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ABSTRACT
A new species of ichthyosauriform is recognized based on 20 specimens, including
nearly complete skeletons, and named Chaohusaurus brevifemoralis. A part of the
specimens was previously identified as Chaohusaurus chaoxianensis and is herein
reassigned to the new species. The new species differs from existing species of
Chaohusaurus in a suite of features, such as the bifurcation of the caudal peak neural
spine and a short femur relative to trunk length. The specimens include both
complete and partially disarticulated skulls, allowing rigorous scrutiny of cranial
sutures. For example, the squamosal does not participate in the margin of the upper
temporal fenestra despite previous interpretations. Also, the frontal unequivocally
forms a part of the anterior margin of the upper temporal fenestra, forming the most
medial part of the anterior terrace. The skull of the holotype largely retains
three-dimensionality with the scleral rings approximately in situ, revealing that the
eyeball was uncovered in two different directions, that is, laterally and slightly
dorsally through the main part of the orbit, and dorsally through the medial
extension of the orbit into the skull roof. This skull construction is likely a basal
feature of Ichthyosauromorpha. Phylogenetic analyses place the new species as a
sister taxon of Chaohusaurus chaoxianensis.

Subjects Paleontology, Taxonomy
Keywords Early Triassic, Ichthyosauromorpha, Chaohusaurus brevifemoralis, Majiashan, Chaohu,
Anhui Province

INTRODUCTION
The marine reptile clade Ichthyosauromorpha comprises two groups, namely
Ichthyosauriformes that lasted for about 160 million years and spread worldwide
(McGowan, 1991; Motani et al., 2015a) and Hupehsuchia, which is a small group of
heavily-built reptiles known only from the Spathian (Lower Triassic) of Hubei Province,
China (Young, 1972; Chen et al., 2014a). The two groups faced contrasting fates at
the end of the Early Triassic but they were almost equally diverse in the Spathian, when
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they were relatively new to the history of life (Motani et al., 2017). Early ichthyosauriforms
from that time period had been known since 1929 based on Grippia longirostris from
Spitsbergen (Wiman, 1929, 1933), and three additional species were reported within the
same century, namely Chaohusaurus geishanensis from China (Young & Dong, 1972),
Utatsusaurus hataii from Japan (Shikama, Kamei & Murata, 1978), and Parvinatator
wapitiensis from Canada (Nicholls & Brinkman, 1995). However, none of them was
represented by a complete skeleton and it was not until complete body fossils were reported
that we learned the bauplan of these animals—at least Chaohusaurus and Utatsusaurus
appeared like lizards with flippers (Motani, You & McGowan, 1996; Motani, Minoura &
Ando, 1998), unlike later ichthyosaurs that were fish-shaped. Three more species have
been recognized since, namely Gulosaurus helmi from Canada (Cuthbertson, Russell &
Anderson, 2013a), Cartorhynchus lenticarpus from China (Motani et al., 2015a), and
Sclerocormus breviceps from China (Jiang et al., 2016). Thaisaurus chonglakmanii from
Thailand (Mazin et al., 1991) may also belong to the list but further study is needed to
establish the exact stratigraphy.

Chaohusaurus is by far the best-known genus of the Spathian ichthyosauriforms, being
represented by dozens of skeletons, and more than 10 scientific papers focusing on the
genus have been published (Young & Dong, 1972; Chen, 1985; Motani, You & McGowan,
1996; Motani & You, 1998a, 1998b; Maisch, 2001; Chen et al., 2013; Motani et al., 2015b,
2015c, 2018; Zhou et al., 2017). Three species are currently recognized in the genus.
The type species Chaohusaurus geishanensis and the second species Chaohusaurus
chaoxianensis are known from the Chaohu fauna in Anhui Province, China. The third
species, Chaohusaurus zhangjiawanensis, is from the Nanzhang-Yuan’an fauna in Hubei
Province. Of the three species, Chaohusaurus chaoxianensis is the most abundant,
whereas the other two are known from only a few specimens each. Most of the specimens
of Chaohusaurus chaoxianensis were collected from former limestone quarries in the
Majiashan area, located north of the eastern outlet of Chaohu Lake, Anhui Province,
China. Multi-year excavations that started in 2010, by a joint team from the Peking
University, University of California, Davis, University of Milan, and Anhui Geological
Museum, unearthed about 60 marine vertebrate specimens from the area. About 40 of
the specimens were tentatively identified as Chaohusaurus chaoxianensis based on the
presence of poorly ossified carpals or tarsals, which is among the features that distinguish
the species from Chaohusaurus geishanensis (Motani et al., 2015c).

A recent examination of morphological variation in these specimens revealed four
morphotypes that likely represented females and males of two taxa, which were tentatively
referred to as Types A and B (Motani et al., 2018). The two morphotypes were distinguished
based on a suite of both qualitative and quantitative morphological characters. There are
at least a dozen specimens for each morphotype—numbers that are far greater than those
for the other two species of Chaohusaurus. These morphotypes most likely represent
different species given that morphological differences do not reflect sexual dimorphism
(Motani et al., 2018). Type A (Fig. 1), for which 13 specimens are known, contains
the holotype of Chaohusaurus chaoxianensis so these specimens are considered to belong
to this species. Type B (Fig. 2), with 21 specimens, had yet to be named or described,
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although some of the specimens were previously included in descriptive studies of
Chaohusaurus chaoxianensis (see “Systematic Paleontology”). It is therefore important
to clarify the taxonomic confusion in the existing literature. The purpose of this paper is
to describe Type B as a new species of Chaohusaurus, and clarify its diagnostic
differences with Chaohusaurus chaoxianensis.

MATERIALS AND METHODS
Specimens
The specimens used in this study are listed in Systematic Paleontology. Most specimens are
articulated skeletons lacking some parts of the body. All specimens have undergone at least
some degree of compressional deformation during preservation, adding biases to the
morphological data. The degree of compression depends on the specimen. Thick bones or
bony structure are most prone to the bias from such deformation. For example, when
comparing specimens of similar sizes, the shaft of long bones may appear wider in one
specimen than the other because of preservational deformation; the wider shaft has been
flattened and widened more severely through compaction. In extreme cases, a convex
surface my appear slightly concave because of compaction. The extremity of the same
bones, on the other hand, seems to suffer less from similar flattening and widening,
probably because the average density of the bone in these areas are higher than in the shaft.
Apart from long bones, cranial structures are often distorted by compactional deformation
because of their thickness. It is therefore important to compare many specimens first
to grasp the original morphology of bones before compression.

Figure 1 The most complete specimen of Chaohusaurus chaoxianensis (AGB6256). (A) Photograph.
(B) Approximate bone map. See the section “Osteological abbreviations” for abbreviations. Scale bar is
five cm in total. Full-size DOI: 10.7717/peerj.7561/fig-1
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Nomenclature
The electronic version of this article in portable document format will represent a
published work according to the International Commission on Zoological Nomenclature
(ICZN), and hence the new names contained in the electronic version are effectively
published under that Code from the electronic edition alone. This published work and the
nomenclatural acts it contains have been registered in ZooBank, the online registration
system for the ICZN. The ZooBank Life science identifiers (LSIDs) can be resolved and the
associated information viewed through any standard web browser by appending the LSID
to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:
pub:3FA09089-C940-4499-ABBC-B48F0F70F38E. The online version of this work is

Figure 2 Holotype ofChaohusaurus brevifemoralis sp. nov (AGB7401). (A) Photograph. (B) Approximate
bone map. See the section “Osteological abbreviations” for abbreviations. Scale bar is five cm in total.

Full-size DOI: 10.7717/peerj.7561/fig-2
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archived and available from the following digital repositories: PeerJ, PubMed Central
and CLOCKSS.

Phylogenetic analysis
The phylogenetic position ofChaohusaurus brevifemoraliswas analyzed based on a modified
version of a published taxon-character data matrix (Motani et al., 2017). Character order
has been modified to improve anatomical consistency; the correspondence between
the new and old numbers are summarized in Table S1. The following characters states
and descriptions were revised. A new character was added as Character 61, Dorsal orbital
margin: (0) on the same plane as the rest of orbital margin; (1) with medial excursion
away from the main orbital plane. The original character 68, Dentigerous region in
adults, was divided into two characters, namely Character 74, Premaxillary teeth
presence and Character 75, maxillary teeth presence. A new character state was added
to Characters 47 and 95 respectively, to reflect the unique morphology in Chaohusaurus
and Cartorhynchus—Character 47, Basipterygoid process: (0) located antero-laterally;
(1) located postero-laterally and short, giving basisphenoid a square outline in dorsal
view, (2) located postero-laterally and markedly expanded laterally, being wing-like,
giving basisphenoid a marked pentagonal shape in dorsal view; and Character 95,
Humerus anterior flange: (0) absent; (1) present but concave or notched; (2) present and
complete; (3) present but reduced proximally, leaving leading edge tuberosity. State 0 of
Character 108, Shape of the posterior surface of ulna, contained the word “radius”
that needed to be replaced by “ulna.” Character state description of Character 177,
Presacral count, was revised to: (0) less than 35; (1) between 35 and 54; (2) more than 55.
These new states were incorporated into the matrix through re-coding relevant taxa.
Some characters were sorted for anatomical consistency (Table S1), and the original
Characters 144, Interdigital separation, and 168, Spatium interosseum between tibia and
fibula size, were removed to avoid redundancy and inconsistency.

