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ABSTRACT
We propose a hierarchical latent Dirichlet allocationmodel (HiLDA) for characterizing
somatic mutation data in cancer. The method allows us to infer mutational patterns
and their relative frequencies in a set of tumor mutational catalogs and to compare the
estimated frequencies between tumor sets. We apply our method to two datasets, one
containing somatic mutations in colon cancer by the time of occurrence, before or after
tumor initiation, and the second containing somatic mutations in esophageal cancer
by sex, age, smoking status, and tumor site. In colon cancer, the relative frequencies of
mutational patterns were found significantly associated with the time of occurrence of
mutations. In esophageal cancer, the relative frequencies were significantly associated
with the tumor site. Our novel method provides higher statistical power for detecting
differences in mutational signatures.

Subjects Bioinformatics, Genomics, Statistics
Keywords Mutational signatures, Somatic mutation, Colorectal cancer, Latent dirichlet
allocation, Deconvolution

INTRODUCTION
A variety of mutational processes occur over the lifetime of an individual, and thereby
uniquely contribute to the catalog of somatic mutations observed in a tumor. Some
processes leave a molecular signature: a specific base substitution occurring within a
particular pattern of neighboring bases. A variety of methods exist to discover mutational
signatures from the catalog of all somatic mutations in a set of tumors, estimating the
latent mutational signatures as well as the latent exposures (i.e., fraction of mutations) each
signature contributes to the total catalog. The first large study of mutational signatures
in cancer identified variation in mutational signatures and mutational exposures across
21 different cancer types (Alexandrov et al., 2013b). To better understand the sources of
variation in the mutational exposures across cancers, our interest is in statistical methods
used to characterize these latent mutational exposures across different cancer subtypes.
Moreover, by classifying mutations by their time of occurrence, before or after tumor
initiation, we can investigate whether new mutational processes occur during tumor
growth.

How to cite this article Yang Z, Pandey P, Shibata D, Conti DV, Marjoram P, Siegmund KD. 2019. HiLDA: a statistical approach to in-
vestigate differences in mutational signatures. PeerJ 7:e7557 http://doi.org/10.7717/peerj.7557

mailto:zhiyang@usc.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7557
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.7557


Previous studies interested in comparing mutational exposure estimates between
different groups of tumor catalogs conducted a post hoc analysis (Cancer Genome Atlas
Research Network, 2017; Chang et al., 2017; Hillman et al., 2017; Letouzé et al., 2017; Meier
et al., 2018; Haradhvala et al., 2018; Qin et al., 2018; Olivier et al., 2019; Guo et al., 2018).
The analysis proceeded in two stages. First, they performed one of the several different
approaches for mathematically extracting the latent mutational signatures and their
exposures from the mutational catalogs (see Baez-Ortega & Gori (2017) for a review of
such methods). Later, they conducted an independent test of association between the point
estimates of the mutational exposures and external covariates. Examples of covariates
included cancer subtype, or patient history of alcohol or tobacco use. However, the
variation of the exposure estimates is affected by two factors, the number of mutations in
the tumor and the variation in exposure frequency in the patient population. The former,
the number of mutations in the tumor, affects the accuracy of the exposure estimates.
The application of the Wilcoxon rank-sum test on the exposure estimates does not take
into consideration their accuracy, which can lead to loss of efficiency and test power. We
address this by introducing a unified parametric model for testing variation of mutational
exposures between groups of mutational catalogs, where the exposure frequencies are
modeled using a Dirichlet distribution.

We propose a hierarchical latent Dirichlet allocation model (HiLDA) that adds an
additional level to the latent Dirichlet allocation (LDA) model from Shiraishi et al. (2015).
Shiraishi’s model, like the majority of deconvolution approaches, focuses on signatures
for single-nucleotide substitutions, characterizing the mutation types by context, using
local features in the genome such as the pattern of flanking bases and possibly the
transcription strand. Other methods available to discover and characterize mutational
signatures include the Wellcome Trust Sanger Institute (WTSI) Mutational Signature
Framework, Emu, and signeR (Alexandrov et al., 2013b; Fischer et al., 2013; Rosales et al.,
2016). Both WTSI Framework and signeR were developed based on the non-negative
matrix factorization while Shiraishi’s model and Emu are probabilistic models using an
expectation–maximization algorithm. However, all methods except for Shiraishi’s model
describe three-base contexts in mutational signatures. For both model parsimony and
interpretation, we choose to extend Shiraishi et al.’s LDA model. First, it requires fewer
parameters than competing methods, giving it higher power to detect patterns five bases
in length compared to other models that consider only three-base contexts (Shiraishi et al.,
2015). For example, to capture the five-base context in amutational signature, only requires
17= (6−1)+4× (4−1) free parameters rather than 1,535 = 6×44−1 when using the
non-negative matrix factorization based method proposed by Alexandrov et al. (2013b).
Second, signature visualization methods lead to easy interpretation; an example is the
common C > T substitution at CpG sites instead of the more complicated NpCpG patterns
that appear when using the trinucleotide context. Like the LDAmodel, HiLDA retains all the
functionality for estimating both the latent signatures and the latent mutational exposure
of each signature for each tumor catalog. Our newly-added hierarchical level allows HiLDA
to simultaneously test whether those mean exposures differ between different groups of
catalogs while accounting for the uncertainty in the exposure estimates. Additionally, we
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Table 1 List of notation.

