Early Agenian rhinocerotids from Wischberg (Canton Bern, Switzerland) and clarification of the systematics of the genus *Diaceratherium* (#37621)

First submission

Guidance from your Editor

Please submit by 6 Jun 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

8 Figure file(s)

8 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Early Agenian rhinocerotids from Wischberg (Canton Bern, Switzerland) and clarification of the systematics of the genus Diaceratherium

Claire Jame Equal first author, 1, Jérémy Tissier Corresp., Equal first author, 2, 3, Olivier Maridet 2, 3, Damien Becker 2, 3

Corresponding Author: Jérémy Tissier Email address: jeremy.tissier@unifr.ch

Background. Wischberg is a Swiss locality in Bern Canton which has yielded numerous vertebrates remains from the earliest Miocene (= MN1). It has a very rich faunal diversity, one of the richest in Switzerland for this age. Among all the mammals reported in the original faunal list 70 years ago, three rhinocerotid species were identified. The material consists of two fragmentary skulls, cranial fragments, several mandibles, teeth and postcranial bones, in a rather good state of preservation.

Results. After reexamination of the material from this locality (curated in three different Swiss museums), and comparison with holotype specimens, we show that all rhinocerotid specimens from Wischberg can be referred to just two species. Most of the material can be attributed to the large size teleoceratine *Diaceratherium lemanense*, while only a few specimens, including a skull and mandible, belong to the much smaller sized *Pleuroceros pleuroceros*. We describe and illustrate for the first time most of these fossil remains. However, the systematics of the genus *Diaceratherium* is currently controversial, and we attempt to elucidate it based on our new observations, though a large-scale phylogenetic study should be done in the future to resolve it. The rhinocerotid association found in Wischberg is nonetheless typical of the MN1 biozone, which results from a faunal renewal occurring just before the end of the Oligocene.

Observatoire des Sciences de l'Univers de Rennes, Université Rennes I, Rennes, France

² Cenozoic Research Group, IURASSICA Museum, Porrentruy, Switzerland

³ Department of Geosciences, University of Fribourg, Fribourg, Switzerland

Early Agenian rhinocerotids from Wischberg (Canton

2 Bern, Switzerland) and clarification of the systematics

3 of the genus Diaceratherium

4 5 6

Claire Jame¹, Jérémy Tissier^{2,3}, Olivier Maridet^{2,3}, Damien Becker^{2,3}

7

- 8 ¹ Observatoire des Sciences de l'Univers de Rennes, University of Rennes I, Rennes, France
- 9 ² JURASSICA Museum, Porrentruy, Jura Canton, Switzerland
- 10 ³ Department of Geosciences, University of Fribourg, Fribourg, Fribourg Canton, Switzerland

11

- 12 Corresponding Author:
- 13 Jérémy Tissier^{2,3}
- 14 Route de Fontenais 21, Porrentruy, Jura, 2900, Switzerland
- 15 Email address: jeremy.tissier@unifr.ch

16 17

Abstract

- 18 **Background.** Wischberg is a Swiss locality in Bern Canton which has yielded numerous
- vertebrates remains from the earliest Miocene (= MN1). It has a very rich faunal diversity, one of
- 20 the richest in Switzerland for this age. Among all the mammals reported in the original faunal list
- 21 70 years ago, three rhinocerotid species were identified. The material consists of two
- 22 fragmentary skulls, cranial fragments, several mandibles, teeth and postcranial bones, in a rather
- 23 good state of preservation.
- 24 **Results.** After reexamination of the material from this locality (curated in three different Swiss
- 25 museums), and comparison with holotype specimens, we show that all rhinocerotid specimens
- 26 from Wischberg can be referred to just two species. Most of the material can be attributed to the
- 27 large size teleoceratine Diaceratherium lemanense, while only a few specimens, including a
- 28 skull and mandible, belong to the much smaller sized *Pleuroceros pleuroceros*. We describe and
- 29 illustrate for the first time most of these fossil remains. However, the systematics of the genus
- 30 Diaceratherium is currently controversial, and we attempt to elucidate it based on our new
- observations, though a large-scale phylogenetic study should be done in the future to resolve it.
- 32 The rhinocerotid association found in Wischberg is nonetheless typical of the MN1 biozone,
- 33 which results from a faunal renewal occurring just before the end of the Oligocene.

34 35

Introduction

- 36 The Aquitanian Lower Freshwater Molasse (USM) record of the Plateau Molasse is
- 37 characterised within the central and eastern area of the Swiss North Alpine Foreland Basin
- 38 (NAFB) by the floodplain deposits from the *Granitische Molasse* Formation, lateral equivalent
- 39 of the *Molasse grise de Lausanne* Formation from the western area (Habicht 1987, Berger et al.

- 40 2005a, b, Schweizerisches Komitee für Stratigraphie und Landesgeologie 2014). These
- 41 geological formations yielded many vertebrate localities, unfortunately recording mostly
- 42 incomplete assemblages and only a few large mammal species (Scherler et al. 2013). However,
- 43 Agenian land mammal associations are remarkably well documented in the locality of Wischberg
- 44 (MN1; Schaub & Hürzeler 1948, Engesser & Mödden 1997), Engehalde (MN2; Becker et al.
- 45 2010) and Wallenried (MN2; Becker et al. 2001, Mennecart et al. 2016).
- 46 From the area of Langenthal (Bern Canton, Switzerland), Gerber (1932, 1936) first reported
- 47 fossil rhinocerotids originating from the Wischberg locality (latitude 47.199157894°/longitude
- 48 7.763943664°; Fig. 1). A preliminary mammal list was provided by Schaub & Hürzeler (1948),
- 49 including Eulipotyphla, Rodentia, Lagomorpha, Cainotheriidae, non-ruminant Artiodactyla,
- 50 Ruminantia, Tapiridae and Rhinocerotidae. More recently, Lagomorpha have been reviewed by
- Tobien (1975) and part of large mammals by Becker (2003) and Scherler et al. (2011, 2013).
- 52 Since the work of Engesser & Mödden (1997) on the mammal biozonation of the Lower
- 53 Freshwater Molasse of Switzerland, the mammal assemblage of Wischberg (Tab. 1) can be
- 54 considered as one of the most important and complete in the Swiss Molasse Basin, consistently
- pointing to an early Aquitanian age (MN1 biozone; Agenian European Land Mammal Age).
- **57 Figure 1:**

63

67

76

77

- 58 General setting of Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian,
- 59 Early Miocene).
- 60 (A) Map of a part of Western Europe showing the location of Switzerland and the Molasse
- Basin. (B) Enlargement of the Aquitanian palaeogeographical context of the Swiss Molasse
- 62 Basin, with detailed location of Wischberg locality. Modified from Becker et al. (2010).
- 64 **Table 1:**
- 65 Mammal assemblage of Wischberg locality, Bern Canton, Swiss Molasse basin (MN1,
- 66 Agenian, Early Miocene).
- 68 Contrary to Schaub & Hürzeler (1948), the cranio-mandibular, dental, and postcranial remains
- 69 from Wischberg are here attributed to two different rhinocerotid species, instead of three. In this
- 70 work, we first review the description and the identifications of the material, which can be
- assigned to the single-horned and short-limbed teleoceratine *Diaceratherium lemanense* (Pomel,
- 72 1853), and the small-sized double-horned *Pleuroceros pleuroceros* (Duvernoy, 1853). Second,
- 73 we examine the systematics of the genus *Diaceratherium*, which is currently contentious, and the
- 74 ecological role of the Early Miocene Rhinocerotidae within the large herbivorous mammal
- 75 communities of Western Europe.

Materials & Methods

- 78 The fossil materials from Wischberg were discovered between 1931 and 1947 in two pits of
- 79 Aquitanian mottled marls and sands of the *Granitische Molasse* (Schaub & Hürzeler 1948) that

- 80 were exploited during the first half of the last century in Langenthal (Bern Canton, Switzerland).
- 81 The sites are no longer accessible due to anthropogenic developments. The studied material
- 82 includes twenty-five rhinocerotid specimens (and among them numerous casts) that are stored in
- 83 the natural history museums of Bern (Naturhistorisches Museum des Burgergemeinde Bern) and
- 84 Basel (Naturhistorisches Museum Basel) as well as in the local museum of Langenthal (where
- 85 the original skull and a mandible of *Diaceratherium lemanense* are exposed). It is worth to
- 86 clarify that the original specimens referred to *Pleuroceros*, except the semilunate
- 87 NMBE5031537, are lost and the work on this taxon is based on the remaining casts.
- 88 The rhinocerotid specimens from Wischberg have been described by means of anatomical
- 89 descriptions, comparative anatomy, and biometrical measurements. The sequence of described
- 90 dental and osteological features follows Antoine (2002). The dental terminology follows Heissig
- 91 (1969) and Antoine (2002), while dental and skeletal measurements were taken according to
- 92 Guérin (1980). The locomotion type is based on the gracility index of the McIII and MtIII (100 x
- 93 TDdia/L; Guérin 1980). All dimensions are given in mm and those between parentheses are
- 94 estimated.
- 95 The stratigraphical framework is based on geological time scales and European Land Mammal
- 96 Ages (ELMA) for the Neogene (Hilgen et al. 2012). Successions of Mammal Neogene units
- 97 (MN) were correlated by Berger (2011) based on biostratigraphic and magnetostratigraphic data
- 98 (BiochroM'97 1997, Engesser & Mödden 1997, Kempf et al. 1997, 1999, Mein 1999, Steininger
- 99 1999, Agustí et al. 2001).
- Body masses of the rhinocerotid species found in Wischberg are estimated from dental
- measurements and particularly from the lower first molar (m1) area (length \times width). Teeth are
- indeed the most frequent elements in the fossil record because of their higher fossilization
- potential. Teeth are also the subject of extensive studies in palaeontology and biology due to the
- diagnostic values of their morphology. Legendre (1989) developed several allometric equations
- for different groups of extant mammals which always show correlation coefficients higher than
- 106 0.95, indicating high correlations between the body mass and the occlusal area of the first lower
- molar. The equation used to estimate the body masses of rhinocerotids is based on the correlation
- 108 established for perissodactyls by Legendre (1989).
- 110 Abbreviations

117

- 111 APD antero-posterior diameter, Cc calcaneus, dia diaphysis, dist distal, H height, I/i
- 112 upper/lower incisor, L length, M/m upper/lower molar, Mc metacarpal, MHNT Museum
- d'histoire naturelle de Toulouse, ML Museum Langenthal, MNHN Muséum National d'Histoire
- 114 naturelle (Paris), Mt metatarsal, NMB Naturhistorisches Museum Basel, NMBE
- 115 Naturhistorisches Museum der Burgergemeinde Bern, P/p upper/lower premolar, prox proximal,
- 116 SMNS Staatliches Museum für Naturkunde Stuttgart, TD transversal diameter, W width.