After the character revision described above, Chaohusaurus brevifemoralis was added to
the data matrix and coded. The following characters in other Early Triassic taxa were
recoded to reflect updated information through direct observations and the literature.
The new coding are: Cartorhynchus lenticarpus, 36(1), 37(1), Chaohusaurus geishanensis,
22(1), 36(1), 59(0/1), 63(0); Chaohusaurus chaoxianensis, 22(1), 26(1), 28(1), 36(1), 37(1),
42(?), 46(?), 59(0/1), 63(0), 71(?), 93(1), 119(1), 172(?), 173(0), 174(0), 196(0), 197(0);
Chaohusaurus zhangjiawanensis, 26(1), 28(?), 37(1), 116(0), 135(0); Hupehsuchus
nanchangensis, 34(0). Also, dental characters were recoded for nasorostrans, and
Characters 168, Spatium interosseum between tibia and fibula presence, and 169, Hind
fin leading edge element in adults, were recoded to comply with a previous study (Ji et al.,
2016). The revised character matrix is provided in Data S1.

The resulting character-taxon matrix was analyzed by TNT 1.5 (Goloboff, Farris &
Nixon, 2000) and PRAP2 (Müller, 2004) with PAUP� 4b10 (Swofford, 2003). Searches in
TNT used a combination of options defined by “xmult = hit 100 replications 100 drift
10 hold 10.” Searches in PRAP2 were based on default setting of 200 replicates of rachet
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searches. The Bremer support values were calculated in TNT, using a command
“bsupport !!+0 1.” Bootstrap values were also calculated in TNT, based on 10,000 replicates.

Sexing
We are not providing new results on sexing of the specimens over what were recently
published (Motani et al., 2018). However, it may be useful to summarize the rationale behind
the published sexing results that are adopted in the present paper. Motani et al. (2018)
found that two taxa, herein identified as Chaohusaurus chaoxianensis and Chaohusaurus
brevifemoralis, each contained two morphotypes with long and short limbs, respectively.
Such intraspecific dimorphism in relative limb length to the body is commonly known in
multiple marine tetrapods, where males have longer limbs than females but never the other
way around. This phenomenon is rationalized by the notion of the “organ of prehension”
laid out by Darwin. That is, males usually have organs to hold females during courtship,
which he called “organ of prehension,” and elongated limbs often evolve to serve that
purpose. Based on this rationale, Motani et al. (2018) identified the morphs with elongated
limbs as males. See Motani et al. (2018) for the details.

Statistical analysis
As stated earlier, the purpose of the present paper is purely to describe a new species that
was previously established as a distinctive morphotype based on both qualitative and
quantitative characters, aided by statistical analyses (Motani et al., 2018). It would be
repetitive to report the analyses again, so the readers are advised to refer to that paper for
the statistical backgrounds.

SYSTEMATIC PALEONTOLOGY

Ichthyosauromorpha Motani et al., 2015a

Ichthyosauriformes Motani et al., 2015a

Chaohusaurus Young and Dong 1972

Chaohusaurus chaoxianensis (Chen, 1985)

Anhuisaurus chaoxianensis, Chen, 1985
Anhuisaurus faciles, Chen, 1985
Chensaurus chaoxianensis Mazin et al. 1991
Chensaurus faciles Mazin et al. 1991
Chensaurus chaoxianensis Motani and You 1998a, in part
Chaohusaurus geishanensis Motani and You 1998b, in part
Chaohusaurus chaoxianensis Motani et al. 2015c, in part

Holotype. AGM AGB2905 (previously referred to by a field number P45-H85-25).

Paratype. P45-H85-24 (whereabouts unknown).

Referred specimens. AGM AGB2906 (P45-H85-20, holotype of A. faciles Chen, 1985),
5855, 6252, 6259, 6261, 6262, 6608, 6609, 7404, 7409, 7413; NGM P45-H85-21,
P45-H85-23 (paratype of A. faciles Chen, 1985); IVPP V11362.
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Revised diagnosis. Narrow notch between two anterior sub-flanges of humerus;
antero-proximal flange of radius well differentiated from shaft; ulnar distal fan nearly
symmetrical relative to bone axis; only two tarsal ossifications in most individuals except
largest; caudal peak neural spine not bifurcated (Fig. 3).

Remarks. The caudal peak neural spine of the holotype may appear bifurcated due to a
damage. However, the impression left on the matrix suggests that it was not bifurcated in life.
The morphotype representing this species was referred to as Type A byMotani et al. (2018).

Chaohusaurus brevifemoralis sp. nov.
Chensaurus chaoxianensis Motani and You 1998a, in part
Chaohusaurus geishanensis Motani and You 1998b, in part
Chaohusaurus chaoxianensis, Motani et al. 2015c, in part
Chaohusaurus chaoxianensis, Zhou et al. 2017, in part

Etymology. The specific name refers to the shortness of the femur relative to the body
in comparison to other species.

Holotype. AGM AGB7401. A complete skeleton of a male individual, lacking only the tip
of the tail. From bed 621. See Figs. 2 and 4.

Paratypes. GMPKU P-3086. A nearly complete skeleton of a female individual lacking
the tip of the snout and most of the forelimb and pedal phalanges. From bed 633.
The specimen was recently figured (Zhou et al., 2017). See also Fig. 5. AGB7403. A partially
disarticulated skull and the upper body down to the forelimb (Fig. 6). From bed 628.

Referred specimens. AGM AGB5846a, 5846b, 5846c, 6253, 6254, 6255, 6258, 6260, 6605,
7402, 7407, 7408, 7410, MT10022; GMPKU P-1101, P-3093; IVPP V11361.

Ambiguous specimens. AGB6607 and 7400 are not included in the formal list of the
specimens but may belong to Chaohusaurus brevifemoralis. As reported elsewhere
(Motani et al., 2018), both share the same quantitative scaling trends and qualitative
features with Chaohusaurus brevifemoralis. Yet, they appear osteologically immature
compared to specimens of the same sizes, that is, their bones are slender, and extremities of
long bones are not fully formed. At least one of them (AGB6607) is large enough to be an
adult of Chaohusaurus brevifemoralis. Based on this inferred immaturity, we are not
including them in the list of referred specimens at this point.

Locality. Majiashan, Chaohu, Anhui Province, China.

Horizons. Ammonoid Subcolumbites zone, Spathian, Lower Triassic. Known specimens
are from beds 621 to 638 (about 248.53–248.34 Ma) that were previously dated using
astrochronology (Fu et al., 2016).

Diagnosis. Humeral anterior flange poorly developed, with weakly concave preaxial margin
near midshaft; radial antero-proximal flange poorly developed; ulnar distal fan asymmetrical
relative to bone axis, due to anterior expansion of distal preaxial margin; femur short for
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Figure 3 Comparison of diagnostic features between Chaohusaurus brevifemoralis sp. nov and
C. chaoxianensis. (A) Anterior flange of the humerus, which is poorly developed in C. brevifemoralis
(AGB 6258) but well-developed in C. chaoxianensis (AGB 6256) to leave a notch in the middle.
(B) Anterior flange of the radius, which is poorly developed in C. brevifemoralis (AGB 7403, paratype) but
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trunk length in comparison to Chaohusaurus chaoxianensis; tibia proximally narrow for
trunk length in comparison to Chaohusaurus chaoxianensis; bifurcated neural spine near
caudal peak; three tarsal ossifications in most individuals except newborns (Figs. 3 and 7).

Figure 3 (continued)
well-developed in C. chaoxianensis (AGB 2905, holotype). (C) Anterior expansion of the distal ulnar shaft,
which is present in C. brevifemoralis (AGB 6260) and makes the distal fan of the ulna appear asymmetrical
relative to the ulnar axis (note: usually smaller than in the specimen figured here) but absent in
C. chaoxianensis (AGB 6262), leaving the distal fan appear symmetrical relative to the ulnar axis. (D) Distal
tarsal, at least one of which is always present inC. brevifemoralis (AGB 7401, holotype) but is absent in most
specimens of C. chaoxianensis (AGB 2905, holotype) except the largest individuals. (E) Caudal peak neural
spine (middle one of the five figured), which is bifurcated in C. brevifemoralis (AGB 7401, holotype) but
remains single in C. chaoxianensis (AGB 5855). Red arrows point to apomorphic character states. Orange
lines in (E) describe the inclination angles used in identification of the first anticlined neural spine explained
in text. Scale bars are one cm. Full-size DOI: 10.7717/peerj.7561/fig-3

Figure 4 Skull of the holotype of Chaohusaurus brevifemoralis sp. nov (AGB7401). (A) Dorsal view.
(B) Lateral and slightly dorsal view. (C) Approximate bone map for (A). (D) Same for (D). See the section
“Osteological abbreviations” for abbreviations. Scale bar is one cm in total.

Full-size DOI: 10.7717/peerj.7561/fig-4
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Remarks. The morphotype representing this species was established as Type B byMotani
et al. (2018). Quantitative and qualitative comparisons with Chaohusaurus chaoxianensis
(Type A) are found in that paper.

RESULTS
Morphological descriptions
The body of Chaohusaurus brevifemoralis sp. nov is usually preserved in a curled
posture, as seen in the holotype (Fig. 2). This tendency for curled posture is shared with
Chaohusaurus chaoxianensis (Fig. 1), and probably with other species of the genus.
To the best of our knowledge, there are only two specimens of Chaohusaurus that are
preserved in approximately straight posture, one of which was previously figured
(Motani, You & McGowan, 1996).

The body proportion in adults is similar to those of non-hueneosaur ichthyopterygians—
the tail occupies about half of the total length, and the skull is usually about a quarter of the

Figure 5 Skull of Chaohusaurus brevifemoralis sp. nov in one of the paratypes (GMPKU P-3086).
(A) Ventral view of the mandible and lateral view of the right side of the skull. (B) Right mandibular
ramus from dorso-lateral direction. (C) Approximately lateral view of the left side of the skull. (D) Approx-
imate bone map for (A). (E) Same for (B). (F) Same for (C). See the section “Osteological abbreviations” for
abbreviations. Scale bar is one cm in total. Full-size DOI: 10.7717/peerj.7561/fig-5
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precaudal length (i.e., about one eighth of the total length). The relative size of the skull to the
total length is much larger in long-snouted hueneosaur ichthyopterygians, where the values
scatter around 20–30%.