Notation Description

I Total number of mutational catalogs (indexed by i)
Ji Number of observed mutations in ithmutational catalog (indexed by j)
L Number of features to include. Here, we use the nucleotide substitution, flanking bases and transcription strand (indexed by l)
M Vector of the maximum numbers of possible values, (M1,...,ML), for each mutation feature, (indexed byMl),M1 = 6 for nu-

cleotide substitution,M2= 4 for flanking base, (A, C, G, T),ML= 2 for transcription strand, (+,−)
K Total number of mutational signatures (indexed by k)
Xi,j Observed mutation characteristic vector, (xi,j,1,...,xi,j,L), for the jthmutation from the ithmutational catalog (indexed by xi,j,l)
zi,j Index of the latent assignment for Xi,j , zi,j ∈ {1,...,K }
qi,k Probability vector of signature k exposure in mutational catalog i, (qi,1,...,qi,K ), with

∑
kqi,k = 1

fk,l Probability vector of observing any ofMl elements for lthmutation feature, fk,l = (fk,l,1,...,fk,l,Ml ) with
∑

ml
fk,l,ml = 1

Fk A tuple of probability vectors with length L, (fk,1,...,fk,L)
g A vector indicating group membership of the samples. (gi ∈ {1,2} for each sample i)
α A tuple of concentration parameters of a Dirichlet distribution with length K , (α1,...,αK ), where the dispersion φ=

∑
kαk

µ A tuple of expected values of q of a Dirichlet distribution with length K , (µ1,...,µK ), where
∑

kµk = 1.

can now parse out differences in group means in the presence of differences in group
variances, which is not tenable when using post hoc nonparametric location-scale tests.

In this paper, we use HiLDA to study mutational exposures in two cancer data sets, one
colon and the second esophageal.

METHODS
Hierarchical Bayesian Mixture Model
We introduce a hierarchical latent Dirichlet allocation model (HiLDA) using the following
notation, also summarized in Table 1. Let i index themutational catalog and j themutation.
The nucleotide substitutions are reduced to six possible types (C >A, C >T, C>G, T >A,
T>C, T>G) to eliminate redundancy introduced by the complementary strands. Each
observed mutation is characterized by a vector, Xi,j describing the nucleotide substitution
(e.g., C >T) and a set of genomic features in the neighborhood. Example features include
the base(s) 3′ and 5′ of the nucleotide substitution (C, G, A, T), and the transcription strand
(+, −). Each observed feature characteristic, xi,j,l for mutation feature l , takes values in
the set {1,2,...,Ml} (whereMl = 6 for the nucleotide substitution, or 4 for a flanking base,
and 2 for the transcription strand).

We assume each mutation belongs to one of K distinct signatures. A specific mutational
signature k is defined by an l-tuple of probability vectors, Fk , denoting the relative
frequencies of the Ml discrete values for the l features, i.e., a vector fk,l for the Ml

values corresponding to feature l . We let zi,j denote the unique latent assignment of
mutation Xi,j to a particular signature. Then, given the signature to which a mutation
belongs, the probability of observing a mutational pattern is calculated as the product
of the mutation feature probabilities for that signature. Thus, for signature k we write
Pr(Xi,j |zi,j)=

∏
l fk,l(xi,j,l |zi,j). This assumes independent contributions of each feature to
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the signature. To model each multinomial distribution of fk,l , we use a non-informative
Dirichlet prior distribution with all concentration parameters equal to one.

The unique personal exposure history of each individual leads to themhaving a particular
(latent) vector, qi, indicating the resulting contribution of each of the K signatures to that
individual’s mutational catalog. These qs are modeled using a Dirichlet distribution with
concentration parameters α, i.e., qi ∼Dir(α). Extending this model to the two-group
setting, we allow the Dirichlet parameters to depend on group, Dir(α(gi)), with gi indexing
the group corresponding to the ith catalog (gi = 1 or 2). The mean mutational exposures,
E(qi), denoted by µ(gi), are represented by using the concentration parameters, i.e.,
µ(gi)=α(gi)/

∑
α(gi).

With this extension, we can infer differences in mutational processes between groups of
catalogs by testing whether the mean mutational exposures differ between the two sets, i.e.,
at least one µk

(1)
6=µk

(2). The likelihood and prior of the multi-level model is specified as
follows,

xi,j,l |zi,j ∼Multinomial(fzi,j ,l)

zi,j ∼Multinomial(qi|g )

qi|gi∼Dir(α(gi))

For full details see See Text S1 and Fig. S1.