118 Results

119 Systematic palaeontology

120	
121	Class Mammalia Linnaeus, 1758
122	Order Perissodactyla Owen, 1848
123	Superfamily Rhinocerotoidea Gray, 1821
124	Family Rhinocerotidae Gray, 1821
125	Subfamily Rhinocerotinae Gray, 1821
126	Genus Pleuroceros Roger, 1898
127	
128	Type species: Pleuroceros pleuroceros (Duvernoy, 1853)
129	Included species: Pleuroceros blandfordi (Lydekker, 1884)
130	
131	Pleuroceros pleuroceros (Duvernoy, 1853)
132	Fig. 2-3, Tab. 2
133	
134	Stratigraphical range: Latest Oligocene (?MP29/30) to Early Miocene (MN1-MN2), western and
135	central Europe (Antoine & Becker 2013)
136	Occurrences:
137	- France: Billy-Base (Allier), ?MN29/30; Gannat, MN1 (type locality); Paulhiac, MN1;
138	Pyrimont-Challonges, MN1; Saulcet, MN1; Laugnac, MN2; Montaigu-le-Blin, MN2; (Duvernoy
139	1853, Lavocat 1951, de Bonis 1973, Hugueney 1997, Ginsburg & Bulot 2000, Antoine et al.
140	2010, Antoine & Becker 2013, Scherler et al. 2013)
141	- Germany: Flörsheim, MN2; Pappenheim, MN2 (Schlosser 1902, Heissig 1999)
142	- Switzerland: Wischberg, MN1 (Schaub & Hürzeler 1948, Heissig 1999, Becker 2003)
143	Referred material: Skull with right P1-M3 and left P2-M3 (original specimen lost, cast
144	NMBE5031553, cast NMB-AS77), fragmented mandible with right p4-m3 and left m1-2
145	(original lost, cast NMBE5026739, cast NMB-AS78), right semilunate (original NMBE5031537
146	cast NMB-AS3), right McIV (original lost, cast NMB-AS79) from Wischberg (Switzerland,
147	MN1)
148	
149	Figure 2:
150	Pleuroceros pleuroceros (Duvernoy, 1853) from Wischberg locality, Bern Canton, Swiss
151	Molasse basin (MN1, Agenian, Early Miocene).
152	Partial skull NMBE5031553 in lateral (A), dorsal (B), medial (C) and occlusal (D) views
153	and left-side fragment from the same individual in occlusal (E) view. Mandible fragments
154	NMBE5026739 in labial (F), lingual (G) and occlusal (H) views with p4-m3 (right-side
155	fragment) and m1-2 (left-side fragment). Scale bars = 10 cm.
156	
157	Figure 3:
158	Pleuroceros pleuroceros (Duvernoy, 1853) from Wischberg locality, Bern Canton, Swiss
159	Molasse basin (MN1, Agenian, Early Miocene).

160 Right semilunate NMBE5031537 in dorsal (A), proximal (B), distal (C), lateral (D) and medial (E) views and right McIV (cast NMB-AS79) in dorsal (F), lateral (G), ventral (H), 161 medial (I) and proximal (J) views. 162 163 164 Table 2: 165 Dimensions [mm] of the cheek teeth of *Pleuroceros pleuroceros* (Duvernoy, 1853) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene). 166 167 168 **Description Skull**. NMBE5031553 is a cast of an incomplete, fragmented and transversally compressed skull 169 comprising a part of the frontals, the area of the right zygomatic arch, the right P1-M3 and the 170 left P2-M3. Few cranial characters are observable. We can note a remarkably curved upwards 171 jugal bearing a processus postorbitalis, an infraorbital foramen situated above the P3, an anterior 172 173 border of the orbit reaching the paracone of M1, an anterior base of the zygomatic process high above the M1-as well as the presence of a *processus lacrymalis*. 174 Mandible. From the fragmented mandible NMBE5026739, the corpus mandibulae (height 175 below m3 = 71.5) does not seem to bear a median sagittal groove (sulcus mylohyoideus). The 176 177 retromolar space is short and the position of the *foramen mandibulare* (based on the transverse slimming of the *corpus* in cross section) is located below the teeth neck. 178 **Upper teeth.** The dental wear of the tooth series is advanced. The premolar series is rather long 179 compared to the molar series (LP3-4/LM1-3 > 50; Tab. 2). The dental structures are simple, 180 without secondary enamel folds. The cheek teeth are brachydont (low-crowned), and the roots 181 182 are long and distinct. The upper cheek teeth lack crista and medifossette. The paracone fold is present on all cheek teeth and strong on lesser worn teeth such as the M2-3. The premolars are 183 molariform (sensu Heissig 1969) and lack any crochet, antecrochet and constriction of both 184 protoloph and metaloph. The labial cingulum is reduced to the posterior part of the ectoloph and 185 186 the lingual cingulum is reduced to the opening of the median valley. On P2–4 the postfossette is narrow and the metaloph is posterolingually oriented. The P1 is much narrower than P2 and 187 triangular in occlusal view. On P2, the protocone is equally developed than the hypocone, and 188 the protoloph is transverse, continuous and widely connected with the ectoloph. A crochet is 189 190 always present on upper molars, but the metaloph is not constricted. The labial cingulum is weak and absent at the base of the paracone fold, whereas the lingual cingulum is reduced to the base 191 of the posterior half of the protocone, reaching the opening of the median valley. The metastyle 192 is long and the metacone fold is absent. On M1-2, the protoloph is slightly constricted and bears 193 an antecrochet, the metaloph is short and the distal part of the ectoloph is straight. A weak 194 mesostyle is present on M2. The M3 has a roughly triangular occlusal outline, though the 195 ectoloph and metaloph are fused in a characteristic convex ectometaloph without posterior 196 groove. The protoloph is rather transverse and straight, without constriction and antecrochet. 197 198 Lower teeth. On lower cheek teeth, the labial cingulum is reduced to a thin bulge at the base of 199 the external groove and the lingual one is completely absent. The external groove is developed

- and is vanishing above the neck. The trigonid is angular and forms a right dihedron. The
- 201 metaconid and the entoconid are not constricted. The posterior valley is V-shaped, but wider on
- 202 lower molars. The hypolophid of the lower molars is oblique and there is no lingual groove on
- 203 the entoconid of m2-3.
- 204 Semilunar. The semilunate NMBE5031537 is rounded and eroded (DT=30.6, DAP=53.2,
- 205 H=38.8). The medial and lateral facets are not preserved, except for the flat, ovoid, and sagittally
- elongated proximal facet for the scaphoid. In proximal view, the ulna-facet is lacking and, in
- anterior view, the anterior side is smooth with an acute distal border. The proximal facet is very
- 208 convex and short sagittally. The magnum-facet is roughly flat in its anterior half and concave
- 209 posteriorly.
- 210 Metacarpals. The McIV NMB-AS79 is short and rather gracile (L = 112.3, DTprox = 32.6,
- 211 DAPprox = 31.1, DTdia = 26.0, DAPdia = 15.2, DTdist = -, DAPdist = 28.8; IG = 23.0),
- 212 sagittally flattened, with a short insertion for the m. interossei. It bears a salient insertion for the
- 213 m. extensor carpalis, and a high and acute intermediate relief of the distal articulation. In
- 214 proximal view, the proximal facet is triangular and the articulation facet for the McV on the
- 215 lateral side is not preserved.

217 Remarks

- 218 Based on comparison with coeval rhinocerotid genera, the referred specimens point to a
- 219 remarkably small rhinoceros, excluding an assignation to the teleoceratine *Diaceratherium*.
- 220 Moreover, this genus differs by a developed external groove and a rounded trigonid on the whole
- lower cheek teeth series. The acerathere (sensu lato) Mesaceratherium differs by the lack of
- 222 antecrochet and continuous lingual cingulum on P2-4, by the presence of a short metastyle and a
- 223 concave posterior part of the ectoloph on M1-2 as well as a rounded trigonid, a transverse
- 224 hypolophid on lower cheek teeth and a pentagonal outline of the proximal facet of the McIV
- 225 (Heissig 1969, de Bonis 1973, Antoine et al. 2010). The species *Protaceratherium minutum*
- 226 (Cuvier, 1822) is of similar size, but morphologically differs by a constricted metaconid and an
- angular V-shaped external groove on lower cheek teeth as well as the lack of a labial and
- 228 continuous lingual cingulum, the presence of a usually multiple crochet on upper premolars, a
- rounded distal border of the anterior side of the semilunate, and a trapezoid outline of the
- proximal facet of the McIV (Antoine et al. 2010).
- 231 Pleuroceros shares many striking morphological similarities with these referred specimens, such
- as a reduced lingual cingulum on upper premolars, a lack of antecrochet on P2-3, a straight
- posterior part of the ectoloph on M1-2, and a smooth anterior side of the semilunate with an
- 234 acute distal border. According to the dimensions, *Pleuroceros blanfordi* (Lydekker 1884) is ca.
- 235 15% larger than those of the studied material and differs by a lingual bridge on P2-4
- 236 (semimolariform upper premolars, sensu Heissig 1969), a transverse metaloph and a hypocone
- 237 weaker than the protocone on P2, an usually constricted protocone on P3-4, the presence of an
- antecrochet on P4, a weak mesostyle on M2, a constricted metaconid on lower cheek teeth, and a
- continuous lingual cingulum on lower premolars (Antoine et al. 2010).

- The dimensions as well as the postcranial, cranial and dental morphology of Wischberg
- specimens are in fact extremely similar to the type material and other specimens of *Pleuroceros*
- 242 pleuroceros (Duvernoy, 1853) from Gannat (type locality, collection MNHN), notably by the
- shape of the jugal bearing a processus postorbitalis, the molariform upper premolars lacking
- antecrochet, the only slightly constricted protoloph on M1-2, the typically convex ectometaloph
- of M3, the absence of antecrochet and protocone constriction on the M3, the reduction of the
- labial cingulum, the rather smooth external groove and rounded trigonid on lower cheek teeth, as
- 247 well as an acute distal border of the anterior side of the semilunate and a somewhat short and
- gracile McIV (Tab. 3; Duvernoy 1953, Roman 1912, de Bonis 1973, Antoine et al. 2010, pers.
- 249 obs.).