The sizes of the major structures in the holotype and four more specimens are
summarized in Table 1 and compared to the same metrics for four specimens of
Chaohusaurus chaoxianensis. To avoid redundancy, absolute sizes are not reported
in text.

Figure 6 Skull of Chaohusaurus brevifemoralis sp. nov in one of the paratypes (AGB7403). (A) Planar
view of the specimen. (B) Approximate bone map for (A). (C) Reconstruction of the parasphenoid-
basisphenoid complex. See the section “Osteological abbreviations” for abbreviations. Short scale bars are
one cm each. Full-size DOI: 10.7717/peerj.7561/fig-6
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Cranium

Cranial suture patterns are given in Figs. 4–6, so the contact patterns among bones are
minimally reported in the description below to save space. Exceptions are bones
surrounding major fenestrae, and ambiguous or polymorphic cases. Unless otherwise
stated, descriptions of cranial and mandibular elements below are based on the holotype
(Fig. 4) and the paratypes (Figs. 5 and 6), one of which revealing some hidden parts of
cranial elements through partial disarticulation.

Premaxilla. The premaxilla is a slender bone that occupies most of the snout in lateral
view, where its length is slightly less than half of the skull length. Its extent along the
midline is less because the nasals extend anteriorly in-between the two premaxillae.
The premaxilla is approximately triangular but has short sub- and supranarial processes
emerging from the ventral and dorsal corners of the posterior margin, which forms the
anterior margin of the external naris. One of these processes may be missing in some
specimens without a clear pattern. The premaxilla bears teeth, as described below.

Maxilla. The maxilla is about half as long as the premaxilla along the jaw margin. It has an
ascending postnarial process that excludes the lacrimal from the margin of the external
naris. This process is robust, with its base width rivaling the antero-posterior length
of the external naris. The suture with the lacrimal appears smooth. The maxilla forms the
posterior and postero-ventral margins of the external naris, forming a continuous curve

Figure 7 Femoral length plotted against trunk length. F, female; M, male. Within each species, males
tend to have longer femora for the trunk length than females, while C. chaoxianensis tends to have longer
femora for the trunk length than C. brevifemoralis, especially when compared within the same sex.
Polygons represent convex hulls for each species. Based on Motani et al. (2018).

Full-size DOI: 10.7717/peerj.7561/fig-7

Huang et al. (2019), PeerJ, DOI 10.7717/peerj.7561 12/40

http://dx.doi.org/10.7717/peerj.7561/fig-7
http://dx.doi.org/10.7717/peerj.7561
https://peerj.com/


that contributes to about a third of the oval perimeter of the opening. The anterior extent
of the maxilla in lateral view is slightly anterior to the external naris, while the posterior
end of the bone in lateral view overlaps the anteriormost part of the orbit narrowly.
The maxilla bears teeth, as described below.

Nasal. The nasal is a major bone that forms a part of the skull roof from the anterior orbital
to prenarial region, behind the major part of the snout. It is widest near the lacrimal, and
tapers to a point both posteriorly and anteriorly. The posterior ends of the right and
left nasals are widely separated by the frontals while the anterior ends meet along the

Table 1 Measurements of major structures in Chaohusaurus brevifemoralis in females and males of different sizes.

Species C. brevifemoralis C. chaoxianensis

Institution GMPKU AGM AGM GMPKU AGM AGM AGM AGM AGM AGM
Specimen number P-1101 AGB7401 AGB6260 P-3086 AGB7408 AGB2906 AGB2905 AGB6259 AGB6262 AGB6456
Sex F M M F F F F M F M

Length along the vertebral
column

(709+) (816+) 542 505

SVL 238.9 442 529 578 305 288

Trunk length 168 334 408.1 415.3 469 136.6 261.7 294.13 229.38 201

Presacral vertebral count 36 37 36 35 36

Sacral vertebral count 3

Preserved caudal vertebral
count

(36+)

Skull length 70.86 114.61 120.9 111.75 58.97 75.62 87

Orbit length 20.71 35.07 25.82 32.57 25.73 26.1

Scleral ring aperture length 16.2

UTF maximum diameter 15.3 (18.49−)

External naris length 8.63 7.53 5.18 6.01

Humerus length 7.02 23.22 18.7 25.59 6.97 19.56 20.38 14.03 16.5

Humerus distal width 6.04 15.72 13.4 20.53 5.27 15.44 11.2 10.04

Radius length 7.74 21.69 24.02 16.32 20.96 6.64 15.53 18.35 13.94 13.5

Radius proximal width 4.76 14.71 13.34 11.42 4.54 10.42 13.34 9.18 9.38

Ulna length 7.94 20.52 24.79 22.31 6.87 15.38 17.46 14.03 12.46

Ulna distal width 3.68 15.98 11.88 16.47 4.77 8.36 13.84 9.51 7.35

Intermedium maximum
diameter

1.29 6.38 6.17 7.66 0.89 6.05 4.54 3.39

Femur length 5.22 19.38 17.2 20.39 11.9 14.93 8.68 9.43

Femur distal width 4.75 13.88 10.32 15.81 8.17 10.47 6.73 9.21

Tibia length 6.01 17.99 15.93 10.14 14.38 9.61 9.87

Tibia proximal width 3.42 6.98 7.06 5.5 7.28 5.38 4.36

Fibula length 7.38 19.13 20.12 18.01 11.42 15.84 10.25 10.02

Fibula distal width 4.4 12.01 14.22 12.06 7.61 10.78 7.48 7.01

Astragalus maximum
diameter

1.49 6.66 6.77 3.92 4.96 4.1 3.62

Specimen note Smallest Holotype Largest M Paratype Largest F Smallest Holotype Largest M Typical F Typical M
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sagittal line. In the holotype, the right nasal appears to extend far more anteriorly than the
left nasal, but this is likely an artifact of preservation (Figs. 4A and 4C).

Frontal. The frontal is a major bone that forms the skull roof in the orbital region.
Its shape is approximately an elongated triangle in dorsal view. Its postero-lateral process
narrowly participates in the antero-lateral margin of the upper temporal fenestra, forming
the most medial segment of the anterior terrace of the fenestra (Fig. 4). The bone is
excavated in the terrace region, being separated from the roof part by a conspicuous ridge.
The ridge and terrace are confluent with the corresponding structures of the postfrontal.

Parietal. The parietal has the smallest exposure of the bone of the skull roof, comprising
the main corpus forming the posteriormost part of the skull roof and a supratemporal
process that extends postero-laterally from the corpus. The corpus appears small
compared to those of most ichthyopterygians in its relative size to the skull, in width and
length. There is a ridge at the posterior end of the skull roof, followed by a slope that is
better seen in occipital view than dorsally. They likely represent the parietal ridge and slope
that are present in mixosaurs and parvipelvians (Motani, 1999). The inter-parietal suture
is not straight: it is bent once in front of the pineal foramen and deeply interdigitated
posterior to the foramen (Figs. 4 and 6). It is evident that there is a descending ventral
flange along the margin of the upper temporal fenestra, as expected in neodiapsids.
The flange is separated from the roof by a conspicuous ridge.

Postfrontal. The postfrontal forms a major part of the bar between the orbit and upper
temporal fenestra. It is posterior two-thirds are excavated to form most of the anterior
terrace of the upper temporal fenestra (Fig. 4). This proportion of excavated area is
unusually high compared to ichthyopterygians. The excavated terrace is separated from
the skull roof by a sharp and conspicuous ridge that continues into the frontal.

Prefrontal. The prefrontal is the largest of the bones surrounding the orbit (Figs. 4–6).
It has a structure often referred to as an “eyebrow,” a small shelf above the antero-dorsal
corner of the orbit. This feature is shared with basal ichthyopterygians, such as U. hataii
and Grippia longirostris (Mazin, 1981; Motani, Minoura & Ando, 1998; Motani, 2000;
Cuthbertson, Russell & Anderson, 2013b). The bone is swollen laterally around the base of
this structure, making it appear unusually massive for a cranial dermal bone.

Lacrimal. The lacrimal appears as a narrow strip of bone between the maxilla and
prefrontal in lateral view (Figs. 4 and 5). It is wider away from the orbit. See Orbit below for
its participation in the structure.

Jugal. The jugal is a narrow and J-shaped bone in lateral view (Figs. 4–6) but there is
indeed much three-dimensionality to the morphology of the bone. The bone is most robust
near the postero-ventral corner, where it has a thick and rounded cross-section. From
there extends a narrow and horizontal plate of bone anteriorly, forming the maxillary
process along the antero-ventral margin of the orbit. This plate widens anteriorly along
the orbital rim. This ventral margin of the orbit formed by the jugal is continuous with the
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anterior wall of the orbit formed by the prefrontal, together giving depths to the
orbital rim. Postero-dorsal to the postero-ventral corner extends the postorbital process.
Unlike the maxillary process that is flat horizontally, the postorbital process is flat
vertically. The postorbital process articulates mainly with the postorbital but it also
contacts the quadratojugal and may be partially overlapped by the squamosal.

Postorbital. The postorbital is best seen in AGB7403, where the bone is disarticulated
from the rest of the skull (Fig. 6). Its general outline may be compared to the bottom half of
the waxing crescent. There are two short processes extending antero-dorsally (postfrontal
process) and postero-dorsally (supratemporal process), respectively.

Supratemporal. The supratemporal is a large bone that forms the postero-lateral corner of
the upper temporal fenestra. It resembles the squamosal of neodiapsids. it is essentially
a triradiate bone, with the postorbital process extending anteriorly, parietal process
medially, and descending process ventrally. The descending process is excavated to allow
acceptance of the dorsal end of the quadrate, as in Ichthyosaurus (McGowan, 1973).