Testing for differences in signature exposures
To characterize the signature contributions for different sets of tumor catalogs, we wish
to conduct a hypothesis test that there is no difference in mean exposures versus the
alternative that the mean exposure of at least one signature differs between the two groups,
i.e.,H0 :µ

(1)
=µ(2) vs.H1: at least oneµk

(1)
6=µk

(2).We propose both local and global tests,
implemented in a Bayesian framework. The former provides signature-level evaluations
to determine where the differences in mean mutational exposures occur, while the latter
provides an overall conclusion about any difference in mean mutational exposures. The
details of our implementation are given in our Just Another Gibbs Sampler (JAGS) scripts
and Source code is freely available in GitHub at https://github.com/USCbiostats/HiLDA
(Plummer, 2003).

A local test to identify signatures with different exposures
We propose a signature-level (local) hypothesis test to allow us to infer which signature(s)
contribute a different mean exposure to the mutational catalogs across tumor sets, i.e.,
µk

(1)
6=µk

(2). To measure the difference between mean signature exposure vectors, we
implement HiLDA by specifying two Dirichlet distributions, Dir(α(1)) and Dir(α(2)), as
priors for the distribution of mutational exposures qi of each group (Spiegelhalter et al.,
2003). Using this formulation, the difference between the two groups of the mean exposure
of signature k is calculated as,

1k =µ
(2)
k −µ

(1)
k =

α
(2)
k∑
kα

(2)
k

−
α
(1)
k∑
kα

(1)
k

. (1)
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For all parameters, α(1)k ’s and α(2)k ’s, we use independent, non-informative gamma
distribution priors with a rate of 0.001 and shape of 0.001. Since JAGS suffers from
convergence issue when estimating parameters very close to zeros, we truncate that
distribution to be≥ 0.05. This results in an approximatemean of 107.7 and an approximate
variance of 9.62×104.

We estimate parameters via Markov chain Monte Carlo (MCMC) using two chains
(Carlin & Chib, 1995). We assess convergence of the twoMCMC chains using the potential
scale reduction factor (Rhat) in Gelman & Rubin (1992), which is required to be less than
or equal to 1.05 for all parameters in order to conclude that the MCMC run has converged.
After obtaining the posterior distribution of the differences (i.e., of 1k), there are two
possible approaches to performing inference. We can: (1) use the Wald test to compute
the P-value using the means and standard errors of the posterior distribution for 1k ; (2)
determine whether the 95% credible interval of the posterior distribution for 1k contains
zero.

A global test using the Bayes factor
We also propose a global test to provide an overall conclusion on whether the mean
exposures differ between groups of catalogs. It uses the Bayes factor, the ratio of posterior
to prior odds in favor of model H1 (H1: at least one µ

(1)
k 6=µ

(2)
k , k= 1,...,K ) compared to

modelH0 (H0: µ(1)
=µ(2)), to indicate the strength of evidence that they do differ, without

explicit details on how they differ. Thus, we can calculate the Bayes factor as:

Bayes Factor =
Pr(H1|Data)
Pr(H0|Data)

/
Pr(H1)
Pr(H0)

. (2)

Since the likelihood is analytically intractable, the Bayes factor is calculated via MCMC
(Carlin & Chib, 1995). In order to estimate the Bayes factor, during the MCMC analysis,
a single binary hypothesis index variable is used to indicate which hypothesis explains
the observed data (Lodewyckx et al., 2011). The parameters of two Dirichlet distributions,
Dir(α(1)) and Dir(α(2)), are drawn from the same prior if the index takes the value 1,
whereas they are drawn from different priors if it takes the value 2. Initially, the prior
hypothesis odds is set to be 0.5/0.5 = 1, which means that both hypotheses are assumed
equally likely under the prior. In order to improve computational efficiency in extreme
situations in which one hypothesis dominates the other, we can use a different prior
odds value (Carlin & Chib, 1995). A Bayes Factor (BF) between 3–10 indicates substantial
support for the model with different mean exposures in the two groups (H1) (Jeffreys,
1998). A BF > 10 indicates strong support.

Two-stage inference methods using the point estimates of mutational
exposures
An alternative approach is to perform hypothesis testing using point estimates of the
mutational exposures, q̂i, in a two-stage analysis, which we refer to as the ‘‘two-stage’’
method (TS). We used the R package pmsignature to estimate q̂ (Shiraishi et al., 2015).
Other methods are also available, but we selected pmsignature for the purpose of
comparisons to the results from HiLDA since it assumes the same model for estimating
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signatures under independence of features. We summarize the steps of the TS method as
follows:
1. Jointly estimate the vectors of mutational signature exposures, qi, for each mutational

catalog.
2. Test for differential mutational exposures for signature k by performing the Wilcoxon

rank-sum test on the q̂k .
However, we note that the Wilcoxon rank-sum test in stage 2 is also sensitive to changes

in variance across the two groups, which might lead to significant results even when there
has been no change in mean exposures (Kasuya, 2001; Ruxton, 2006). We implemented the
two-stage method using R version 3.5.0 (R Core Team, 2017). A two-sided P value of less
than 0.05 was considered statistically significant.