- 251 Table 3:
- 252 Metapod lengths of *Pleuroceros pleuroceros* and *Diaceratherium* species.
- 253 Comparisons of the metapod lengths [mm] based on *Pleuroceros pleuroceros* (Duvernoy,
- 254 1853; McIV NMB-AS79) and *Diaceratherium lemanense* (Depéret and Douxami, 1902;
- 255 MtIII NMBE5026811) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1,
- 256 Agenian, Early Miocene) with those of *P. pleuroceros* from Paulhiac (MN1, France; McII
- 257 and McIV in de Bonis 1973, p. 152 fig. 43.1 and p. 153 fig. 44.2), *D. lemanense* from Gannat
- 258 (MN1, France; McII and McIV NMB GN39, MtIII NMB-GN40), D. asphaltense from
- 259 Saulcet (MN1, France; McII, McIV and MtIII NMB-SAU1662) and Pyrimont-Challonges
- 260 (MN1, France; type material, McII UCBL-213016, McIV UCBL-213011 and 213012 and
- 261 MtIII UCBL-213016), and *D. tomerdingense* from Tomerdingen (MN1, Germany; type
- 262 material, MCII SMNS-16155a, McIV SMNS-16155b).

263

264 Genus Diaceratherium Dietrich, 1931

265

- 266 Type species: Diaceratherium tomerdingense Dietrich, 1931
- 267 Included species: Diaceratherium lemanense (Pomel, 1853), Diaceratherium aurelianense
- 268 (Nouel, 1866), Diaceratherium asphaltense (Depéret and Douxami, 1902), Diaceratherium
- 269 aginense (Répelin, 1917), Diaceratherium lamilloquense Michel in Brunet et al., 1987,
- 270 Diaceratherium askazansorense Kordikova, 2001

271

- 272 Diaceratherium lemanense (Pomel, 1853)
- 273 Fig. 4-7, Tab. 4-6

- 275 Stratigraphical range: Latest Oligocene (MP30) to Early Miocene (MN2), Western Europe
- 276 (Antoine & Becker 2013)
- 277 Occurrences: See Tab. 7.
- 278 Referred material: Skull with left M1-M3 (original exposed in ML, cast NMBE5031538, cast
- NMB-AS75), right maxillary fragment with P3-M3 (original NMBE5031539), right and left I1

- 280 (original NMBE5031540), dental fragments of right I1 (original NMBE5031546), left i2
- 281 (original NMBE5031547), right P1 (original NMBE5031548), left P3 (original NMBE5031549),
- 282 right P3 (original NMBE5031550), two left lower cheek teeth (originals NMBE5031551 and
- NMBE5031552), right hemi-mandible with i2 and p2-m3 (original NMBE5026738, cast NMB-
- 284 UM6719), reconstructed incomplete mandible with left and right dental series with p2-m3
- 285 (original specimen exposed in ML, cast NMBE5031541, cast NMB-AS76), right femur (original
- NMBE5031542, cast NMB-UM6314), incomplete right tibia (original NMBE5031543), right
- tibia (original NMBE5031544, cast NMB-UM6315), right calcaneus (original NMBE5031545),
- 288 two right astragali (original NMB-2017, original NMB-698), right MtII (original
- NMBE5026812), right MtIII (original NMBE5026811) from Wischberg (Switzerland, MN1)

- 291 Figure 4:
- 292 Diaceratherium lemanense (Depéret and Douxami, 1902) from Wischberg locality, Bern
- 293 Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).
- 294 Skull NMBE5031538 in laterodorsal (A), occlusal (B) and occipital (C) views. Right
- 295 hemimandible NMBE5026738 in labial (D), lingual (E) and occlusal (F) views. Right
- 296 maxillary fragment NMBE5031539 in labial (G), lingual (H) and occlusal (I) views. Scale
- 297 bar = 10 cm.

298

- 299 Figure 5:
- 300 Diaceratherium lemanense (Depéret and Douxami, 1902) from Wischberg locality, Bern
- 301 Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).
- 302 Left I1 NMBE5031540 in occlusal (A), lingual (B) and labial (C) views. Right I1
- NMBE5031546 in occlusal (D), lingual (E) and labial (F) views. Right I1 NMBE5031540 in
- occlusal (G), lingual (H) and labial (I) views. Left i2 NMBE5031547 in occlusal (J), lingual
- 305 (K) and labial (L) views. Left P3 NMBE5031549 in occlusal (M) and lingual (N) views.
- 306 Right P3 NMBE5031550 in occlusal (O) and lingual (P) views. Fragmentary right P1
- 307 NMBE5031548 in occlusal (Q), lingual (R) and labial (S) views. Fragmentary left p4
- 308 NMBE5031551 in occlusal (T), lingual (U) and labial (V) views. Scale bar = 1 cm.

309

- 310 **Figure 6:**
- 311 Diaceratherium lemanense (Depéret and Douxami, 1902) from Wischberg locality, Bern
- 312 Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).
- 313 Right femur NMB-UM6314 in anterior (A), medial (B), posterior (C) and lateral (D) views.
- Right tibia NMBE5031544 in anterior (E), medial (F), posterior (G) and lateral (H) views.
- 315 Scale bar = 10 cm.

- 317 **Figure 7:**
- 318 Diaceratherium lemanense (Depéret and Douxami, 1902) from Wischberg locality, Bern
- 319 Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

358 359

320 Right astragalus NMB-2017 in dorsal (A) and ventral (B) views. Right astragalus NMB-698 in dorsal (C) and ventral (D) views. Right calcaneus NMBE5031545 in dorsal (E), lateral 321 (F), ventral (G) and medial (H) views. Right MtIII NMBE5026811 in anterior (I), lateral 322 323 (J), posterior (K), medial (L) and proximal (M) views. Right MtII NMBE5026812 in proximal (N), anterior (O), lateral (P), posterior (Q), medial (R) views. Scale bar = 10 cm. 324 325 326 Table 4: Dimensions [mm] of the anterior teeth of *Diaceratherium lemanense* (Depéret and 327 Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, 328 329 Agenian, Early Miocene). 330 Table 5: 331 332 Dimensions [mm] of the upper cheek teeth of Diaceratherium lemanense (Depéret and 333 Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, 334 Agenian, Early Miocene). 335 336 Table 6: 337 Dimensions [mm] of the lower cheek teeth of *Diaceratherium lemanense* (Depéret and Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, 338 339 Agenian, Early Miocene). 340 341 Table 7: 342 Occurrences of *Diaceratherium* species in France, Switzerland and other countries. Modified from Becker et al. (2009) with additions from Duranthon (1990, 1991), Antoine et 343 al. (1997), Boada-Saña et al. (2007), Antoine & Becker (2013), Mennecart et al. (2012) and 344 345 Becker et al. (2018). 346 347 **Description** 348 **Skull.** The skull NMBE5031538 is long and relatively narrow (Lcondyles-nasals = 575.5, Lcondyles-premaxilla = 615.5, Wfrontals = 158.5), belonging to a large-sized adult rhinocerotid. 349 350 It is incomplete and laterally compressed. It lacks the zygomatic arches, the occipital crest as 351 well as the anterior dentition and the right cheek teeth series, while only M1-3 are preserved in the left one. The dental remains are much worn, indicating an aged individual. The separated 352 nasal bones are long, but less than the premaxilla, relatively thin, and bear a lateral apophysis. 353 354 Roughness for a small nasal horn is preserved at the tip of the nasals. In lateral view, the *foramen infraorbitalis* and the posterior border of the U-shaped nasal notch are both located above the P3. 355 while the anterior border of the orbit is above the M1/2 limit. The minimum distance between the 356

posterior edge of the nasal notch and the anterior border of the orbit is 82.5 mm. The back of the

cheek teeth reaches the posterior half of the skull. The *processus lacrymalis* seems to be slightly

developed and the processus postorbitalis of the frontal is absent. The base of the processus

360 zvgomaticus maxillari is high: it is about 2.5 centimetres above the neck of M2. The general dorsal profile of the skull is slightly concave, characterized by a nasal tip pointing downwards 361 and by a slight posterior elevation of the parietal bones. In dorsal view, the postorbital 362 constriction is very moderate, and the fronto-parietal crests are well-separated. The *processus* 363 364 postglenoidalis is long, strong and transversally narrow. The articular surface of the latter defines a right dihedron in cross section. The *processus postglenoidalis* is curved forward and contacts 365 the short *processus-posttympanicus*, partially closing the external auditory *pseudomeatus*. The 366 processus paraoccipitalis is long and well developed. The foramen magnum is circular. A 367 smooth median transverse ridge runs all over the occipital condyles, but there is no axial 368 369 truncation. 370 Mandible. The hemi-mandible NMBE5026738 bears a very weak median sagittal groove (sulcus mylohyoideus) on the lingual side of the corpus mandibulae. The symphysis, probably thick, is 371 372 not constricted at the diastema level. It is upraised (about 30° with respect to the *corpus* 373 mandibulae, and its posterior border, as well as the foramen mentale, are located below p2. The corpus mandibulae displays a straight ventral border with a constant height below p2-p4 (height 374 below p2 = 80.3) that gets slightly higher until m3 (height below m3 = 92.5). The *incisura* 375 vasorum is weakly marked, the angulus mandibulae not much developed and the retromolar 376 space rather long. The foramen mandibulare is located below the jugal teeth neck line. The other 377 referred mandibular specimen (casts NMBE5031541 and NMB-AS76) is greatly reconstructed 378 and the anterior part of the symphysis is missing. The ramus mandibulae (maximum height = 379 250.0) is inclined forward, with a processus coronoideus sagittally well developed. The foramen 380 mandibulare is also located much below the jugal teeth neck line. 381 382 **Anterior teeth**. The anterior dentition is reduced to the chisel-tusk shearing complex of I1-i2, characteristic of the family Rhinocerotidae sensu Radinsky (1966). The referred I1 are almond-383 shaped in cross section and the i2 are tusk-like. 384 **Upper cheek teeth.** The cheek teeth are low-crowned (brachyodont) and their roots are partly 385 386 joined. There is neither cement nor enamel foldings on the crowns of cheek teeth. The enamel is thin and wrinkled. Due to the advanced dental wear and the fragmented state of upper cheek 387 teeth-remains, only few characters can be identified. The protocone of upper molars and 388 premolars is not constricted. The lingual and labial cingulum are completely lacking on upper 389 390 molars, while the lingual one seems to be strong and continuous on upper premolars. The P1 NMBE5031548 is biradiculate and does not bear labial cingulum. The P3-4 are molariform 391 (sensu Heissig, 1969), the paracone fold seems poorly developed on upper molars and the M3 is 392 quadrangular in occlusal view, with a transverse protoloph and a posterior groove on the 393 ectometaloph. 394 **Lower cheek teeth.** The lower dental formula is 1i-3p-3m (there are neither alveoli nor any trace 395 of contact with the d1/p1 on p2). The lower premolar series is long compared to the molar series 396 (Lp3-4/Lm1-3 > 50: Tab. 6). The lingual cingulum of the lower cheek teeth is reduced to the 397 398 base of the opening of the anterior valley as an extension of the anterior cingulum. The labial

cingulum is only present at the base of the paraconid, while the posterior is only present on lower