Squamosal. The identity of squamosal and quadratojugal requires future scrutiny because
some specimens show just one of them each. The following description is based on the
tentative identification given in Figs. 4–6 with question marks. The squamosal in
Chaohusaurus spp. resembles that described for Mixosaurs atavus in that it is slightly
swollen laterally and occupies the middle part along the height of the cheek, unlike in most
diapsids where it is located dorsally. The bone covers parts of the supratemporal and
quadrate superficially, and sometimes also parts of the postorbital and jugal. The bone
appearsmissing in some specimens, possibly reflecting its superficial position that makes it
easy for the bone to flake off. However, analyses of 3D morphology are necessary to
clarify if the bone is truly missing in these specimens. This bone was identified in several
different locations and with different shapes depending on the specimen in a previous
publication (Zhou et al., 2017). One of them, figured in their Fig. 4B, matches the current
description (see “Discussion”).

Quadratojugal. Again, the identity of squamosal and quadratojugal requires future scrutiny
because one of the bones may not be clearly present in some specimens (see “Squamosal”).
The quadratojugal is a vertically elongated plate of bone that is slightly broader
dorsally than ventrally. It is constricted above the ventral end, where the bone is expanded
and thickened to form a cup that sits on the dorso-lateral part of the quadrate condyle, as in
Ichthyosaurus (McGowan, 1973).

Quadrate. The outline of the quadrate in postero-medial view may be compared to that
of a human auricle, with the quadrate condyle occupying the position of the lobule of
the auricle. This shape is most evident in the right element in AGB7403 that has been
disarticulated and exposed in postero-medial view (Fig. 6). The condyle has two ridges
separated by a shallow groove, as in most reptiles (Romer, 1956). When in articulation, the
bone is largely concealed by the quadratojugal that covers most of its lateral aspect, and
the supratemporal that encloses its dorsal end.
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Supraoccipital. The supraoccipital is missing in the holotype but exposes its postero-dorsal
view in AGB7403, being disarticulated from but associated with the parietals (Fig. 6). It is a
large bone for the occiput, being slightly larger than the roof part of a single parietal.
Its antero-dorsal margin is convex, and postero-ventral margin concave. The lateral
margins are approximately straight. The shape of the convex margin approximately fits
that of the concave posterior margin of the parietal pair, to which it is supposed to
articulate. No articular facets are seen on the exposed side, as expected from the condition
in other ichthyosauriforms.

Exoccipital. There is a pair of exoccipitals preserved behind the skull of AGB7403, in
disarticulation (Fig. 6). The exoccipital resemble that described for Ichthyosaurus in having
a shape somewhat reminiscent of a boot in lateral view; it is wider ventrally than the
dorsally, the posterior margin is approximately vertical, and the anterior margin is
strongly concave (McGowan, 1973). The toe of the boot is conspicuously curled-up in
Ichthyosaurus, but the curling is not as pronounced in the present form.

Basioccipital. The basioccipital of Chaohusaurus in general is largely unknown.
In AGB7403, there is a bone between the skull and the atlantal pleurocentrum that may
represent the basioccipital, being exposed in what appears to be the dorsal view given the
presence of a pair of articular facets, probably for the exoccipitals (Fig. 6). The bone is
longer than the atlantal pleurocentrum antero-posteriorly, and its length approximately
matches the distance between the posterior margins of the parasphenoid and basisphenoid
that will be mentioned below.

Basisphenoid. The basisphenoid is known from only one specimen, AGB7403, which
exposes more than half the bone, dislocated to be behind the supraoccipital (Fig. 6).
There is no sign of a major foramen in the exposed side, so it is most likely the ventral side.
Figure 6C represents the estimation of the bone outline through mirroring of the
exposed half. The reconstructed shape is reminiscent of what was drawn for Limnoscelis
(Romer, 1956). Unlike in Ichthyosaurus, the basisphenoid of Chaohusaurus is not fused
to the parasphenoid. There is a pair of processes pointing postero-laterally from the
posterior corners of the bone, and this process continues ventrally to the main body of the
bone where they become side walls of a triangular area that is excavated from the ventral
side. This area seems to serve as the socket for the main body of the parasphenoid.
The triangular area matches the shape of the main body of the parasphenoid (Fig. 6C).
Conspicuous striations are seen lateral to the triangular area, resembling those that are
reported for the parasphenoid below. The basipterygoid process is short, broad, and
directly laterally, not antero-laterally as in most reptiles. The anterior surface of the
basisphenoid is slightly concave.

Parasphenoid. The parasphenoid is best seen in AGB7403 (Fig. 6). It is a large bone that
covers the base of the braincase region, comprising a long cultriform process and a
fan-shaped main body. The anterior half of the fan fits into a triangular socket at the
ventral part of the basisphenoid, while the posterior half extends more posteriorly than the
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main body of the basisphenoid, almost reaching the tip of the postero-lateral process of
the basisphenoid (Fig. 6C). The main body is covered by strong striations that radiate
from the base of the cultriform process. When articulating the parasphenoid to the
basisphenoid, these striations would become a part of a series with the striations reported
above for the basisphenoid. There is a pair of swelling at the base of the cultriform process,
which are probably basal tubera (Romer, 1956).

Pterygoid. The pterygoid is best seen in GMPKU P-3086 (Fig. 5A). It is similar to the
pterygoid of basal ichthyopterygians, such as Grippia longirostris. There is a transverse
flange marked by a weak ridge that runs from postero-medial to antero-lateral. Pterygoidal
teeth are not present. The part posterior to this ridge is elevated and then becomes slightly
twisted toward the posterior end, forming the quadrate ramus. The anterior part tapers
to a point along the sagittal plane. As with the pterygoid, there is no sign of the margin for
the suborbital fenestra.

Palatine. GMPKU P-3086 has a part of the palatine exposed, showing that it is located in
its usual position in ichthyopterygians, that is, antero-lateral to the anterior ramus of
the pterygoid (Fig. 5A). There is no evidence of the suborbital fenestra in the exposed part
of this bone. Otherwise, the exposure is too limited to allow morphological descriptions.

Orbit. The orbit is large and occupies a substantial part of the postnarial skull, with
a maximum diameter that is about twice as large as that of the upper temporal fenestra.
The orbital rim does not form a circle, ellipse, or ovoid that would fit onto a plane as
in ichthyosaurians. Instead, the rim exhibits a conspicuous medial excursion in the
dorsal part, off the lateral plane formed by the remainder of the rim (Figs. 4A and 4C).
The excursion corresponds to the constriction of the skull roof near the narrow contact
between the prefrontal and postfrontal. Similar constriction of the skull roof and an
associated excursion of the orbital rim have been recognized in Grippia longirostris,
U. hataii and Cartorhynchus lenticarpus (Motani, Minoura & Ando, 1998; Motani, 2000;
Motani et al., 2015a) and seems to be a basal ichthyosauriform feature. The excursion
makes the eyeball vulnerable to stresses from the dorsal aspect. This vulnerability is partly
remedied by the extensive growth of the scleral ring, as mentioned below.

The orbital rim is formed by the prefrontal anteriorly and antero-dorsally, postfrontal
postero-dorsally, postorbital posteriorly, jugal ventrally, and slightly by the lacrimal
antero-ventrally. The participation by the lacrimal may not be evident in Fig. 4D but it is
largely because of the posterior side of the prefrontal being visible in lateral view,
making the orbital rim smaller than it is. It is evident in AGB7403 (Fig. 6). The frontal is
excluded from the orbital rim by a narrow contact between the pre- and postfrontals.

External Naris. The normal axis for the planed formed by the margin of the external naris
points dorso-laterally and slightly anteriorly, being directed more dorsally than laterally
in the holotype. The opening is elongated, and surrounded by the maxilla ventrally
and posteriorly, nasal dorsally, and premaxilla anteriorly. The lacrimal is completely
excluded from the margin, as in basal ichthyopterygians.
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Upper Temporal Fenestra. The upper temporal fenestra extends from antero-medial to
postero-lateral direction, with its parasagittal extent being less than the lateral extent
(Fig. 4). The skull of Chaohusaurus does not appear narrow despite the smallness of the
parietals thanks to the wide upper temporal fenestra. It is bordered by the parietal medially
and posteromedially, supratemporal posterolaterally, postorbital antero-laterally,
postfrontal anteriorly and slightly by frontal anteromedially. There is no evidence for the
squamosal to participate in the margin of the fenestra.

Lower Temporal Fenestra. The lower temporal fenestra is a prominent structure in the
cheek that is vertically elongated and approximately wedge-shaped. It is completely
open ventrally. This morphology is shared with basal ichthyosauromorphs, including
Cartorhynchus lenticarpus and Hupehsuchia (Chen et al., 2014c; Motani et al., 2015a;
Wu et al., 2016), but not with ichthyopterygians.

Pineal Foramen. The pineal foramen is completely enclosed between the right and left
parietals. Its center is located posterior to the midpoint along the inter-parietal suture.
Its shape is ovoid, being wider posteriorly than anteriorly. It is located behind the line
connecting the posterior margins of the orbits in the holotype, but the location may differ
depending on the direction of compaction experienced by relevant specimens.

Scleral ring. In parvipelvian ichthyosaurs, the scleral ring has a central part that is shaped
like the wall of a low conical frustum, with the aperture corresponding to the top of the
frustum, and a peripheral part that continues from the base of the frustum to form a round
wall around the axis of the central frustum (which is expected to be nearly parallel to
the optical axis of the eyeball) (Motani, 2005). The central frustum and peripheral wall
form an angle of about 110� to 130� (Motani, 2005; Moon & Kirton, 2016). The center of
the frustum part may protrude beyond the plane formed by the orbital margin in life.
The central part, however, is preserved flattened in most specimens because of
preservational compaction, and appear as a flat ring rather than the wall of a conical
frustrum. The scleral ring is very thin and deformable even in extant specimens of reptiles,
and can easily change its shape plastically through preservation.