Choosing the number of signatures
The number of signatures, K , needs to be determined prior to any of the above analyses.
We adopted the method of Shiraishi et al. (2015) to determine K . Their method is based
on the following criteria:
1. The optimal value of K is selected over a range of K values such that the likelihood

remains relatively high while simultaneously having relatively low standard errors for
the parameters.

2. Pairwise correlations between any two signatures (the kth signature and the k ′th
signature, say) are measured by calculating the Pearson correlation between their
estimated mutational exposures across all samples, (i.e., the correlation between
(q̂1,k,...,q̂I ,k) and (q̂1,k ′,...,q̂I ,k ′)). K is chosen such that no strong correlation (i.e.,
>0.6) exists between any pair.
For full details see Shiraishi et al. (2015).

Application
USC colon cancer data
Our goal is to identify whether any new mutational signatures occur during colon cancer
growth that distinguish cancer evolution from normal tissue evolution. To achieve this,
we classify somatic mutations into two catalogs according to time of occurrence: those
that accumulated between the time of the zygote and the first tumor cell, which we call
trunk mutations, and those that occur de novo during tumor growth, which we refer to as
branch mutations. We then estimate mutational signatures in the two sets of catalogs and
test whether the mean mutational exposures differ between them.

We analyzed a total of 16 colon tumors. Tumor and adjacent normal tissue were subject
to whole exome sequencing, and somatic mutations called using the GATK pipeline and
MuTect (details below). Somatic mutations in the tumors were defined as nucleotide
variants that were detected in tumor tissue but did not also appear in the patient-matched
normal tissue. We used multi-region tumor sampling to allow us to distinguish between
trunk from branch mutations (Siegmund & Shibata, 2016). Each tumor was sampled twice,
with bulk tissue samples taken fromopposite tumor halves.We classified somaticmutations
appearing in both tumor halves as trunk, because only trunk mutations are likely to appear
in both tumor halves, while mutations found on only one side of a tumor were labeled as
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branch. This approach has previously been shown to be 99% sensitive for calling trunk
mutations and 85% sensitive for calling branch mutations (Siegmund & Shibata, 2016).
Fifteen of the 16 tumors were previously analyzed in a study of cell motility (Ryser et al.,
2018).

The sequence data were processed using the GATK pipeline version 3.7 (DePristo et
al., 2011) and somatic mutations called with MuTect version 1.1.7 (Cibulskis et al., 2013),
applying the quality filters KEEP (default parameters) and COVERED (read depth of 14
in tumor and 10 in matched normal - use of a lower coverage threshold in normal tissue
is as recommended in Cibulskis et al. (2013)). We excluded any mutations that either had
an allele frequency less than 0.10, because sequencing errors are more common among
low-frequency mutations (Cibulskis et al., 2013), or that were not also found by Strelka
(Saunders et al., 2012), which we used as a confirmatory control. Somatic mutations on
chromosomes 1 to 22 were used for mutational signature analysis. Our final data set is
available for download from https://osf.io/a8dzx/.

Esophageal Adenocarcinoma (EAC) data
Here, we test for possible group differences in esophageal adenocarcinoma mutational
exposures by four clinically important covariates. In papers by Alexandrov et al. (2013a)
and Shiraishi et al. (2015), 146 tumor samples of esophageal cancer patients from Dulak et
al. (2013) were analyzed to extract mutational signatures. We downloaded the somatic
mutations for this analysis from (ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/
somatic_mutation_data/Esophageal/). Information for the four clinical variables were
retrieved from cBioPortal (https://www.cbioportal.org/study/summary?id=esca_broad)
(Cerami et al., 2012; Gao et al., 2013; Dulak et al., 2013). We extended the analysis of
Shiraishi et al. (2015), applying HiLDA to test whether the mutational exposures of the
four signatures they found differ by sex (120 male vs. 25 female), age group (120 ≥ 60
years vs. 25 < 60 years), smoking status (47 smokers vs. 19 non-smokers), or tumor site
(41 esophagus vs. 52 cardia/gastric-esophageal junction(GEJ)).

RESULTS
Tumor evolution in USC colon cancer data
A total of 12,554 somatic single-nucleotide substitutions were identified, with a median of
277 per sample (range: 82–1,762) (see Table S1). One tumor with microsatelite instability
has more than double the number of somatic mutations (1,751 side A, 1,762 side B) than
any of the remaining 30 catalogs (all <750 mutations). In our first analysis, we compared
the mutational exposures in side A to those in side B. If the tumors represent a single clonal
expansion, we would expect similar mutational exposure frequencies in the two catalogs
from the same tumor. Indeed, this is what we found (Table 2).