- 400 premolars. The external groove is developed, oblique and vanishes before the neck. The trigonid
- is angular on lesser worn teeth and forms an acute dihedron with a rather developed lingual 401
- branch of the paralophid in occlusal view. The talonid valley is narrow and V-shaped on p2-m3. 402
- The p2 displays a developed paraconid and a constricted paralophid (spur-like), an open 403
- 404 posterior valley, as well as marked anterior and external grooves of the ectolophid. The
- hypolophid is transverse on lower molars and the entoconid of the lower molars does not bear a 405
- lingual groove. 406
- Femur. The femur (NMBE5031542) is rather slender (L = 499.0, TDprox = 187.5, APDprox = 407
- 69.0, TDdia = 66.0, APDdia = 55.0, TDdist = 132.0, APDdist = 130.5). The trochanter major is 408
- high, the articular facet of the head is slightly medially asymmetric, the *fovea capitis* is high and 409
- narrow, and the third trochanter is developed. In medial view, the anterior border of the diaphysis 410
- forms a slope break with the medial lip of the patellar trochlea. In anterior view, the distolateral 411
- epicondyle is low and well developed, the proximal border of the patellar trochlea is horizontal. 412
- 413 The lateral lip is acute, while the lateral one is rounded.
- **Tibia**. Two tibias are preserved: the specimen NMBE5031544 is complete and very well 414
- preserved while the other (NMBE5031543) is incomplete. In distal view, the anterodistal groove 415
- is well marked. The mediodistal gutter for the m. tibialis is present and shallow, and the posterior 416
- 417 apophysis is high and rounded. In lateral view, the proximal articulation for the fibula is low and
- the diaphysis bears discontinuous contact marks for the fibula. 418
- **Astragal.** Two astragali are preserved. They slightly differ by their dimensions (NMB-2017: TD 419
- = 85.5, APD = 41.5, H = 74.0; NMB-698: TD = 76.8, APD = 40.0, H = 70.5), but they are 420
- proportionally and morphologically homogeneous (NMB-2017: TD/H = 1.16, APD/H = 0.56; 421
- 422 NMB-698: TD/H = 1.09, APD/H = 0.57). The fibula-facet is subvertical and transversally, flat.
- The *collum tali* is high. In proximal view, the posteroproximal border of the trochlea is sinuous. 423
- In distal view, the trochlea is very oblique compared to the distal articulation and the posterior 424
- stop on the cuboid-facet is present on NMB-2017 (not observable in NMB-698). The lateral lip is 425
- 426 very prominent, and the medial tubercle is low, salient, and laterally displaced. The calcaneus-
- facet 1 (sensu Heissig 1972) is very concave. The laterodistal expansion of this latter facet is 427
- lacking in NMB-698 (not observable in NMB-2017). The calcaneus-facet 2 is roughly oval, flat 428
- and wider than high. The calcaneus-facet 3 is transversally developed and separated from the 429
- 430 calcaneus-facet 2 by a notch.
- 431 Calcaneum. The available calcaneus NMBE5031545 (TD = -, APD = 65.5, H = 124.4) is
- 432 incomplete, the sustentaculum tali is not preserved. Both fibular and tibial facets are lacking. The
- tuber calcanei is high and slender in posterodistal view. The insertion for the m. fibularis longus 433
- is marked, forming a deep notch. The *processus calcanei* is long (APD = 51.5) and narrow (TD 434
- 435 = 27.2). The cuboid-facet forms a transverse half-circle in distal view, and it is slightly convex
- 436 anteroposteriorly.
- **Metatarsals**. The metatarsals have a long insertion for the m. interossei, a salient insertion for 437
- 438 the m. extensor carpalis, and a high and acute intermediate relief of the distal articulation. The
- 439 MtIII NMBE5026811 is rather robust (L = 146.9, TDprox = 47.4, APDprox = 35.5, TDdia =

- 440 45.3. APDdia = 16.3. TDdist = 46.6. APDdist = 30.6; IG = 30.8), while the MtII NMBE5026812 is shorter and more slender (L = 130.6, TDprox = 31.7, APDprox = -, TDdia = 32.1, APDdia = 441 16.3. TDdist = 36.2. APDdist = 29.5). The MtII bears a narrow and sagittally elongated proximal 442 end. The mesocuneiform facet forms a half oval. An axially elongated posteromedial 443 444 entocuneiform-facet joins the proximal facet. On the lateral side, the posterior ectocuneiform facet is oblique and lozenge-shaped while the anterior one is smaller and nearly vertical. The 445 anterior and posterior MtIII-facets are poorly developed, flat, and vertical. The cuboid-facet of 446 the MtIII NMBE5026811 is lacking. In proximal view, the anterior border has a sinuous articular 447 facet, while it is concave in anterior view. The MtIV-facets are independent, the posterior one is 448 distally displaced with respect to the anterior one. The diaphysis slightly widens distally, 449 reaching its maximal width (TDdist max = 53.4) immediately above the distal articulation, 450 especially due to a considerably developed distomedial tuberosity. No posterodistal tubercle is 451
- 452 453 454

Remarks

present on the diaphysis.

- Based on dimensions and morphology, the referred specimen cannot be assigned to the small-
- 456 sized contemporaneous European rhinocerotids. *Protaceratherium minutum* (Cuvier, 1822)
- 457 differs by smaller dimensions, a spindly symphysis, an angular trigonid with a right dihedron on
- lower cheek teeth, a continuous labial cingulum on lower premolars, an astragalus as high as
- wide and the contact between Cc1 and Cc2 facets (de Bonis 1973, Ginsburg et al. 1981).
- 460 Pleuroceros pleuroceros (Duvernoy, 1853) also differs by smaller dimensions as well as a
- smooth and U-shaped external groove on lower cheek teeth, a continuous lingual cingulum on
- lower premolars, a very oblique fibula facet of the astragalus and a MtIII with a straight and
- 463 horizontal proximal facet in anterior view (de Bonis 1973, Antoine et al. 2010).
- 464 Plesiaceratherium Young, 1937 and Mesaceratherium Heissig, 1969 species-are roughly of
- similar size. The former differs by a flattening of the ectolophid on lower cheek teeth, external
- roughnesses on p2-3, a ramus of the mandible inclined backwards, and metapodials much
- slenderer (Yan and Heissig 1986, pers. obs.). The latter differs by a strongly raised symphysis, an
- 468 astragalus as high as wide and a proximal facet of the MtIII dorsoventrally elongated (Heissig
- 469 1969, de Bonis 1973).
- 470 The assignment of the referred specimens to the genus *Diaceratherium* is supported by their
- dimensions and their morphology. The nasals (long, thin and totally separated), the deep, U-
- 472 shaped notch ending above P3, the orbital features (presence of a processus lacrymalis, anterior
- 473 border above M1/2), the mandible (straight profile of the base of the *corpus mandibulae*), the
- dental remains (quadrangular M3, constricted paralophid and developed paraconid on p2) as well
- 475 as the astragali (lateral lip larger than the medial one and a low, salient, and laterally displaced
- 476 medial tubercle), are all characteristic of the genus *Diaceratherium* (Becker et al. 2009, 2010,
- 477 2018, Antoine et al. 2010, pers. obs.).
- 478 However, an attribution of the studied material to a specific taxon within this genus remains
- difficult. Apart from "Diaceratherium" massiliae Ménouret and Guérin, 2009, whose generic

- 480 attribution remains doubtful by several non-*Diaceratherium* morphological features (Antoine &
- Becker 2013), between five and seven species are usually considered as valid in the literature
- 482 (e.g. Heissig 1999, Boada-Saña et al. 2007, Becker et al. 2009, Antoine & Becker 2013).
- 483 The type species *Diaceratherium tomerdingense* differs by the presence of a reduced lingual
- cingulum under the protocone and at the opening of the median valley on M1-2 as well as an
- almost vertical external groove of lower premolars in labial view that does not vanish before the
- 486 neck. Furthermore, though its metacarpals cannot be directly compared to the metatarsals from
- Wischberg, their length is much closer to those of *D. aginense* from Laugnac, than to those from
- D. lemanense from Gannat (Tab. 3). Since in Wischberg the metatarsal's length is very close to
- those for Gannat (*D. lemanense*), we assume that the metacarpals from Wischberg must have
- been similar correlatively, and thus much longer than those from *D. tomerdingense* (Dietrich
- 491 1931, pers. obs.).
- 492 The latest Oligocene diacerathere, D. lamilloquense, from La Milloque differs by the presence of
- 493 lingual cingulum under the protocone of M3, an angular trigonid on lower cheek teeth, and a
- 494 high proximal articulation for the fibula on the tibia (Michel 1983, Brunet et al. 1987). The
- 495 specimens from Castelmaurou differ by the presence of labial cingulum in the external groove of
- 496 m2 and m3, a posterior facet for the MtII on the MtIII (Duranthon 1990).
- The skull NMBE5031538 and mandible NMBE5026738 differ from the type material of *D*.
- 498 asphaltense from Pyrimont in having slightly stouter nasals, a moderate postorbital constriction
- 499 of the skull, more distant frontoparietal crests, as well as a higher corpus of the mandible and a
- lower position of the *foramen mandibulae* on the ramus (Depéret and Douxami 1902, pers. obs.).
- 501 Concerning the postcranial remains, some differences can be noted with *D. asphaltense* from
- Pyrimont and Saulcet, such as a dorsoventrally reduced proximal facet of the MtIII for the
- ectocuneiform, a laterally compressed distal facet of the calcaneus for the cuboid and a slender
- 504 tuber calcanei (Depéret and Douxami 1902, pers. obs.).
- 505 Diaceratherium aginense from Laugnac (type locality) differs from the Wischberg material in
- displaying a completely closed external auditory pseudomeatus, a reduction of lingual cingulum
- on upper molars, a more developed ectolophid groove of lower cheekteeth, a strong lingual
- 508 groove on the *corpus mandibulae*, a shorter posterodistal apophysis of the tibia, stouter
- metapodials and a very concave navicular facet of the astragal in anterior view (Répelin 1917,
- 510 pers. obs.).
- 511 In *Diaceratherium aurelianense*, labial cingulum can be present on lower molars, the postorbital
- 512 process of the frontals is absent, the lesser trochanter of the femur is more developed and the
- 513 metapodials are more robust with a low and smooth intermediate relief in distal view (Mayet
- 514 1908, Cerdeño 1993, pers obs.).
- 515 Finally, the Early Miocene Kazakh species *Diaceratherium askazansorense* differs by a larger
- size of the lower molars, a posteriorly increasing height of the horizontal ramus, more hypsodont
- 517 teeth, a higher *colum talli* of the astragal and a shorter and wider *tuber calcanei* (Kordikova
- 518 2001).