This basic arrangement is already present in Chaohusaurus brevifemoralis, although the
peripheral wall appears shorter in the present form than in Jurassic forms. The right scleral
ring of the holotype suggests that the central frustum formed an angle of about 120�

with the peripheral wall, giving depth to the scleral ring. The left ring has a flattened central
part, making it appear as if the central part was completely parallel to the plane formed
by the orbital margin, but this is most likely an artifact of preservation as in many
parvipelvian specimens. The scleral ring is the largest bony structure in the cranial region,
apart from the entire skull itself, filling the large orbit (Fig. 4). The aperture of the ring is
also large. A part of the dorsal aspect of the ring is exposed through the constriction of
the skull where the medial excursion of the orbital rim occurs. It is seen there that the
peripheral wall of the scleral ring fills the embayment of the skull roof (Figs. 4A and 4C),
solidifying the eyeball that would otherwise lack bony support in the dorsal direction.
The ring is inclined, with the normal axis pointing mostly laterally but also tilted anteriorly
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and dorsally to some extent. The left scleral ring of the holotype seems to comprise about
16 plates, although it is difficult to arrive at the exact number because the preservation is
not perfect. There seem to be 18 plates in the right scleral ring of GMPKU P-3086 but
the number, again, is not conclusive.

Mandible
The mandible most likely comprises seven elements, including the coronoid that is lacking
in derived ichthyosaurs (McGowan, 1973). The mandibular rami are slightly curved and
inclined in natural posture, with the anterior part more vertical than the posterior part
that is half horizontal. The lateral side of the mandible appears flat in specimens with
disarticulated jaws but this is because of flattening by compaction.

Dentary. As with ichthyopterygians, the dentary is an elongated bone that is longer
than half the length of the mandible. It is the only dentigerous bone in the lower jaw.
The presence of a dental groove is not clearly established because the medial side of the
dentary is rarely exposed. However, it is seen in AGB7403 that the teeth are medial to a
bony wall, as seen in subthecodont ichthyopterygians. See below for its dentition.

Surangular. The surangular is the most prominent bone of the mandible in lateral view,
occupying most of the posterior half of the structure (Figs. 4 and 6). It extends anteriorly
beyond the anterior margin of the external naris. Posteriorly, it supports the lateral
aspect of the articular, which forms the jaw articulation with the quadrate. There seems to
be no direct contact with the quadrate.

Angular. The angular is an elongated bone that covers the ventral aspect of the mandible,
from the posterior end to about the midpoint. It is visible both laterally and medially.
However, its lateral exposure is limited, unlike in Cartorhynchus lenticarpus and many
basal neodiapsids where it occupies the ventral half or more of the posterior part of the
lateral surface (Motani et al., 2015a).

Articular. The articular is barely visible in lateral view, although its dorsal margin may be
seen as a narrow band surrounding the poster-dorsal corner of the surangular in some
specimens (Fig. 6). The articulation with the quadrate condyle seems to occur with the
postero-medial surface of the articular, unlike in Ichthyosaurus where the articulation is
through the antero-medial surface (McGowan, 1973). Thus, there is no retroarticular
process of the articular in Chaohusaurus brevifemoralis.

Splenial. The splenial is a thin and narrow sheet of bone that lies on the medial side of
the dentary. Its complete shape is not seen in any of the specimens available, although
GMPKU P-3086 shows most of the bone as previously figured (Zhou et al., 2017).
The bone tapers to a point posteriorly, and probably anteriorly. The bone is longer than
the dentary and seems to extend over about three quarters of the mandibular length.

Coronoid. The coronoid is one of the most enigmatic bones in Chaohusaurus. The right
side of GMPKU P-3086 and the left side of AGB7403 reveal sutures between the coronoid
and surangular that resemble each other closely (Figs. 5 and 6). However, this suture
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seems to be closed on the left side of GMPKU P-3086 and most other specimens.
The coronoid occupies the area surrounding the coronoid process, mainly dorsally and
medially. The bone is also visible slightly in lateral view. The bone is wide dorsally, forming
a shallow basin between the coronoid process and the articular. The width of the bone is
evident by comparing the lateral (Fig. 5A) and more dorsal (Fig. 5B) views of the right
coronoid of GMPKU P-3086. The coronoid process is very weakly developed.

Prearticular. The prearticular is known from partial exposures only. The right mandibular
ramus of AGB7403 is exposed laterally but medial elements have slipped ventrally
relative to the lateral elements, exposing their lateral sides (Fig. 6). It is seen there that the
anterior ramus of the prearticular is long and slender, tapering anteriorly to a point.
Its anterior extent overlaps the most posterior part of the dentary.

Dentition
There are 35 teeth in the left premaxilla of the holotype, leaving about three vacant tooth
positions among them. Nine teeth are recognized in the left maxilla. In total, there are
47 tooth positions in the left upper jaw ramus of the holotype. The count is similar in
AGB7403, which has ten teeth in the right maxilla, and 29 teeth and about five vacant tooth
positions in the left premaxilla. the tooth counts in the left maxilla and right premaxilla
are uncertain. Both specimens are male individuals, so the slight difference in the total
counts likely reflects individual variation. The mandibular teeth are not exposed in the
holotype, but they can be counted in AGB7403, where the dentary has 42 teeth and at least
eight vacant tooth positions, making the total tooth count to be about 50. This number is
similar to the mandibular tooth count in U. hataii, which was previously estimated to
be approximately 50 (Motani, 1996).

The dentition is heterodont, with slender and conical anterior teeth and robust and
rounded posterior teeth. In the left maxilla of the holotype, the posteriormost six, of the nine
teeth, are robust and rounded, while the anterior three appear similar to the premaxillary
teeth in size and shape. The transition between the two tooth types is abrupt. The robust
posterior teeth are two to three times wider in diameter than the anterior teeth. The root
seems to expand basally and the pulp cavity is open, as in basal ichthyopterygians.

Hyoid
Ceratohyal. There is a pair of ceratohyal, located in-between the mandibular rami near
their posterior ends. They most likely represent the first ceratohyals of reptiles (Motani
et al., 2013). The ceratohyal I is a small and slender rod, which is unsuitable for
suction feeding (Motani et al., 2013).

Vertebral column
Atlas. The neural arch and pleurocentrum of the atlas are exposed in the holotype
(AGB7401). The neural arch is divided into the right and left halves, as in some reptiles,
including ichthyosaurs (Moon & Kirton, 2016). The pleurocentrum of the atlas has a
convex articular surface (Fig. 4), which is most likely the anterior surface given the
preserved orientation, and that similar pleurocentra are known for U. hataii and
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Cymbospondylus piscosus. These bones are comparable to the corresponding axial
pleurocentra in size, and are unlikely to be the intercentra. Another specimen (AGB7403)
exhibits the posterior view of the pleurocentrum from a slightly lateral angle, where the
posterior articular facet is concave. The bone is about only half as long as the subsequent
vertebral centra (Fig. 6). There is no bone that can be positively identified as the atlantal
rib in any of the specimen, although AGB7043 has a short and slender bone near the
atlas, possibly representing the atlantal rib.

Axis. The axial neural spine is broader antero-posteriorly by about twice compared to the
subsequent neural spines (Fig. 6). The neural arch has a rib facet laterally, forming the
dorsal half of the synapophysis. The ventral half of the synapophysis is on the dorso-lateral
part of the atlantal centrum, appearing almost triangular.

Neural arches and spines. The neural spines change their shapes along the vertebral
column. In the cervical and anterior dorsal series, the neural spines and arches are about
equal in height with each other. Both the neural spine and arch are almost perpendicular to
the basal plane of the neural arch, although the axis of the former is shifted posteriorly
relative to that of the latter. The neural spines gradually become longer, broader, and
inclined posteriorly while the neural arches stay in approximately the same posture and
height, with antero-posterior broadening in the mid-dorsal series. The lengthening of the
neural spines and steepening of the posterior inclination stop early in the posterior
dorsal series, and the neural spine size and angle do not change greatly in the sacral series.
Then, the steepening of the neural spines restarts in the caudal series, reaching the extreme
inclination, where the neural spines are almost horizontal, by about the 13th caudal
vertebra. Then the inclination trend reverses, with the neural spines rapidly becoming less
inclined and then start to anticline (i.e., inclined anteriorly as opposed to the normal
posterior inclination) at about the 18th vertebra.

The most notable feature of the neural spine is found in the caudal peak neural
spine, which is bifurcated into two branches, one dorsal and the other antero-dorsal
(cpn in Figs. 3E and 8). As noted elsewhere (Motani et al., 2018), structures that are likely
homologous with these two branches also exist in Chaohusaurus chaoxianensis as
thickened bars but the two are connected by a thin flange of bones. That flange is absent
Chaohusaurus brevifemoralis. The caudal peak vertebra in this context was identified based
on the following criteria. First, it is the second vertebra from the last narrow caudal
neural spine (lnn in Figs. 3E and 8), which is inclined about 45� posteriorly. The caudal
neural spines preceding this last narrow one are steeply inclined posteriorly (Fig. 8),
sometimes appearing nearly horizontal. Second, the caudal peak vertebra is in front of the
first caudal neural spine to have a completely rounded distal end (fran in Figs. 3E and 8),
with clear anterior inclination of about 30–50�. Third, the caudal peak vertebra is
usually placed where the curvature of the tail reaches its peak, although preservational bias
may obscure this feature. Finally, at least in Chaohusaurus brevifemoralis, the caudal
peak neural spine is the first anticline neural spine, although it is not necessarily the case in
some specimens of Chaohusaurus chaoxianensis. Anticlination in this case is judged by the
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angle formed by two lines, one connecting the postero-dorsal corner of the neural
spine with the postero-ventral corner of the neural arch, and the other connecting the
antero-ventral and postero-ventral corners of the neural arch (Fig. 3E, orange lines).
This angle is greater than 90� (i.e., the neural spines are inclined posteriorly, which is the
norm) in most neural spines except in the posterior part of the tail, and the first anticline
neural spine is where the angle first becomes less than 90� in the caudal series.