We identified a median of 174 trunk and 186 branchmutations per tumor. The numbers
ranged from 49 to 1,578 trunk mutations and from 66 to 503 branch mutations (Fig. 1A).
Interestingly, the microsatellite instable tumor had the most trunk mutations, but not the
most branch mutations, suggesting that during tumor growth the mutation frequency
is similar in microsatellite stable and instable tumors. Figs. 1B and 1C show that the C
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Table 2 Comparing mutational exposures from two sets of mutational catalogs, Side A and Side B, in
the USC data.

Side A–Side B HiLDA-CI HiLDA-Wald TS-Wilcoxon
Testsa Coef. [95% C.I.]b p value p value

11 0.002 [−0.079, 0.083] 0.986 0.780
12 0.000 [−0.029, 0.029] 0.988 0.897
13 −0.002 [−0.083, 0.086] 0.961 0.985
H0 :11=12=13= 0 Bayes FactorM2/M1

= 0.021

Notes.
a1k =

α
(2)
k∑
kα

(2)
k
−

α
(1)
k∑
kα

(1)
k
, the difference in the mean exposure of signature k in group 1 and 2.

b95% credible interval from the posterior distribution.

Figure 1 The numbers of somatic mutations in 32 mutational catalogs obtained from 16 colon can-
cer patients in the USC data and their mutation spectra. (A) The number of somatic mutations in 16 tu-
mors, each of which contributes two mutational catalogs denoted as trunk (dark blue) and branch (light
blue). (B) The percentage bar plot of relative frequencies for six substitution types in 16 trunk mutational
catalogs. (C) The percentage bar plot of relative frequencies for six substitution types in 16 branch muta-
tional catalogs.

Full-size DOI: 10.7717/peerj.7557/fig-1

>T substitution is most common in all trunk catalogs, and most branch catalogs. The
spontaneous deamination of methylated Cs in CpGs is known to contribute to hotspots of
C >T mutation in the genome.

We identified three mutational signatures in our data (see Fig. S2). Those three
signatures, and their corresponding exposures, are depicted in Figs. 2A, 2B and 2C.
For each mutational signature, we compute the probabilities for the 1536 possible five-base
signature patterns by taking the product of the feature component probabilities. We use
thesemultinomial vectors to calculate the cosine similarity betweenpairs of signatures (Yang
et al., 2019). The signature shown in the yellow box in Fig. 2D, involving C >T mutations
at CpG sites, resembles signature 7 in Shiraishi et al. (2015) (cosine similarity 0.95), where
it was identified in 25 out of 30 cancer types and likely relates to the deamination of
5-methylcytosine (‘aging’); the signature in the orange box in Fig. 2E, involving T>G
mutations at GpGpTpG sites, is novel; the third signature, in the red box in Fig. 2F, is
most similar to signature 23 in Shiraishi et al. (2015) (cosine similarity 0.85), where it was
identified in four other cancer types. The pairwise cosine similarities between pairs of our
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Figure 2 Mutational exposures and three mutational signatures from the analysis of 16 trunk
mutational catalogs and 16 branchmutational catalogs in the USC data (16 colon cancer patients).
(A) Barplot of the somatic mutation counts, by signature type, sorted in a descending order of the total
number of mutations. Each grouped pair contain the trunk mutations and the branch mutations. y-axis
shows total number of mutations. (B) Barplot of the somatic mutation counts, again by signature type
and sorted in a descending order of the total number of mutations. Again, each grouped pair contains the
trunk mutations and the branch mutations, but now the y-axis is rescaled to show proportions rather than
total mutation count. (C) The same data as in Fig. 2B, but now separate into trunk and branch mutations.
Within each group the plots are sorted by the exposure frequency of the first signature (yellow). (D)
The yellow mutational signature with four flanking bases. (E) The orange mutational signature with
four flanking bases. (F) The red mutational signature with four flanking bases. (G) The distributions
of mutational exposures of the three mutational signatures highlighted by group, where the branch
mutational catalogs are highlighted as pink and the trunk ones are highlighted as blue.

Full-size DOI: 10.7717/peerj.7557/fig-2

yellow, orange and red signatures are 0.12, 0.01, and 0.02 which are rather dissimilar from
each other given the [0, 1] range for cosine similarity. Using HiLDA, we test whether the
three signatures differ in mean exposure between trunk and branch mutations.

Our global test strongly suggests that, in our data, the signature exposures differ between
trunk and branch catalogs (Bayes Factor = 1265.0). A Bayes Factor greater than 10 is
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Table 3 Comparing mutational exposures in colorectal cancer from two sets of mutational catalogs,
trunk and branch, in the USC data.