519 The cranio-dental and postcranial characters of the diacerathere from Wischberg are in fact morphologically indistinguishable from those of D. lemanense from Gannat (type locality). The 520 nasals are small, and same sized as the type skull from Gannat, as well as the remaining nasal 521 bone of the type species D. tomerdingense, but much shorter than those of D. asphaltense from 522 523 Pyrimont, Bühler and Saulcet. Like the specimen from Gannat NMB Gn. 40, the proximal facet of the MtIII is sagitally elongated and concave in anterior view. The astragal from this same 524 individual is very similar to the two specimens from Wischberg and is also wider than high. As 525 in D. lemanense from Montaigu (NMB S.G.18480), the ramus mandibulae is inclined forward, 526 with a sagittally well developed *processus coronoideus*. The lingual and labial cingulum are also 527 528 absent on lower cheek teeth. The material from Wischberg only differs by a slightly smaller size compared to the type material. Therefore, we attribute the referred specimens from Wischberg to 529 530 D. lemanense.

531 532

533

Discussion

- Systematic implications
- The systematic of the genus *Diaceratherium* is far from consensual. Four species in particular
- are contentious and often subject to synonymies: D. lemanense, D. asphaltense, D.
- 536 tomerdingense and D. aginense.
- According to Antoine & Becker (2013) and Becker et al. (2018), D. tomerdingense is a junior
- 538 synonym of *D. aginense* and this latter is likely to be a junior synonym of *D. asphaltense*. More
- recently, Becker et al. (2018) still accepted the synonymy of *D. tomerdingense* and *D. aginense*,
- but maintained *D. asphaltense* as valid whereas, according to de Bonis (1973) and Boada-Saña et
- al. (2007), D. asphaltense and D. tomerdingense should be considered as junior synonyms of D.
- *lemanense*. However, no clear justification is ever provided, except for the synonymy of D.
- 543 asphaltense and D. lemanense by the phylogenetic analysis of Boada-Saña (2008). Yet, the
- 544 coding of *D. asphaltense* in this latter work is based on photographs of the type material from
- 545 Pyrimont-Challonges (Boada-Saña, 2008: tab. 1) and should be confirmed by direct
- 546 observations.
- 547 These synonymies probably derive from the absence of differential diagnoses between these four
- 548 species, and of designated type for *D. lemanense*. Indeed, a skull referred to "Acerotherium"
- 549 *lemanense* from the type locality of Gannat (Roman 1912, Pl. VIII fig. 1-3) was unfortunately
- mistakenly considered as a reference specimen for comparison by Becker et al. (2009, 2018)
- whereas Boada-Saña (2007) had designated another skull and mandible from Gannat (MNHN
- AC 2375 and MNHN AC 2376 respectively) as lectotype. Regrettably, both skulls from Gannat
- may belong to two different taxa, which led to unfortunate comparisons of specimens and
- erroneous taxonomic attributions. The skull used by Becker et al. (2009, 2018) as reference
- material of *D. lemanense* (FSL-213944) is remarkably similar to the skull attributed to *D.*
- lemanense from Eschenbach (NMSG–P2006/1), but after direct observation could both be
- referred to *Plesiaceratherium* Young, 1937, another genus of Miocene rhinocerotid.

Moreover, cranial remains from Saulcet (NMB-SAU-1662) and Bühler (NMSG-F13607) have 558 been referred to D. asphaltense (Becker et al. 2009, 2018), based on similarities with the type 559 skull of D. asphaltense from Pyrimont-Challonges (FSL-212997bis), but also on indisputable 560 dissimilarities with the non-Diaceratherium skull from Gannat (FSL-213944) and from 561 562 Eschenbach (NMSG–P2006/1). Currently, the question of the synonymy of *D. lemanense* and *D.* asphaltense, as suggested by Boada-Saña et al. (2007), is still pending. 563 Finally, another systematic interpretation has been recently proposed by Heissig (2017), who 564 referred the species D. aurelianense to the genus Prosantorhinus because of characters not found 565 in other species of the genus *Diaceratherium*. These characters are "the deeply concave skull 566 profile with upslanting nasals, a wide nasal incision of medium depth, and the triangular last 567 upper molar." Similarities between the two genera had already been expressed by Cerdeño 568 (1996) who referred some specimen previously attributed to D. aurelianense to the genus 569 Prosantorhinus but keeping both taxa as valid. Antoine et al. (2018) have also recently attributed 570 571 all the material previously referred as *Diaceratherium aurelianense* from Béon 2 to 572 Prosantorhinus aff. douvillei, which indicates indeed similarities between these two taxa, as also already noted by Mayet (1908). However, Antoine et al. (2018) subsequently expressed 573 numerous anatomical differences between these two taxa, including the 20% size difference of 574 575 the MtIV, which is a character that specifically distinguishes these two genera. Moreover, the characters used by Heissig (2017) seem quite labile to confirm the attribution of the species D. 576 aurelianense to the genus Prosantorhinus. Indeed, a recently described skull of Diaceratherium 577 asphaltense does show a deeply concave skull and slightly upslanted nasals (Fig. 8), though not 578 as much as the skull of D. aurelianense. Another skull of D. asphaltense from Saulcet has a 579 580 similar morphology, but it is true that D. lemanense and D. aginense do not show such an upslanted nasal bone (though for this latter species the skulls illustrated by Répelin (1917) are 581 heavily reconstructed, and the global shape is very misleading). Finally, the M3 is indeed more 582 triangular in D. aurelianense than in other species of the genus, but it could be a character 583 584 specific to this species. Therefore, to the best of our knowledge, the four above-mentioned problematic Diaceratherium species should be considered as valid (just like D. lamilloquense 585 and D. askazansorense), and D. aurelianense could still belong to the genus Diaceratherium (as 586 presented in Tab. 7), until a comprehensive phylogenetic analysis at Teleoceratina scale is 587 588 carried out. 589

590

Figure 8:

- Comparison of the skulls of *Diaceratherium*. 591
- 592 (A) D. asphaltense (NMSG-F13607) from Bühler (MP30-MN1; Becker et al. 2018). (B) D.
- apshaltense (NMB Sau 1662) from Saulcet (MN1). (C) D. aurelianense (MNHN.F.1888-4, 593
- 594 holotype) from Neuville-aux-Bois (MN3), original drawing from Heissig (2017). (D) D.
- aurelianense (MHNT.PAL.2013.0.1001, cast of the holotype), from Neuville-aux-Bois 595
- (MN3). (E) D. aginense (MHNM 1996.17.111.1, "skull B", lectotype) from Laugnac (MN2), 596
- 597 original drawing from Heissig (2017). (F) D. aginense (FSL collection) from Laugnac

(MN2). (G) D. lemanense (MNHN-AC-2375, holotype) from Gannat (MN1). (H) D. 598 lemanense (cast NMBE5031538) from Wischberg (MN1). 599 600 Palaeobiogeographical and biostratigraphical implications 601 602 The record of two Rhinocerotid species in Wischberg is typical of the Agenian time period, which is a period rather rich in rhinocerotoid diversity in Western Europe (Antoine & Becker 603 2013). The records of *Pleuroceros pleuroceros* and *Diaceratherium lemanense* are typical from 604 the MN1 biozone since Gannat (France) is the type locality of both taxa. In addition, both taxa 605 606 have in common an Asian sister species: *Pleuroceros blanfordi* both from the Early Miocene of Pakistan (Antoine et al. 2010) and *Diaceratherium askazansorense* from the Early Miocene of 607 Kazakhstan (Kordikova 2001). 608 Furthermore, the presence of *Diaceratherium lemanense* in Wischberg extends the record of this 609 genus in Switzerland. Indeed, though the species D. lemanense was found in numerous French 610 611 localities, Wischberg is the only record of this species in Switzerland during the MN1 biozone (Tab. 7). The genus *Diaceratherium* has a rather long record in Europe, from the Late Oligocene 612 to the early middle Miocene, and it crosses the Oligo-Miocene boundary. It is after this limit that 613 this genus extensively diversifies, with the presence of four different species during MN1: D. 614 615 tomerdingense (type species), D. lemanense, D. asphaltense and D. aginense. However, this high diversity may be potentially artificial if synonymy occurs either between D. aginense and D. 616 tomerdingense or between D. asphaltense and D. lemanense. As discussed previously, a 617 comprehensive systematic and phylogenetic revision of this genus would be needed to solve this 618 619 matter. 620 621 Palaeoecology and diversification The Agenian rhinocerotid fauna from Wischberg includes two co-occurring species: the large-622 sized graviportal Diaceratherium lemanense, and the small-sized mediportal Pleuroceros 623 624 pleuroceros. The two taxa also differ by their body masses (Tab. 8), one being a megaherbivorous with a body mass over 10³ kg (Owen-Smith 1988). 625 626 627 Table 8: 628 Estimation of rhinocerotid species body mass from Wischberg locality, Bern Canton, Swiss 629 Molasse basin (MN1, Agenian, Early Miocene), based on the allometric correlations with 630 the occlusal surface of the first lower molar (Legendre, 1989). 631 632 This rhinocerotid association is comparable in composition to some contemporaneous Western European localities such as Gannat, Paulhiac, Pyrimont-Challonges and Saulcet. This sympatric 633 association is characteristic of the MN1 biozone and results from the faunal renewal starting at 634 MP28 in Western Europe (Scherler et al. 2013). It is a period marked by the beginning of a major 635 worldwide diversification phase of Rhinocerotidae that lasted until the Late Miocene (Cerdeño 636 637 1998), and during which perissodactyls reach the maximum body size and mass among terrestrial