Hemal arches and spines. The hemal arches and spines are present starting from the third
caudal vertebra to the tip of the tail. GMPKU P-3086 reveals the best representation of
the hemal arches and spines in the mid-caudal region, where there is a caudal peak
associated with anticlination of neural spine (see above). In front of the anticline neural
spine, the hemal spines seem to be absent, while the hemal arch is U-shaped in antero-
posterior view (Fig. 8; see fig. 1g ofMotani et al. (2018)). The hemal arches appear absent in
the caudal peak region of the holotype but this lack probably reflects a preservational bias.

Ribs. The first four ribs of the left side of the holotype have an expanded, fan-shaped head,
which most likely represents unified capitulum and tubercle. These ribs are short and
do not appear to participate in the formation of the trunk rib cage. The four pairs of ribs
most likely represent cervical ribs. If so, there are five cervical vertebrae because the atlas
seems to lack associated ribs.

Figure 8 Caudal peak region of Chaohusaurus brevifemoralis sp. nov. in one of the paratypes
(GMPKU P-3086). Scale bar is one cm. Full-size DOI: 10.7717/peerj.7561/fig-8
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The dorsal ribs are also single-headed, although their proximal ends typically have
eight-shaped cross-section, suggesting the head is a combination of the capitulum
and tubercle. Anterior and mid dorsal ribs articulate with both the neural arch and
vertebral centra via a synapophysis, at least down to the 28th vertebra in the holotype.
The articulation with the neural arch is lost somewhere in the posterior dorsal region, as
the articular facet on the centrum moves ventrally to be completely located on the lateral
side of the centrum alone. The exact location of this transition is obscure. The dorsal
ribs become increasingly longer more posteriorly but they start to shorten rapidly in the
last five pairs of the dorsal series, so that the last dorsal rib is only as long as the first
sacral rib.

There are three sacral ribs in the holotype, identified as such based on a combination of
the following observations: short; with thickened shafts; sufficiently wide at the tip to allow
articulation with the ilium; oriented so that their tips converge, that is, the first one is
postero-laterally inclined, the middle one laterally, and the third one antero-laterally; and
located in the sacral region. The same number of sacral ribs were previously identified
in AGB6253, a female specimen with embryos (Motani et al., 2014). At least the third
sacral rib of the holotype seems to retain the eight-shaped cross-section of the head, seen in
the more anterior ribs.

It appears that the first 10 caudal vertebrae have rib facets in the holotype, although
only the first three caudal ribs are actually preserved. In AGB6253, at least the first nine
caudal vertebrae have rib facets but only the first two caudal ribs are preserved.
The parapophyses on the sacral and caudal centra are located at the antero-ventral corners
of the centra. The rib heads are not eight-shaped in caudal ribs unlike in the more
anterior ribs.

Shoulder girdle
Scapula. The scapula is a lunate plate of bone that rolls slightly to wrap around the
ventro-lateral part of the shoulder rib cage, as in basal ichthyopterygians. The anterior
margin is round without any indentation or emargination. The glenoid and coracoid facet
forms a thickened postero-proximal corner (Fig. 9B).

Coracoid. The coracoid is a plate of bone that appears like a fan with a short and thickened
stem (Fig. 9B). The stem ends laterally with the glenoid and scapular facets. The inter-
coracoidal suture is straight in the central region only. Both the anterior and posterior
margins of the coracoid have concave regions.

Interclavicle. The interclavicle is one of the most poorly known bones in Chaohusaurus in
general. The complete outline of the interclavicle is seen only in two specimens that
may or may not belong to Chaohusaurus brevifemoralis, namely AGB6607 and 7400
(see “Systematic Paleontology”). The bones in these specimens are approximately
V-shaped plates (Fig. 9F), with a convex anterior margin and a concave posterior margin.
The anterior process is shorter than in Cartorhynchus, and coarsely and strongly striated
in approximately radial orientations. The overall shape of the bone would be similar to
that of U. hataii if the posterior process of the latter interclavicle was removed. Some other
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specimens show in-between the two clavicles one or two pieces of bone that may appear to
be a part of the interclavicle (Figs. 9B and 9C). However, after examining many specimens,
these parts are most likely parts of the clavicle that wraps around the anterior side of
the interclavicle and that have been cracked. It appears that the interclavicle is minimally
exposed when the dermal girdle is in articulation, leading to the difficulty of seeing the
bone in most specimens.

Clavicle. The clavicle is the most prominent bone of the shoulder girdle. It is a J-shaped
bone that forms a complete U-shape when the right and left elements are articulated
(Fig. 9B). AGB7400 shows a different posture of the clavicles (Fig. 9C) but this
is the only specimen where the clavicle has been rotated so that its distal tip points
laterally, while virtually all other specimens, including the holotype and GMPKU
P-3086, have the clavicular distal tips pointing posteriorly. The condition in AGB7400

Figure 9 Shoulder girdle of Chaohusaurus brevifemoralis sp. nov. (A) AGB7405. (B) AGB6260, (C) AGB7400. (D) Approximate bone map for (A).
(E) Same for (B). (F) Same for (C). See the section “Osteological abbreviations” for abbreviations. Scale bar is one cm.

Full-size DOI: 10.7717/peerj.7561/fig-9
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is unlikely to reflect the natural posture because the other posture is seen in over a
dozen specimens.

The clavicle is thickest in two places, near the proximal end and in the midshaft
region where an angle is formed antero-ventrally (Fig. 9). This midshaft angle is located
in-between the coracoid and scapular articulations. The part proximal to this angle is the
main body of the clavicle, which wraps around the anterior margin of the interclavicle
medially and faces the gap between the coracoid and clavicle (see below) laterally.
The thick proximal ends of the right and left clavicles seem to overlap slightly in front of
the interclavicle, thus concealing the anterior aspect of the latter bone completely.

Forelimb

Humerus. The humerus typically has an anterior flange extending preaxially from the
main shaft of the bone, as in basal ichthyosauromorphs. This flange in Chaohusaurus
brevifemoralis is divided into a proximal and distal sub-flange as in Chaohusaurus
chaoxianensis, but with a notable gap between the two unlike in the latter species.
The relative extent of this gap changes ontogenetically, together with that of the anterior
flange. In the smallest individual, the sub-flanges appear virtually absent (Fig. 9A), with
the anterior margin of the humerus being concave. The concave margin has radial,
rather than longitudinal, striations, suggesting the presence of a very narrow anterior
flange along the margin. The sub-flanges appear proximally and distally and extend
toward the center of the anterior margin with growth. The gap between them therefore
narrows with growth, although it never disappears completely. In Chaohusaurus
chaoxianensis, a notch-like incision exists between the two sub-flanges, instead of an
obvious gap as in Chaohusaurus brevifemoralis.

The head of the humerus is located postero-proximally. Its ossification is usually
incomplete, with only the largest specimen revealing a humeral head that is partly ossified
(Fig. 10D). The degree of ossification of the humeral head is used to judge the relative
degree of osteological maturity in thunnosaurian ichthyosaurs (Johnson, 1977). Similar
usage is difficult in Chaohusaurus brevifemoralis because of the poor ossification in
almost all specimens (Fig. 10).

Radius. The radius is a flattened long bone that is wider proximally than distally.
The peripheral shaft of the bone seems to be absent because the entire anterior margin of
the bone has radial orientation of striation that are perpendicular to the margin, rather
than those that are parallel to the main axis of the bone as in the proper shaft region. As a
result, there is a band of “anterior flange” extending along the entire peripheral margin
of the bone, making the bone appear wide. The anterior flange widens proximally,
where there is the antero-proximal flange of the radius in Chaohusaurus chaoxianensis.
In Chaohusaurus chaoxianensis, the contrast in widths between this antero-proximal
flange and the more distal part of the flange is conspicuous, with an abrupt change.
However, in the present species, the difference is much smaller because the flange
gradually widens proximally without any abrupt change. As a result, the antero-proximal
flange of the radius appears small at the first sight.
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Ulna. The ulna is an elongated and flattened bone with a proximal shaft and a distal fan, as
in basal ichthyopterygians. The distal fan of the ulna typically appears asymmetric
relative to the longitudinal axis of the bone, developing more postaxially than preaxially.
This morphology differs from that in a typical ulna of Chaohusaurus chaoxianensis
where the fan is more symmetrical except in one individual where one of the ulnae has a
weakly asymmetrical distal fan (AGB6259; compare Motani et al. (2015a: fig. 1C) and
Motani et al. (2015b: figs. 2E, F)).

Carpals. Much of the carpus region is without hard tissue. There are three disk-shaped
carpal ossifications, corresponding to the intermedium, ulnare, and fourth distal carpal, in

Figure 10 Forelimb of Chaohusaurus brevifemoralis sp. nov. (A) AGB7405. (B) AGB6260, (C) AGB7400. (D) AGB7408. (E) Approximate bone
map for (A). (F) Same for (B). (G) same for (C). (H) Same for (D). See the section “Osteological abbreviations” for abbreviations. Scale bar is one cm.

Full-size DOI: 10.7717/peerj.7561/fig-10
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nearly all individuals regardless of body size. Exceptions are a large specimen which seems
to have only two carpal bones (AGB6260; Fig. 10C), the terminal embryo described
elsewhere that lacks any carpal ossification (AGB6253), and the largest specimen with four
carpals, adding the radiale to the list above of three bones (AGB7408). The largest
individual of Chaohusaurus chaoxianensis also has four carpals (Motani et al., 2015c), but
this individual is smaller than large specimens of Chaohusaurus brevifemoralis with only
three carpals. Carpal ossifications in Chaohusaurus brevifemoralis appear smaller than
those of Chaohusaurus chaoxianensis relative to the carpus length.