Branch-Trunk HiLDA-CI HiLDA-Wald TS-Wilcoxon
Testsa Coef. [95% C.I.] p value p value

11 −0.210 [−0.295,−0.127] <0.0001 0.0002
12 0.064 [0.035, 0.099] 0.0001 0.0075
13 0.146 [0.056, 0.231] 0.0011 <0.0001
H0 :11=12=13= 0 Bayes FactorM2/M1

= 1265.0

Notes.
a1k =

α
(2)
k∑
kα

(2)
k
−

α
(1)
k∑
kα

(1)
k
, the difference in the mean exposure of signature k in group 1 and 2.

b95% credible interval from the posterior distribution.

considered strong evidence for model H1 (Jeffreys, 1998). Each of the individual signatures
(depicted in Figs. 2D, 2E and 2F) is found to differ in exposure between the two sample
groups, a conclusion supported by both HiLDA and the two-stage method (Table 3). From
Fig. 2C, it is evident that the exposures of the first (‘aging’) signature in trunk mutations
is almost always greater than that for the matching catalog of branch mutations, which is
intuitively consistent with the fact that trunk mutations may well reflect an accumulation
of mutations over the life of the subject, whereas branch mutations are accumulated only
after tumor initiation. For the previously unseen signature, the higher exposures in branch
catalogsmight suggest that this signature’s underlyingmechanism for generatingmutations
might be associated with the processes occurring during tumor evolution as opposed to
normal development. From Fig. 2G, we observed that the distributional ranges of the two
groups of mutational exposures have some overlaps, but that the centers of each group,
i.e., the means of mutational exposures, are clearly deviated from each other. However, the
distributional radii, indicating the variances of mutational exposures, do not substantially
differ between the groups.

We sought to validate the discovery of the previously unseen signature by repurposing
targeted sequencing data from the same tumor set (Siegmund & Shibata, 2016) and using
publicly available data from the Cancer Genome Atlas. Four T>G substitutions that we
assigned to the previously unseen signature were part of a much larger independent
validation set of mutations subjected to targeted, high-coverage Ampliseq technology
(Siegmund & Shibata, 2016); all four of these T>G substitutions failed to validate. Further,
a systematic analysis of data from the Cancer Genome Atlas also did not find evidence for
this signature (Williams et al., 2016). Therefore, we cannot rule out that the signature is the
result of sequencing error.

Esophageal adenocarcinoma
We reanalyzed the 146 EAC previously studied by Shiraishi et al. (2015) and recovered
the same four mutational signatures, C >T at CpG (S7), C >T or A at TpC (S14), T
>G or C at Cp(T >G/C)pT (S21), and a signature capturing the remaining mutations,
i.e., those that do not fall into the previous three signatures. We tested for differences in
mutational exposures by sex, age, smoking status, and tumor site. Only tumor site showed
some evidence of differences in mutational exposure by patient subgroup (Fig. 3). The TS
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Figure 3 Estimated mutational exposures and posterior distributions of mean differences in muta-
tional exposures from the analysis of the EAC data (146 esophageal adenocarcinoma patients). (A)
Barplot of mean mutational exposures of three signatures by sex, age groups, smoking status, and tu-
mor sites derived from pmsignature. The significance level of TS approach is denoted by asterisks (**,
<0.005; *,<0.05). The mutational exposures do not sum to one since the frequency of remaining muta-
tions (those not assigned to these three signatures) is not displayed. (B) 95% credible interval of mean dif-
ferences in mutational exposures of four signatures derived from HiLDA-CI with the significance level of
HiLDA-Wald test. (**,<0.005; *,<0.05). The difference in mean exposures from HiLDA can differ from
those estimated by pmsignature due to the covariate distribution in the hierarchical model.

Full-size DOI: 10.7717/peerj.7557/fig-3

approach showed the mutational exposure for signature S21 was lower in the cardia/GEJ
compared to the esophagus (p= 0.019) (Fig. 3A). HiLDA only identified a significant deficit
in the mutational exposure for S21 in the cardia/GEJ location (−7.3% with 95% credible
interval: [−11.8%, −2.7%]; HiLDA-Wald p= 0.002) (Fig. 3B). However, the HiLDA
global test showed no strong evidence for associations between mutational exposures and
any of the four clinical variables age, sex, smoking status or tumor site (all Bayes Factors
< 1), suggesting the differences with tumor site may not be real. Still, both HiLDA-CI and
HiLDA-Wald tests return significant results even when using the Bonferroni method to
adjust for multiple comparisons (−7.3% with 98.75% credible interval: [−12.9%,−1.5%];
adjusted p= 0.019). See Fig. S3 for more details. We now go on to assess the reliability of
results using a simulation study.

Simulation study
We conducted a simulation study to assess the performance of both HiLDA and the two-
stage approach in terms of the false-positive rate (FPR) and true-positive rate (TPR), in
local, univariate tests of the difference in mean exposure between two groups of mutational
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Table 4 The false positive rates (FPR), true positive rates (TPR), and updated true positive rates of
both the two-stage method and HiLDA. The false positive rates (n = 1,000) and true positive rates (n =
200) of both the two-stage method and HiLDA when applied to the simulated data.