638 mammals (Smith et al. 2010). This rhinocerotid diversification may be due to the extinction of other megaherbivorous competitors in Europe such as the Anthracotheriinae (latest Oligocene, 639 Scherler 2011, Scherler et al. 2018) or the Amynodontidae (Late Oligocene, Malez & Thenius, 640 1985). As for the other European perissodactyls, except for the Tapiridae, which are present in 641 Europe until MN4, Palaeotheriidae are extinct since MP25 (Rémy 1995), Chalicotheriidae only 642 re-appear during MN2 (Coombs 2009), Equidae first appear with Anchitherium in MN3 (Kaiser 643 2009, Alberdi & Rodríguez 2012) and Eggysodontidae disappear in MN1 (Scherler et al. 2013). 644 However, none of those reached sizes over 10³ kg during this time. Within the Artiodactyla only 645 nine genera were present in Europe during MN1 (Scherler et al. 2013) and all of them were 646 647 smaller than the smallest rhinocerotids (Scherler 2011, Mennecart 2012). Finally, the proboscideans, another group of megaherbivores who will later dominate the megaherbivore 648 communities, do not appear in Europe until MN4 (Antoine et al. 1997, Göhlich 1999). As a 649 result, the earliest Miocene is a period during which rhinocerotids are the dominating largest 650 651 herbivores and the only megaherbivores in Europe (Rössner & Heissig 1999, Scherler et al. 2013). This observation is of particular interest since, like extant African megaherbivores, Early 652 Miocene rhinocerotids likely had large food intake requirements and could have been able to 653 subsist on low-quality (i.e. high fibre) food resources (Demment & van Soest 1985, Owen-Smith 654 1988, Illius and Gordon 1992). Furthermore, due to their size, Early Miocene megaherbivorous 655 rhinocerotids are expected, like extant ones, to display specific life-history attributes, physiology 656 and ecological characteristics related to their body mass (Blueweiss et al. 1978, Brown et al. 657 2004), such as larger geographic ranges, higher potential for dispersal (e.g., Brown 1995, Gaston 658 2003), lower mortality rates and better resistance to limiting environmental factors (Erb et al. 659 660 2001). As a result, megaherbivores are considered to be a separate trophic guild among large herbivores (Fritz et al. 2002), possibly better adapted to ecosystems with high plant biomass but 661 low-quality vegetation (Bell 1982). 662 The beginning of the Miocene is marked by a short glacial event (Mi-1; Zachos et al. 2001). This 663 664 sudden climatic event has induced significant changes in the European vegetation, promoting fibre-rich plants associations. We observe indeed a lower proportion of C4 plants during the 665 MN1 than during the Oligocene (Urban et al. 2010) and an increase of mesothermic vegetations 666 at the expense of megathermic ones (e.g. Mosbrugger et al. 2005, Bessedik et al. 1984). Janis 667 668 (1976) hypothesized that perissodactyls (hindgut fermenters) were able to overcome competition of other herbivorous large mammals by their ability to tolerate more fibrous herbage. This could 669 explain the diversification of rhinocerotids at the beginning of the Miocene, for which large size 670 might have increased their ability to monopolise resources (Fritz et al. 2002) and extract 671 nutrients from specific feeding niches (Illius & Gordon 1992). The evolutionary success and 672 rapid diversification of rhinocerotids during the earliest Miocene could consequently be linked to 673 this particular environmental change, triggered by the short glaciation event but also by the 674 absence of other megaherbivores. After the late Oligocene faunal renewal (Scherler et al. 2013). 675 the earliest Miocene, and especially the first one million-year period (MN1), may have been a 676 crucial time period for the Rhinocerotidae, and especially megaherbivorous taxa, to start 677

- 678 diversifying by occupying new ecological niches available at that time. Further analyses taking
- 679 into account all European rhinocerotids, with their masses and anatomical features, will be
- 680 necessary to test this hypothesis and better understand this unique transition in the European
- assemblages of megaherbivores at the beginning of the Miocene.

Conclusions

- Based on comparisons, the rhinocerotid specimens from Wischberg, a typical Agenian (MN1)
- locality, can be attributed to two different taxa: *Diaceratherium lemanense* and *Pleuroceros*
- 686 pleuroceros. Though Schaub & Hürzeler 1948 had identified a third taxon, Diaceratherium
- 687 asphaltense, we believe that it should be attributed to the other contemporaneous species, D.
- lemanense, based on morphological differences with the holotype material from Pyrimont-
- 689 Challonges (MN1, France). Furthermore, we believe that all *Diaceratherium* species found at the
- 690 present time in the literature could be considered as valid, until an extensive revision of this
- 691 genus is performed, preferentially through a phylogenetic analysis.

692 693

Acknowledgements

- We are greatly indebted to all curators of the collections visited during this work, who kindly
- 695 helped us during our visit: Manuela Aiglstorfer and Reinhard Ziegler (SMNS), Christine Argot
- and Guillaume Billet (MNHN), Christophe Borrely (MHNM), Loïc Costeur (NMB), Jana
- 697 Fehrensen (ML), Yves Laurent (MHNT), Ursula Menkveld-Gfeller (NMBE), Emmanuel Robert
- 698 (FSL). We are very grateful to Patrick Röschli (JURASSICA Museum) for preparing the plates.

699

700 **References**

- 701 Agustí, J., Cabrera, L., Garcés, M., Krijgsman, W., Oms, O., & Parés, J. M. (2001). A calibrated
- mammals scale for the Neogene of Western Europe. State of the art. Earth-Science Reviews, 52,
- 703 247–260.
- Alberdi, M. T., & Rodríguez, J. (2012). *Anchitherium* Meyer, 1844 (Perissodactyla, Equidae) de
- Sansan. In Peigné S., Sen S. (eds), *Mammifères de Sansan* (pp. 487–533). Mémoires du Muséum
- 706 National d'Histoire Naturelle, 203.
- 707 Antoine, P.-O. (2002). Phylogénie et évolution des Elasmotheriina (Mammalia, Rhinocerotidae).
- 708 Mémoires du Muséum national d'Histoire naturelle de Paris, 188, 1–359.
- 709 Antoine, P.-O., & Becker, D. (2013). A brief review of Agenian rhinocerotids in Western
- 710 Europe. Swiss Journal of Geosciences, 106, 135–146.
- Antoine, P.-O., Duranthon, F. & Tassy, P., 1997. L'apport des grands mammifères
- 712 (Rhinocérotidés, Suoidés, Proboscidiens) à la connaissance des gisements du Miocène
- 713 d'Aquitaine (France). In J.-P. Aguilar, S. Legendre & J. Michaux (Eds.), Actes du Congrès
- 714 BiochroM'97 (pp. 581-590). Montpellier: Ecole pratique des hautes études-Sciences de la vie et
- 715 de la terre-Institut de Montpellier.
- Antoine, P.-O., Downing, K. F., Crochet, J.-Y., Duranthon, F., Flynn, L. J., Marivaux, L., et al.
- 717 (2010). A revision of *Aceratherium blanfordi* Lydekker, 1884 (Mammalia: Rhinocerotidae) from

- 718 the Early Miocene of Pakistan: postcranials as a key. Zoological Journal of the Linnean Society,
- 719 160, 139–194.
- 720 Antoine, P.-O., Becker, D., Laurent, Y., & Duranthon, F. (2018) The Early Miocene
- 721 teleoceratine Prosantorhinus aff. douvillei (Mammalia, Perissodactyla, Rhinocerotidae) from
- 722 Béon 2, Southwestern France. Revue de Paléobiologie, 37, 367–377.
- 723 Becker, D. (2003). Paléoécologie et paléoclimats de la Molasse du Jura (Oligo-Miocène): apport
- des Rhinocerotoidea (Mammalia) et des minéraux argileux. GeoFocus, 9, 1–327.
- 725 Becker, D., Rössner, G., Picot, L., & Berger, J.-P. (2001). Early Miocene ruminants from
- Wallenried (USM, Aquitanian/Switzerland): biostratigraphy and paleoecology. *Eclogae*
- 727 Geologicae Helveticae, 94, 547–564.
- 728 Becker, D., Bürgin, T., Oberli, U., & Scherler, L. (2009). A juvenile skull of *Diaceratherium*
- 729 lemanense (Rhinocerotidae) from the Aquitanian of Eschenbach (eastern Switzerland). Neues
- 730 *Jahrbuch für Geologie und Paläontologie Abhandlungen*, 254, 5–39.
- 731 Becker, D., Antoine, P.-O., Engesser, B., Hiard, F., Hostettler, B., Menkveld-Gfeller, U.,
- 732 Mennecart, B., Scherler, L., & Berger, J.-P. (2010). Late Aquitanian mammals from Engehalde
- 733 (Molasse Basin, Canton Bern, Switzerland). *Annales de Paléontologie*, 96, 95–116.
- Becker, D., Antoine, P.-O., Mennecart, B., & Tissier, J. (2018). New rhinocerotid remains in the
- 735 latest Oligocene-Early Miocene of the Swiss Molasse Basin. Revue de Paléobiologie, 37, 395-
- 736 408.
- 737 Bell, R.H.V. (1982). The effect of soil nutrient availability on the community structure in African
- 738 ecosystems. In: Huntley, B.J. and Walker, B. H. (eds), pp. 193-216. Ecology of tropical
- 739 savannas, Springer.
- 740 Berger, J.-P. (2011). Du bassin molassique au fossé rhénan, évolution des paléoenvironnements
- 741 dans un avant pays dynamique. Géochroniques, Magazine des Géosciences, 117, 44–49
- 742 Berger, J.-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K. I., Picot, L., Storni, A.,
- Pirkenseer, C., Schäfer, H., & Derer, C. (2005a). Paleogeography of the Swiss Molasse basin and
- 744 the URG from Late Eocene to Pliocene. *International Journal of Earth Sciences*, 94, 697–710.
- 745 Berger, J.-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K.I., Picot, L., Storni, A.,
- Pirkenseer, C., & Schäfer, A. (2005b). Eocene-Pliocene time scale and stratigraphy of the Upper
- 747 Rhine Graben (URG) and the Swiss Molasse Basin (SMB). International Journal of Earth
- 748 *Sciences*, 94, 711–731.
- 749 Bessedik, M., Guinet, P. & Suc, J.-P. (1984). Données paléofloristiques en méditerranée nord-
- occidentale depuis l'Aquitanien. Revue de Paleobiologie, volume spécial : 25–31.
- 751 BiochroM'97 (1997). Synthèses et tableaux de corrélations. In J.-P. Aguilar, S. Legendre & J.
- 752 Michaux (Eds.), Actes du Congrès BiochroM'97 (pp. 769-805). Montpellier: Ecole pratique des
- 753 hautes études-Sciences de la vie et de la terre-Institut de Montpellier.
- 754 Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R. & Sams, S. (1978). Relationships
- between body size and some life history parameters. *Oecologia*, 37(2):257-272.
- 756 Boada-Saña, A. (2008). Phylogénie du rhinocérotidé Diaceratherium Dietrich, 1931 (Mammalia,
- 757 *Perissodactyla*). Master thesis dissertation (unpublished), University of Montpellier 2, France.

