completely modified and reduced the
possibility for finding available resources, displaying a trophic level around 2.5 between
the two scenarios of Sargassum blooms. This corresponds to a predominantly herbivorous
to omnivorous condition. Moreover this was confirmed with the isotopic niche breadth
data where a reduced niche was observed for Xcalak (Fig. 3).

The rank found for D. antillarum in this study is consistent with the study conducted
by Rodríguez-Barreras et al. (2015) in Puerto Rico where microinvertebrates were used as
source of organic matter by the sea urchin. Finally, TL values support the premise that
echinoids are able to modify their foraging behaviour depending on the availability of
resources (Randall, Schroeder & Starck, 1964; Muthiga & McClanahan, 2007), and in this
case under Sargassum blooms conditionwas not only determined bymacroalgae availability,
but for unusual conditions that caused a shift in the ecosystem (Cabanillas-Terán et al.,
2016).

Isotopic niche breadth
The ellipses provide integrated information on the relationship between the availability of
sources and the niche width. The results of Mahahual indicated that in USE. D. antillarum
consumes different carbon and nitrogen sources (Fig. 4).
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Several studies (Lawrence, 1975; Carpenter, 1981; Sammarco, 1982; Hay & Fenical, 1988)
noted that echinoids have the ability to adapt their foraging behavior depending on algae
availability as well as their population density and site characteristics (Bak, Carpay & De
Ruyter Van Steveninck, 1984; Bak, 1994; Alvarado et al., 2016). We observed at Mahahual
that USE D. antillarum exhibited a broader trophic niche than WSE. Despite the limited
resources this could lead to trophic overlap and stronger habitat degradation. SIAR results
showed a resource shift and this could be explained in terms of omnivory as stated by
France et al. (1998) ‘‘omnivory is a prevalent attribute of aquatic food webs’’.

The trophic niche of Xahuayxol reflects that there was no difference in the use of carbon
and nitrogen sources. It is noteworthy that for the case of Xcalak, the resulting isotopic
niche of D. antillarum was significantly smaller under Sargassum effect. This is consistent
with the metric that associates smaller niche amplitude with disturbed ecosystems (Layman
et al., 2007b).

Limitations of the study
To assess the effect of differential management of Sargassum and to effectively evaluate
the effect of disposal management, quantitative information on beach disposal would be
necessary.

From our results, it is clear that algae communities were modified due to Sargassum.
However, due to the structuring role of sea urchins, and, considering that algae respond to
temporal variability naturally, it would be necessary to study changing gradients at different
time scales. Such a temporal study would provide more conclusive information about the
effect of Sargassum spp. on benthic communities.

It is necessary to strengthen the sampling effort to evaluate current population status.
A more comprehensive discussion would need to include the interactions with other
herbivorous/omnivorous species, that coexist at each site and whether, or how they carry
out resource partitioning.

The metrics used in this study allowed us to evaluate the variation of the isotopic
signatures that formed the trophic spectrum ofD. antillarum under two different scenarios.
Metric values based on an instantaneous characterization of a single food web provide a
limited view of the food web. Therefore, to evaluate the trophic structure and consequently
its functional structure, themost promising evaluationswould have to include a comparison
of multiple gradients, and, to examine the same food web on a longer temporal perspective.

The deposited biomass regarding to S. fluitans and S. natans did not include a
measurement of the total arrived Sargassum blooms. However, our results established
a baseline for the amounts that were more available for the echinoids that inhabit the back
section of the Caribbean shallow reefs.

It would be challenging to evaluate the ecological role of other coexisting species
(Echinometra viridis, E. lucunter and Eucidaris tribuloides), and to include samples of
micro-invertebrates. However, this could offer new clues to the connectivity between
sympatric species, including trophic loops and successional states of algal communities
(Camus, Daroch & Opazo, 2008) within the benthic communities of coral reefs.
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CONCLUSIONS
The present study provides an initial review of how trophic parameters of D. antillarum
were modified by the impact of pelagic Sargassum blooms in the Mexican Caribbean. The
results indicated that the effects of the leachates generated by the decomposition process, the
input of organic material and deposition in its vegetal structures modify the organic matter
in the environment and hence the isotopic signatures. This has negative consequences in
the benthic trophic structure, limiting the natural herbivory of D. antillarum. The source
of available carbon and nitrogen was modified, and the isotopic signatures of macroalgae
associated with the reef sites exhibited significantly lower values of δ15N. Consequently,
the trophic niches were changed and in the case of Xcalak, significantly reduced.
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