Methods 11 12 13

FPRs HILDA-CIa 4.8% 5.0% 5.1%
HILDA-Waldb 5.1% 3.7% 5.4%
TS-Wilcoxon 4.3% 5.2% 4.3%

TPRs HILDA-CI 99.5% 85.5% 91.5%
HILDA-Wald 99.5% 80.5% 92.5%
TS-Wilcoxon 99.0% 77.5% 88.0%

Notes.
aPercentage of 95% credible intervals that exclude zero.
bPercentage of P-values <0.05 after applying the Wald test to the posterior distribution.

catalogs. We assess the functionality of the methods in a setting similar to that of the USC
data, simulating somatic mutations directly using the estimated signatures (fk) from Figs.
2D, 2E and 2F for the same number of mutational catalogs (two groups of 16 catalogs
each) and somatic mutations per catalog (Ji in Table S1). The mutational exposures (qi)
were indirectly used to derive the concentration parameters of the Dirichlet distributions.
The scenarios are as follows:
1. The two groups of mutational catalogs are from separate Dirichlet distributions with

parameters α(1)= (9.2,0.2,7.5) and α(2)= (4.2,0.6,7.3). Here, the αs corresponds to
the maximum-likelihood estimated parameters from the three exposure distributions
in the trunk and branch mutational catalogs. This gives mean exposures of
µ(1)
= (0.54,0.01,0.44) and µ(2)

= (0.35,0.05,0.60) in trunk and branch catalogs,
respectively, for the aging signature, new signature, and random signature.

2. The two groups of mutational catalogs are from the same Dirichlet distribution,
Dir(4.2,0.6,7.3), (so here we use the concentration parameters estimated from the
branch mutational catalogs).
For each tumor,mutational exposures qi, are drawn from theDirichlet distribution. Each

set of probabilities parameterize a multinomial distribution later used to probabilistically
choose the underlying mutational signature for a mutation (See Fig. S4). Then, every
mutation feature in the mutational pattern of the mutation is simulated independently
from a corresponding multinomial distribution of the chosen signature. To estimate the
FPRs, 1,000 sets of data were simulated for scenario 2, when there is no difference in the
exposure distribution between two groups of mutational catalogs. The two-stage method
is slightly conservative for 1st and 3rd signatures (resulting FPRs of 4.3%, 5.2%, and 4.3%)
when testing at the 5% significant level (Table 4). In comparison, HiLDA showed better
control of the FPR by using the 95% credible interval of the posterior distributions (4.8%,
5.0%, and 5.1%). The Wald test also showed control of the FPR, except in the case of the
rare signature when it was noticeably lower (3.7%), presumably due to the asymmetric
posterior distribution.

We then moved to scenario 1, where we simulated 200 data sets with a difference in
mean exposures between the two groups of catalogs. Here, the statistical powers of both
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HiLDA and the two-stage method are high when detecting the difference in exposures
for the 1st and 3rd signatures (Table 4). In contrast, for the 2nd signature, which has the
lowest mean mutational exposure, the TPRs of all methods are lower (77.5%–85.5%). By
using the 95% credible interval of posterior distributions, HiLDA is able to distinguish
a difference more often than the two-stage method (99.5% vs. 99.0%, 85.5% vs. 77.5%,
and 91.5% vs. 88.0%). At the same time, using the credible interval resulted in higher
TPRs compared to performing a Wald test (85.5% vs. 80.5% for the 2nd signature). In
summary, across tests involving these three mutational signatures, HiLDA provides higher
statistical power to the TS method with a tendency of better improvement for signatures
with lower mutational exposures, i.e., the power difference between HiLDA and the TS
method is the highest (8%) for signature 2 with the lowest mean mutational exposures.
The improvements in the power to detect the mean exposure difference is presumably due
to the fact that HiLDA accounts for the uncertainty in the estimated mutational exposures
and provides better model fit of the posterior distributions. All data were simulated in R
3.5.0 using the hierarchical Bayesian mixture model described in the methods section. All
replicates reached convergence with an Rhat value less than 1.05 for each of the scenarios
shown in Tables 2–4.

DISCUSSION
In this paper, we present a new hierarchical method, HiLDA, that allows the user to
simultaneously extract mutational signatures and infer mutational exposures between two
different groups of mutational catalogs, e.g., trunk and branch mutations in our colon
cancer application. Our method is built on the approach of Shiraishi et al. (2015), in which
mutational signatures are characterized under the assumption of independence, and it is
the first to provide a unified way of testing whether mutational processes differ between
groups (here, between early and late stages of tumor growth). As a result, our method
allows us to appropriately control the false positive rates while providing higher power by
accounting for the accuracy in the estimated mutational exposures.