- 758 Boada-Saña, A., Hervet, S., & Antoine, P.-O. (2007). Nouvelles données sur les rhinocéros
- 759 fossiles de Gannat (Allier, limite Oligocène-Miocène). Revue des Sciences Naturelles
- 760 *d'Auvergne*, 71, 1–25.
- 761 Bonis, L. de (1973). Contribution à l'étude des Mammifères de l'Aquitanien de l'Agenais:
- 762 rongeurs-carnivores-périssodactyles. Mémoires du Muséum national d'Histoire naturelle de
- 763 Paris, 28, 1–192.
- 764 Brown, J.H. (1995). *Macroecology*. The University of Chicago Press, Chicago.
- 765 Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). Toward a metabolic
- 766 theory of ecology. *Ecology*, 85(7): 1771-1789.
- 767 Brunet, M., Bonis, L. de, & Michel, P. (1987). Les grands Rhinocerotidae de l'Oligocène et du
- 768 Miocène inférieur d'Europe occidentale: intérêt biostratigraphique. *Münchner*
- 769 Geowissenschaftliche Abhandlungen, 10, 59–66.
- 770 Cerdeño, E. (1993). Étude sur *Diaceratherium aurelianense* et *Brachypotherium brachypus*
- 771 (Rhinocerotidae, Mammalia) du Miocène moyen de France. Bulletin du Muséum national
- 772 d'histoire naturelle de Paris, 15, 25–77.
- 773 Cerdeño, E. (1996). *Prosantorhinus*, the small teleoceratine rhinocerotid from the Miocene of
- 774 Western Europe. *Geobios*, 29, 111–124.
- 775 Cerdeño, E. (1998). Diversity and evolutionary trends of the Family Rhinocerotidae
- 776 (Perissodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology, 141, 13–34.
- 777 Coombs, M. C. (2009). The chalicothere *Metaschizotherium bavaricum* (Perissodactyla,
- 778 Chalicotheriidae, Schizotheriinae) from the Miocene (MN5) Lagerstätte of Sandelzhausen
- 779 (Germany): description, comparison, and paleoecological significance. *Paläontologische*
- 780 *Zeitschrift*, 83, 85–129.
- 781 Cuvier, G. (1822). Recherches sur les ossements fossiles, où l'on rétablit les caractères de
- 782 plusieurs animaux dont les révolutions du globe ont détruit les espèces. 4ème édition, Paris, 10
- 783 vol
- Demment, M.W. & van Soest, P.J. (1985). A nutritional explanation for body-size patterns of
- ruminant and non ruminant herbivores. *American Naturalist*, 125: 641-672
- 786 Depéret, C., & Douxami, H. (1902). Les Vertébrés oligocènes de Pyrimont-Challonges (Savoie).
- 787 *Mémoires suisses de Paléontologie*, 29, 1–92.
- 788 Dietrich, W. O. (1931). Neue Nashornreste aus Schwaben (*Diaceratherium tomerdingensis* n. g.
- 789 n. sp.). Zeitschrift für Säugetierkunde, 6, 203–220.
- 790 Duranthon, F. (1990). Étude paléontologique (Rongeurs, Anthracothéridés, Rhinocérotidés) de
- 791 la molasse toulousaine (Oligo-miocène). Biostratigraphie et implications géodynamiques.
- 792 Diplôme EPHE, Montpellier (unpublished).
- 793 Duranthon, F. (1991). Biozonation des molasses continentales oligo-miocènes de la région
- 794 toulousaine par l'étude des mammifères. Apports à la connaissance du bassin d'Aquitaine
- 795 (France). Comptes Rendus de l'Académie des Sciences, 313 (Série II), 965–970.
- 796 Duvernoy, G. L. (1853). Nouvelles études sur les rhinocéros fossiles. Archives du Muséum
- 797 d'Histoire Naturelle, Paris, 7, 1–144.

- Figure 798 Engesser, B. & Mödden, C. (1997). A new version of the biozonation of the Lower Freshwater
- 799 Molasse (Oligocene and Agenian) of Switzerland and Savoy on the basis of fossil Mammals. In
- 300 J.-P. Aguilar, S. Legendre & J. Michaux (Eds.), Actes du Congrès Biochro M'97 (pp. 475-499).
- 801 Montpellier: Ecole pratique des hautes études-Sciences de la vie et de la terre-Institut de
- 802 Montpellier.
- 803 Erb, J., Boyce, M.S. & Stenseth, N.C. (2001). Population dynamics of large and small mammals.
- 804 *Oikos*, 92: 3-12
- Fritz, H., Duncan, P., Gordon, I.J. & Illius, A.W., (2002). Megaherbivores influence trophic
- guilds structure in African ungulates communities. *Oecologia*, 131: 620–625.
- 807 Gaston, K.J. (2003). The structure and dynamics of geographic ranges. Oxford University Press,
- 808 Oxford.
- 809 Ginsburg, L., & Bulot, C. (2000). Le cadre stratigraphique du site de Sansan. Bulletin du
- 810 *Muséum national d'histoire naturelle*, 183, 39–67.
- 811 Ginsburg, L., Huin, J., & Locher, J. P. (1981). Les Rhinocerotidae (Perissodactyla, Mammalia)
- du Miocène inférieur des Beilleaux à Savigné-sur-Lathan (Indre-et-Loire). Bulletin du Muséum
- 813 *National d'Histoire Naturelle de Paris*, 3, 345-361.
- Gerber, E. 1932. Über den Fund eines Rhinoceratiden aus der unteren Süsswassermolasse von
- Langenthal und dessen stratigraphische Stellung. Eclogae Geologicae Helvetiae 25/2, 274-275.
- 816 Gerber, E. 1936. Über einen zweiten Rhinoceriden-Fund aus der unteren Süsswassermolasse von
- 817 Langenthal. Eclogae Geologicae Helvetiae 29/2, 580.
- 818 Göhlich, U.B. (1999). Order Proboscidea. In G. Rössner and K. Heissig (eds.), *The Miocene*
- 819 Land Mammals of Europe (pp. 157–168). München: Verlag Dr. Friedrich Pfeil.
- 820 Guérin, C. (1980). Les rhinocéros (Mammalia, Perissodactyla) du Miocène terminal au
- Pléistocène supérieur en Europe occidentale. Comparaison avec les espèces actuelles. *Documents*
- 822 des Laboratoires de Géologie de Lyon, 79, 1184 pp.
- 823 Gray, J. E. (1821). On the natural arrangements of vertebrose animals. *London Medical*
- 824 Repository, 15, 296–310.
- Habicht, J. K. A. (1987). *Lexique stratigraphique international*. Volume I Europe. Fascicule 7:
- 826 Suisse. Fascicule 7b: Plateau suisse (Molasse). Commission Géologique Suisse et Service
- Hydrogéologique et Géologique National, Birkhäuser AG, Reinach/Basel, 528 pp.
- Heissig, K. (1969). Die Rhinocerotidae (Mammalia) aus der oberoligozänen Spaltenfüllung von
- 629 Gaimersheim bei Ingolstadt in Bayern und ihre phylogenetische Stellung. Abhandlungen der
- 830 Bayerische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, 138, 1-
- 831 133
- 832 Heissig K. (1972). Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 5. Rhinocerotidae
- 833 (Mammalia), Systematik und Ökologie. Mitteilungen der Bayerischen Staatssammlung für
- 834 *Paläontologie und historische Geologie*, 12, 57–81.
- Heissig K. (1999). Family Rhinocerotidae. In G. E. Rössner & K. Heissig (Eds.), *The Miocene*
- 836 Land Mammals of Europe (pp. 175–188). München: Verlag Dr. Friedrich Pfeil.

- Heissig, K. (2017). Revision of the European species of *Prosantorhinus* Heissig, 1974
- 838 (Mammalia, Perissodactyla, Rhinocerotidae). Fossil Imprint, https://doi.org/10.1515/if-2017-
- 839 0014
- Hilgen, F. J., Lourense, L. J., & Van Dam, J. A. (2012). The Neogene Period. In F. M. Gradstein,
- J. G. Ogg, M. D. Schmitz & G. M. Ogg (Eds.). The Geologic Time Scale 2012. Volume 2 (pp.
- 842 923–978). Oxford: Elsevier.
- Hugueney, M. (1997). Biochronologie mammalienne dans le Paléogène et le Miocène inférieur
- du centre de la France: Synthèse réactualisée. . In J.-P. Aguilar, S. Legendre & J. Michaux
- 845 (Eds.), *Actes du Congrès BiochroM'97* (pp. 417–430). Montpellier: Ecole pratique des hautes
- 846 études-Sciences de la vie et de la terre-Institut de Montpellier.
- 847 Illius, A.W. & Gordon, I.J. (1992). Modelling the nutritional ecology of ungulate herbivores:
- evolution of body size and competitive interactions. *Oecologia*, 89: 428-434.
- Janis, C.M. (1976). The evolutionary strategy of the Equidae and the origins of rumen and cecal
- 850 digestion. *Evolution*, 30: 757-774
- 851 Kaiser, T. M. (2009). Anchitherium aurelianense (Equidae, Mammalia): a brachydont "dirty
- browser" in the community of herbivorous large mammals from Sandelzhausen (Miocene,
- 853 Germany). *Paläontologische Zeitschrift*, 83, 131–140.
- Kempf, O., Bolliger, T., Kälin, D., Engesser, B., & Matter, A. (1997). New magnetostratigraphic
- calibration of Early to Middle Miocene mammal biozones of the north alpine foreland basin. In
- 856 J.-P. Aguilar, S. Legendre & J. Michaux (Eds.), *Actes du Congrès BiochroM'97* (pp. 547-561).
- 857 Montpellier: Ecole pratique des hautes études-Sciences de la vie et de la terre-Institut de
- 858 Montpellier.
- 859 Kempf, O., Matter, A., Burbank, D. W., & Mange, M. (1999). Depositional and structural
- evolution of a foreland basin margin in a magnetostratigraphic framework: the eastern Swiss
- 861 Molasse Basin. *International Journal of Earth Sciences*, 88, 253–275.
- Kordikova, E. G. (2001). Remarks on the Oligocene-Miocene mammal paleontology and
- 863 sequence stratigraphy of South-Western Betpakdala Steppe, South Kazakhstan. Neues Jahrbuch
- 864 für Geologie und Paläontologie Abhandlungen, 221, 35–79.
- 865 Lavocat, R. (1951). Révision de la faune des mammifères oligocènes d'Auvergne et du Velav.
- 866 Sciences et Avenir, Paris, 153 pp.
- Legendre, S. (1989). Les communautés de mammifères du paléogène (Eocène supérieur et
- 868 Oligocène) d'Europe occidentale: structures, milieux et évolution. *Münchner*
- 869 Geowissenschaftliche Abhanlungen, 16: 1-110.
- 870 Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines,
- 871 genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1: Regnum animale. 10th
- edition, Stockholm.
- 873 Lydekker, R. (1884). Additional Siwalik Perissodactyla and Proboscidea. Memoirs of the
- 874 Geological Survey of India. *Palaeontologia Indica*, 3, 1–34.
- Malez, M., & Thenius, E. (1985). Über das Vorkommen von Amynodonten (Rhinocerotoidea,
- 876 Mammalia) im Oligo-Miozän von Bosnien (Jugoslawien). *Palaeontologia Jugoslavica*, 34, 1–26.