Metacarpals. There are five metacarpals in all specimens, except in one specimen
(AGB6258) where six metacarpals are present in both right and left forelimbs (Fig. 10B).
The extra metacarpal in this exceptional individual is located preaxially, as in some
hupehsuchian ichthyosauromorphs. Unlike in hupehsuchians, however, there is no
ossification for an extra preaxial distal carpal that would form the base of the extra
metacarpal. Also, there are no phalanges that extends distally from this extra metacarpal.
The first and fifth distal carpals lack a complete shaft along their peripheral margins,
which are notched. These bones are not completely lunate as in most basal
ichthyopterygians because of the notch.

Manual phalanges. The forelimb is hypophalangeal, with a phalangeal formula is 1-3-3-3-1.
The third phalanx of the second digit is not always present, making the formula 1-2-3-3-1
in some specimens. The phalangeal formula does not seem to depend on size. As in
basal ichthyopterygians, most phalanges are flattened cylinders that are approximately
symmetrical across the long axis but elements along the peripheral margin of the limb tend
to be asymmetrical. The phalanges are well spaced from each other, more so than in
Chaohusaurus chaoxianensis.

Pelvic girdle
Ilium. The ilium changes its shape with growth. In juveniles, it is essentially a short and
flattened rod of even thickness that curves slightly (Fig. 11A). In adults, the curvature
becomes steeper and a conspicuous iliac blade is formed in the dorsal side of distal part,
which is approximately horizontal in natural posture (Fig. 11C). The acetabular facet also
expands, resulting in a constriction of the bone between the acetabulum and the iliac shaft.

Pubis. The pubis is the largest of the pelvic bones, although it is not remarkably larger
than the ischium (Figs. 11A and 11B). The bone is thickened along its antero-lateral
margin, toward the acetabular facet that is located at the posterior end of this margin.
The acetabular facet is robust and faces postero-laterally. There is an obturator foramen
that opens posterolaterally, just medial to the acetabular fact (Figs. 11A and 11B). Because
of this location, the medial margin of the foramen is thick while the lateral margin is
much thinner. The inter-pubic margin is approximately straight, although the right and
left elements are usually preserved at a distance from each other.

Ischium. The ischium is a lunate bone (Fig. 11). Its antero-lateral corner is thickened to
form the acetabular facet, which is thinner than the corresponding facets in the pubis and
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ilium. The facet is also narrower than the corresponding facet of the pubis. As a result, the
acetabulum is not oriented completely laterally but slightly posteriorly (Fig. 11B).

Hind limb
Femur. The femur is a robust bone that is wider distally than proximally, with a weakly
constricted shaft in-between. The shaft in many specimens may appear wider than in life
depending on the degree of compression during preservation. There is a trochanter on
the ventral side of the bone, located slightly distal to the head. Its homology with the
known ventral femoral trochanters of reptiles, such as the internal trochanter and fourth
trochanter (Romer, 1956), is unknown. There is no fossa on the femoral sides. The distal
condyle of the femur is flattened, making the knee joint inflexible.

Tibia. The tibia is a cylindrical bone in the holotype, unlike other limb elements that are
flattened at least to some extent. In most other specimens, however, the bone has been
compacted to be a flat element. The tibia is wider proximally than distally, and slightly
curved posteriorly toward the distal end.

Figure 11 Pelvic girdle and hind limb of Chaohusaurus brevifemoralis sp. nov. (A) GMPKU P-3086
(one of the paratypes). (B) AGB5846b. (C) AGB6253. (D) AGB7402. (E) Approximate bone map for (A).
(F) Same for (B). (G) Same for (C). (H) Same for (D). See the section “Osteological abbreviations” for
abbreviations. Scale bars are made of one mm squares. Full-size DOI: 10.7717/peerj.7561/fig-11
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Fibula. The fibula is a flattened long bone with a fan-shaped distal end. The fan develops
anteriorly to the shaft, curving the anterior margin of the shaft more strongly than the
posterior margin, which in turn is almost straight. This relationship between the shaft and
the fan is not obvious in most specimens because of compaction, but is seen at least in
better-preserved specimens, including the holotype and AGB6253.

Tarsals.Much of the tarsal region is without hard tissue. There are three tarsal ossifications
of various sizes, representing the calcaneum, astragalus, and the fourth distal tarsal.
This number seems to be constant regardless of body size. They are all disk-shaped and
without three-dimensional sculpture. The astragalus is usually the largest, and the
fourth distal tarsal the smallest, although the relative size between the astragalus and
calcaneum is highly variable depending on the individual.

Metatarsals. The metatarsals are similar to the metacarpals in general shape, although
the former have shafts that are more slender than the latter, at least in the holotype.
This difference is not the result of a preservational bias because the left metacarpals and
metatarsals are preserved next to each other in the specimen (Fig. 2).

Pedal phalanges. The pedal phalangeal formula is 1-2-3-3-1 where countable. As with the
metatarsals, the pedal phalanges are more slender than corresponding manual phalanges.

Phylogenetic analysis
Both software packages yielded an identical length of 713 steps for the shortest trees
(CI = 0.363, RI = 0.787). TNT found more than 10,000 equally parsimonious trees, the
strict consensus trees of which is given in Fig. 12, with Bremer support and bootstrap
values. We tried removing Wumengosaurus from the outgroup, but it did not affect the
consensus topologies. Chaohusaurus brevifemoralis appeared as the sister taxon of the
sympatric species, Chaohusaurus chaoxianensis. This clade has a Bremer support value
of 3, and bootstrap support of 82%. The clade is supported by the following unambiguous
apomorphies: 98(1), 116(1), 118(1) and 135(1). In contrast, the genus Chaohusaurus is
weakly supported, without any unambiguous apomorphies—detailed studies of
Chaohusaurus geishanensis and Chaohusaurus zhangjiawanensis are necessary to clarify
the nature of the clade.

The purpose of the present phylogenetic analysis is to locate the new species in the
phylogenetic tree of Ichthyosauromorpha, and not to revise the phylogeny of the group.
However, it is still worth describing the broader tree briefly. The strict consensus tree
topology did not differ drastically from what were published before based on the relevant
series of data matrix (Motani et al., 2015a, 2017; Jiang et al., 2016; Ji et al., 2016).
The interrelationships among major clades within Ichthyosauromorpha remained the
same throughout these studies. Relationships within some of the major clades have
changed through the studies but the present result has minimal difference from the tree
given in the last iteration of the series (Motani et al., 2017), with the only difference found
in the breakdown of the clade for the genus Mixosaurus. As a result, the distribution
of apomorphies along the tree remained similar to what was found in the previous
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iteration. For example, Ichthyosauriformes is supported by the following character
state changes: 11(1), 36(1), 59(1), 100(1), 115(1), 123(1), 144(1), 178(1) and 198(1).
Ichthyopterygia shares the following unambiguous apomorphies: 48(1), 89(1), 95(2), 99(0)
and 140(1), while Grippidia shares the following two: 34(1) and 113(0).

DISCUSSION
The holotype of Chaohusaurus brevifemoralis sp. nov (AGB7401) revealed for the first
time the three-dimensional relationship between the orbit and the scleral ring in basal
Ichthyosauromorpha. It has been known that the skull roof was constricted in the middle
of the orbit in basal ichthyosauriforms (Mazin, 1981; Motani, Minoura & Ando, 1998;
Cuthbertson, Russell & Anderson, 2013b) and hupehsuchians (Chen et al., 2014a, 2014c)
but the ramification of this morphology on the eyeball was never clear because the skulls
are usually flattened through postmortem compaction. The scleral rings of the holotype
retain their three-dimensional depths (Fig. 4). Both of them are exposed dorsally, through
the embayment of the skull roof formed by the medial excursion of the dorsal orbital
margin, in addition to the exposure through the main part of the orbit. The dorsal
exposure reveals the peripheral wall of the scleral ring while the orbital exposure shows the
central frustum wall. The function of this dorsal embayment is unclear, while there must be
a disadvantage from the additional exposure from the dorsal aspect making the eyeball

Figure 12 Phylogenetic hypothesis of basal Ichthyosauromorpha including Chaohusaurus brevifemoralis sp. nov. Numbers given to nodes are
Bremer support value/bootstrap value. See text for how they were computed. Full-size DOI: 10.7717/peerj.7561/fig-12
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vulnerable to stresses from that direction. It is unlikely that the embayment allowed the
animal to look up better—the limited space inside the eye socket may not have allowed
much movement of the eyeballs, even though it appears that looking up to some extent was
a part of the lifestyle of Chaohusaurus brevifemoralis, with the main part of the orbit facing
not completely laterally but slightly dorsally. Despite the ambiguity of function, this
embayment and the consequent dorsal exposure of the eyeball was a wide-spread feature
found in virtually all ichthyosauromorphs outside of Ichthyosauria.

The anterior flange of the humerus of Chaohusaurus was considered to be notched until
recently, based on Chaohusaurus chaoxianensis that was the only species in which the
flange was completely preserved (Motani & You, 1998a, 1998b). However, a new picture
has now emerged based on recent findings of new specimens and taxa, including the
present species. The margin is indeed concave in three of the four Chaohusaurus species,
namely Chaohusaurus geishanensis, Chaohusaurus zhangjiawanensis and Chaohusaurus
brevifemoralis, although there is a narrow band of flange at least in the latter two species
based on the radial orientations of the surface striations perpendicular to the anterior
margin. The concave flange morphology is most likely a basal character in
Ichthyosauromorpha because it is also present in Cartorhynchus lenticarpus (Motani et al.,
2015a) and hupehsuchians (Chen et al., 2014a, 2014b, 2014c; Wu et al., 2016). Therefore,
the notched morphology in Chaohusaurus chaoxianensis is an autapomorphy of the
species. In the light of this recognition, the complete and convex humeral anterior flanges
in grippidians (Utatsusaurus, Grippia and Gulosaurus) (Motani, 1997, 1998; Cuthbertson,
Russell & Anderson, 2013a), represent a shared apomorphy with the rest of the basal
ichthyopterygians.