In our analysis of the USC data, which consist of 32 mutational catalogs extracted
from tumors from 16 CRC patients, our method detected three signatures and indicated
a statistically significant difference in mean exposures between groups. Two of the three
signatures resemble signatures S7 and S23 found by Shiraishi et al. (2015). But, in addition,
we found a novel signature. Signature 7 appears significantlymore often in trunkmutations,
which is consistent with the fact that it has previously been related to aging and trunk
mutations have a longer time over which to occur (conceivably over the lifetime of the
patient) than do branch mutations (which occur only during tumor growth). The new
signature, which occurred more often in low frequency branch mutations, is very similar
to a sequencing artifact described by Alexandrov et al. (2018) (cosine similarity = 0.93).
We note that, for the USC data, the conclusions obtained from HiLDA were qualitatively
the same as those obtained from the TS method. This is likely due to the relatively large
effect size here (i.e., the difference of mean exposures between the two groups, divided by
the standard errors of same, also known as the signal-to-noise ratio).
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In the analysis of the EAC data using HiLDA, we detected a statistically significant
increase in the mutational exposure of S21, which is consistent with the findings of
excessive fraction of A(A >C) mutations in esophagus compared to cardia/GEJ found in
Dulak et al. (2013). To explain, since mutational signatures features are defined in terms of
substitutions by the pyrimidine (T and C), an A(A >C) transversion is equivalent to a (T
>G)T transversion associated with S21. Also, we found that S21 greatly resembles Signature
17 published in Alexandrov et al. (2013b) (cosine similarity= 0.96), the hallmark signature
of EAC that has been proposed to arise from oxidative damage due to gastrointestinal
reflux (Nones et al., 2014). Alexandrov et al.’s Signature 17 has been shown to have a
higher number of mutations in EAC compared to stomach cancers, which reinforces our
results showing higher mutational exposures for S21 in tumors occurring in the tubular
esophagus compared to those in the GEJ (Alexandrov et al., 2018). By comparing different
testing results, it seems that both HiLDA-CI and HiLDA-Wald tests are more sensitive
compared to the TS approach in detecting the difference. However, the global test, based
on the Bayes factor, disagrees with the local test in the EAC data which might suggest that
more samples are needed for the global test to sufficiently support model H1.

In the simulation study, both HiLDA and the TS approach were applied to datasets
consisting of 16 tumors simulated under two scenarios to test for between group
differences in the mutational exposures of three signature. The results indicated that
our unified approach has higher statistical power for detecting differences in exposures
for these signatures while controlling the 5% false positive rate. We suspect that the
improvement in statistical power is because our unified method explicitly allows for the
uncertainty of inferred mutational exposures, while the two-stage method fails to do so
since it incorporates only the point estimates of those exposures. In addition, HiLDA
provides posterior distributions for each parameter, thereby allowing construction of 95%
credible intervals for parameters, and their differences, for example. As expected, this fully
parametric approach is then more powerful than nonparametric approaches, which we see
particularly when testing for differences in the rarer signatures.

We also note that the two-stage approach can become problematic with regards to
controlling the type I error rate in particular scenarios, e.g., when the variances of exposures
differ widely between the two groups. In our simulation study, we aimed to emulate the
USC data, meaning that the exposure variances were quite similar between groups.
Consequently, the Wilcoxon rank-sum test, the second-stage of the TS approach, was able
to maintain a type I error of 5%. However, we note that the Wilcoxon rank-sum test is
sensitive to differences found in either location or scale parameters of the two distributions
being tested, i.e., it is sensitive to changes in both the mean and the variance. Therefore,
when the variances change between two groups, the Wilcoxon rank-sum test may indicate
statistically significant differences in distributions even when the means have not changed,
(i.e., due to the difference in shape parameters rather than a difference between location
parameters). In contrast, HiLDA explicitly focuses on detecting differences in means,
and is robust to effects such as changes in variance. Consequently, when applying the TS
method, one should be wary of interpreting significant results as evidence of a ’’difference
in means’’ when using the TS method (as seems to be commonQin et al., 2018;Meier et al.,
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2018; Cancer Genome Atlas Research Network, 2017). We note that scenarios in which the
variance of the estimated exposures differs will be common if the numbers of mutations
per tumor varies between the two groups (e.g., when comparing microsatellite instable vs.
microsatellite stable colon tumors), leading to an inflated false-positive rate if results from
the TS method are interpreted as being evidence of a difference in means. (See Fig. S5 for
a specific example of this.) We intend to explore this issue further in a future paper. We
also intend to more fully investigate the factors that drive the ability to detect significant
difference between groups across a much wider variety of scenarios.

CONCLUSION
In conclusion, we developed a unified method, HiLDA, along with an R package,
which enables researchers to simultaneously estimate mutational signatures and infer
the mean difference in mutational exposures between two groups. The simulation
studies demonstrated that HiLDA has higher statistical power for detecting differences
in mutational signatures, because it accounts for uncertainty in the exposure estimates.
Application of HiLDA to both the USC colon data and the EAC data suggest that future
studies may also benefit from using HiLDA, rather than the existing TS method, to better
detect the difference in mutational signatures.
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