The position of the pineal foramen relative to the orbit has been used as a character with
phylogenetic information content (reproduced as Character 59 in the present study).
Typically, the pineal foramen is posterior to the orbit in basal forms and located in-between
the orbits in derived forms. Chaohusaurus brevifemoralis represents an intermediate state.
In specimens with dorso-ventral preservational compaction, the pineal foramen tends
to be mostly posterior to the line connecting the posterior limits of the orbits. However, the
anterior end of the foramen very slightly crosses the line. More problematically, this
positioning varies with specimens. In specimens with oblique preservational compaction,
the foramen is often found to be largely in-between the orbits. The same is true in other
species of the genus Chaohusaurus.

Participation of the frontal in the orbital rim has been considered an important basal
feature of ichthyosauriforms. It is minimally present in Grippia longirostris and U. hataii
because the pre- and postfrontals leave only a narrow gap between them to allow the frontal
to be a part of the orbital margin, unlike in Cartorhynchus lenticarpus where the frontal
forms a substantial portion of the orbital rim as in basal neodiapsids. In Chaohusaurus
brevifemoralis, this participation is absent because of a narrow contact between the pre- and
postfrontals that excludes the frontal from the orbital rim. Despite this difference, it is
important to recognize that the overall morphology of the orbital margin in Grippia and
Utatsusaurus is much closer to that of Chaohusaurus brevifemoralis than to the same of
Cartorhynchus. That is, the dorsal part of the orbital rim has a medial excursion
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corresponding to the narrow lateral embayment of the skull roof, exposing the eyeball
dorsally. The only difference is whether the pre- and postfrontals contact each other
narrowly or not at the deepest part of the embayment. A similar situation is known in
hupehsuchians, where some specimens are preserved with pre- and postfrontals in contact
while others have a narrow gap between the two, exposing the frontal to the orbital
margin. Therefore, the narrow contact between the pre- and postfrontal may not be a
significant phylogenetic character. Based on the tree topology in Fig. 12, the contact in
Chaohusaurus is not necessarily homologous with the robust articulation between the
pre- and postfrontals in Ichthyosauria.

Participation of the frontal in the margin of the upper temporal fenestra was once
suggested in U. hataii (Motani, Minoura & Ando, 1998) but a later study questioned
this morphology (Cuthbertson, Russell & Anderson, 2013b). Some of the sutures in the
specimen in question were not completely clear, leaving room for controversy. Based on
well-preserved specimens with unambiguous cranial sutures at hand, it is clear that
at least in Chaohusaurus brevifemoralis the frontal entered the anterior margin of the
upper temporal fenestra, in a manner similar to what was previously described for
U. hataii. This morphology is unusual among diapsids but it is necessary to recognize
that it existed in basal ichthyosauriforms. Reevaluation of the feature in other basal
ichthyosauriforms is needed based on well-preserved specimens.

The squamosal is the most problematic bone in the cranium that warrants a discussion.
The bone is interpreted here to be located in-between the supratemporal and
quadratojugal, near the center of the height of the cheek, without participating in the upper
temporal fenestra. This interpretation differs from a previous one that located the bone
along the dorsal margin of the cheek that forms the lateral margin of the upper temporal
fenestra. This interpretation was based on two specimens (GMPKU P-3086 and P-3101),
but the same study located the squamosal in the same position as in the present work
in another specimen (GMPKU P-3188) (Zhou et al., 2017). We reinterpreted GMPKU
P-3086 and concluded that the squamosal did not reach the upper temporal fenestra.
The apparent contact between the bone and the fenestra is an artifact of damages in the
lateral margin of the upper temporal fenestra that expanded the opening laterally, and
disarticulation and translation of the bones in the area. If the preserved morphology is
original and the squamosal was located along the upper temporal fenestra: (1) the height of
the lower temporal fenestra would become about three-quarters of the total cheek height
when the proportion is only about half in other specimens; (2) the lateral margin of
the upper temporal fenestra would be located too laterally relative to the parietal—the
supratemporal process of the parietal extends about halfway through the width of the
upper temporal fenestra in other specimens when it is only about a third in the specimen in
question; (3) similarly, the upper temporal fenestra would be too large relative to the
orbit—the fenestra is less than half of the orbit in maximum diameter in other specimens
but the proportion is much larger than half in the specimen in question (Table 1); and
(4) the preserved margin of the upper-temporal fenestra would need to be bent unnaturally
in three-dimension to reach the squamosal. The problems would disappear if the actual
lateral margin of the upper temporal fenestra was more dorsally located than the
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squamosal, and breakage of the margin led to expansion of the upper temporal fenestra
while displacing the margin ventrally. However, scrutiny using 3D reconstruction of CT
images would be necessary in the future to reach a solid conclusion.

It would be useful to compare the morphology of Chaohusaurus spp. with those of
grippidians (Utatsusaurus, Grippia, Gulosaurus, and Parvinatator), from the Lower
Triassic. However, detailed comparisons are difficult given the quality of the specimens
available for grippidian taxa, and the lack of understanding of the morphology of
Chaohusaurus geishanensis and Chaohusaurus zhangjiawanensis. as well as the lack
of three-dimensional reconstruction of the skull in all of the relevant specimens.
We therefore consider it premature to present a detailed comparison. However, it is
useful to point out some of the unambiguous character state changes. For example,
one of the most remarkable differences between grippidians and the more basal
ichthyosauriforms is the clear presence of the lower temporal fenestra in the latter as a
narrow but deep ventral incision between the postorbital and quadratojugal, while it
is lost in the former. Also, the interpterygoid vacuity is open in Chaohusaurus and other
basal ichthyosauriforms but closed in grippidians and some other ichthyopterygians.
Postcranially, Chaohusaurus and other basal ichthyosauriforms all lack the pisiform and
exhibit delayed ossification of the mesopodium while grippidians and some other
ichthyopterygians possess the bone and lack any sign of delay in mesopodial ossification.
Additionally, as discussed above, humeral anterior flange morphology differs between
the two assemblages.

The anterior end of the clavicle is almost always preserved in the neck region (Fig. 8),
and there is a gap between the clavicle and coracoid in most specimens. Given its
occurrence in most of the specimens, this gap probably reflects the anatomical positions of
the bones in life. The presence of such a gap is unusual among reptiles but a similar
gap was identified in Ophthalmosaurus (Moon & Kirton, 2016). Note, however, that the
gap is absent in another thunnosaurian ichthyosaur, Stenopterygius (Johnson, 1979), so it is
difficult to establish homology between the gaps in Chaohusaurus brevifemoralis and
Ophthalmosauruswithout further studies of this character. Another possible interpretation
of the preserved gap in Chaohusaurus brevifemoralis is that there was a shared mechanism
to anteriorly displace the clavicles postmortem, but the hypothesis currently lacks
evidence and a candidate mechanism.

The co-existence of three species of Chaohusaurus in a small geographic region
may sound strange. However, as we argued elsewhere, only two of the three, namely
Chaohusaurus chaoxianensis and Chaohusaurus brevifemoralis, are truly sympatric
(Motani et al., 2018). The two species differ in average body size (Motani et al., 2018),
with Chaohusaurus brevifemoralis being larger than Chaohusaurus chaoxianensis.
It is therefore likely that the two utilized different resources in the same geographic
region. Phylogenetic analyses suggested a sister-group relationship between the two
species. It may be hypothesized that the speciation between the two species involved
pursuit of different recourses, at least partly facilitated by the evolution of different
body sizes.
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CONCLUSIONS
The new ichthyosauriform Chaohusaurus brevifemoralis is distinguished from existing
species based on a suite of features, including the bifurcation of the neural spines near the
caudal peak and short femora relative to the body. These differences are unlikely to be
sexual dimorphisms, which are present in the species as an independent suite of characters
(Motani et al., 2018). Chaohusaurus brevifemoralis is larger than its sister taxon,
Chaohusaurus chaoxianensis, in body size. The two species were sympatric but likely
pursued different resources from each other’s.

OSTEOLOGICAL ABBREVIATIONS
a astragalus

an angular

ar articular

atn atlantal neural spine

atp atlantal pleurocentrum

axc axis centrum

axn axis neural spine

axr axis rib

bo basioccipital

bs basisphenoid

c calcaneum

c3 3rd centrum

ch ceratohyal

cl clavicle

co coronoid

corac coracoid

cpn caudal peak neural spine

cr caudal rib

d dentary

d.v.f. descending ventral flange of parietal

em extra preaxial metacarpal

eo exoccipital

f frontal

fe femur

fi fibula

fran first round anticlined neural spine

H humerus

he hemal arch

icl interclavicle

il ilium

in intermedium
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is ischium

j jugal

l lacrimal

lnn last narrow neural spine

m maxilla

n nasal

n3-5 3rd to 5th neural spines

pb pubis

pl palatine

po postorbital

pra prearticular

prf prefrontal

ps parasphenoid

pt pterygoid

ptf postfrontal

p.sl. parietal slope

q quadrate

qj quadratojugal

R radius

r radiale

sa surangular

sc scapula

sp splenial

sq squamosal

sr sacral rib

st supratemporal

ti tibia

U ulna

u ulnare

v10-v70 vertebrae

vc vertebral centrum

i-v metacarpal or metatarsal

4 fourth distal carpal.
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