- 877 Mayet, L. (1908). Etude des Mammifères Miocènes des Sables de l'Orléanais et des Faluns de la
- 878 Touraine. Annales de l'Université de Lyon, Nouvelle Série, 24: 1-336.
- 879 Mein, P. (1999). European Miocene Mammal Biochronology. In G. E. Rössner & K. Heissig
- 880 (Eds.), The Miocene Land Mammals of Europe (pp. 25-38). München: Verlag Dr. Friedrich Pfeil.
- 881 Mennecart, B. (2012). The Ruminantia (Mammalia, Cetartiodactyla) from the Oligocene to the
- 882 Early Miocene of Western Europe: systematics, palaeoecology and palaeobiogeography.
- 883 *GeoFocus*, 32, 1–263.
- Mennecart, B., Scherler, L., Hiard, F., Becker, D., & Berger, J. P. (2012). Large mammals from
- 885 Rickenbach (Switzerland, reference locality MP29, Late Oligocene): biostratigraphic and
- palaeoenvironmental implications. Swiss Journal of Palaeontology, 131(1), 161-181.
- Mennecart, B, Yerly, B, Mojon, P-O, Angelone, C, Maridet, O, Böhme, M, & Pirkenseer, C.
- 888 (2016). A new Late Agenian (MN2a, Early Miocene) fossil assemblage from Wallenried
- 889 (Molasse Basin, Canton Fribourg, Switzerland). *Paläontologische Zeitschrift*, 90(1), 101–123.
- 890 Ménouret, B., & Guérin, C. (2009). Diaceratherium massiliae nov. sp. des argiles oligocènes de
- 891 Saint-André et Saint-Henri à Marseille et de Les Milles près d'Aix-en-Provence (SE de la
- France), premier grand Rhinocerotidae brachypode européen. *Geobios*, 42, 293-327.
- 893 Michel, P. (1983). Contribution à l'étude des Rhinocérotidés oligocènes (La Milloque-; Thézels-;
- 894 *Puy de Vaurs*). Thesis dissertation (unpublished). Université de Poitiers, France.
- Mosbrugger, V., Utescher, T. & Dilcher, D.L. (2005). Cenozoic continental climatic evolution of
- 896 Central Europe. Proceedings of the National Academy of Sciences of the United States of
- 897 America, 102: 14964–14969.
- 898 Nouel, E. (1866). Mémoire sur un nouveau rhinocéros fossile. Mémoires de la Société
- 899 d'Agriculture, Sciences, Belle-Lettres et Art d'Orléans, 8, 241-251 (1864-1866).
- 900 Owen, R. (1848). *The archetype and homologies of the vertebrate skeleton*. London: 203 pp.
- 901 Owen-Smith, R.N. (1988) Megaherbivores. The influence of very large body size on ecology.
- 902 Cambridge University Press, Cambridge.
- 903 Pomel, M. (1853). Catalogue méthodologique et descriptif des vertébrés fossiles découverts dans
- 904 le bassin hydrographique supérieur de la Loire, et surtout dans la vallée de son affluent
- 905 principal, l'Allier. Paris: Baillière Ed.
- 906 Radinsky, L. B. (1966). The Families of the Rhinocerotoidea (Mammalia, Perissodactyla).
- 907 *Journal of Mammalogy*, 47 (4), 631–639.
- 908 Rémy, J. A. (1995). Le Garouillas et les sites contemporains (Oligocène, MP25) des
- 909 Phosphorites du Quercy (Lot, Tarn-et-Garonne, France) et leurs faunes de vertébrés. 8.
- 910 Périssodactyles: Palaeotheriidae. *Palaeontographica Abteilung A*, 236, 151–155.
- 911 Répelin, J. (1917) Études paléontologiques dans le Sud-Ouest de la France (Mammifères). Les
- 912 rhinocérotidés de l'Aquitanien supérieur de l'Agenais (Laugnac). *Annales du Musée d'Histoire*
- 913 *Naturelle de Marseille*, 16, 1–47.
- Roger, O. (1898). Wirbeltierreste aus dem Dinotheriensande der bayerisch-schwäbischen
- 915 Hochebene. Bericht des Naturwissenschaftlichen Vereins für Schwaben, Neuburg, 33, 1–46,
- 916 383–396.

- Para Roman, F. (1912). Les rhinocérotidés de l'Oligocène d'Europe. Archives du Musée des Sciences
- 918 *Naturelles de Lyon*, 11, 1–92.
- 919 Rössner, G. E., & Heissig, K. (1999). The Miocene Land Mammals of Europe. München: Verlag
- 920 Dr. Friedrich Pfeil.
- 921 Schaub, S., & Hürzeler, J. (1948). Die Saügertierefauna des Aquitanian von Wischberg bei
- 922 Langenthal. Eclogae Geologicae Helvetiae, 41, 354–366.
- 923 Scherler, L. (2011). Terrestrial paleoecosystems of large mammals (Tapiridae,
- 924 Anthracotheriidae, Suoidea) from the Early Oligocene to the Early Miocene in the Swiss
- 925 Molasse Basin: biostratigraphy, biogeochemistry, paleobiogeography, and paleoecology. Thesis
- 926 dissertation (unpublished). University of Fribourg, Switzerland.
- 927 Scherler, L., Becker, D., & Berger, J.-P. (2011). Tapiridae (Perissodactyla, mammalia) of the
- 928 Swiss Molasse Basin during the Oligocene-Miocene transition. *Journal of Vertebrate*
- 929 *Paleontology*, 31, 479–496.
- 930 Scherler, L., Lihoreau, F., & Becker, D. (2018). To split or not to split Anthracotherium? A
- 931 phylogeny of Anthracotheriinae (Cetartiodactyla: Hippopotamoidea) and its
- 932 palaeobiogeographical implications. Zoological Journal of the Linnean Society, 185, 487–510.
- 933 Scherler, L., Mennecart, B., Hiard, F., & Becker, D. (2013). Evolutionary history of hoofed
- 934 mammals during the Oligocene-Miocene transition in Western Europe. Swiss Journal of
- 935 *Geosciences*, 106: 349–369.
- 936 Schlosser, M. (1902). Beiträge zur Kenntnis der Säugetierreste aus den süddeutschen Bohnerzen.
- 937 Geologische und Paläontologische Abhandlungen, Jena, N.F. 5: 117–258.
- 938 Schweizerisches Komitee für Stratigraphie und Landesgeologie (2014). *Unités*
- 939 *lithostratigraphiques de la Suisse*. Lexique lithostratigraphique de la Suisse (pp. 1–8).
- 940 Bundesamt für Landestopographie swisstopo, Wabern.
- 941 https://www.strati.ch/ Resources/Static/Packages/Swisstopo.Strati/docs/LithostratigraphischeEin
- 942 heitenSchweiz.pdf.
- 943 Smith, F.A., Boyer, A.G., Brown, J.H., Costa, D.P., Dayan, T., Ernest, S.K.M., Evans, A.R.,
- 944 Fortelius, M., Gittleman, J.L., Hamilton, M.J., Harding, L.E., Lintulaakso, K., Lyons, S.K.,
- 945 McCain, C., Okie, J.G., Saarinen, J.J., Sibly, R.M., Stephens, P.R., Theodor, J. & Uhen, M.D.,
- 946 2010. The Evolution of Maximum Body Size of Terrestrial Mammals. *Science*, 330: 1216–1219.
- 947 https://doi.org/10.1126/science.1194830
- 948 Steininger, F. (1999). The Continental European Miocene. Chronostratigraphy, geochronology
- and biochronology of the Miocene "European Land Mammal Mega-Zones" (ELMMZ) and the
- 950 Miocene "Mammal-Zones (MN-Zones)". In G. E. Rössner & K. Heissig (Eds.), *The Miocene*
- 951 Land Mammals of Europe (pp. 9-24). München: Verlag Dr. Friedrich Pfeil.
- 952 Tobien, H. (1975), Zur Gebisstruktur, Systematik und Evolution der Genera *Piezodus*, *Prolagus*
- 953 und *Ptychoprolagus* (Lagomorpha, Mammalia) aus einigen Vorkommen im jungeren Tertiar
- 954 Mittel- und Westeuropas. Notizblatt des Hessischen Landesamtes für Bodenforschung zu
- 955 Wiesbaden, 103, 103–186.

- 956 Urban, M.A., Nelson, D.M., Jimenez-Moreno, G., Chateauneuf, J.-J., Pearson, A. & Hu, F.S.
- 957 (2010). Isotopic evidence of C⁴ grasses in southwestern Europe during the Early Oligocene-
- 958 Middle Miocene. *Geology*, 38: 1091–1094.
- 959 Yan, D., & Heissig, K. (1986). Revision and Autopodial Morphology of the Chinese-European
- 960 Rhinocerotid Genus Plesiaceratherium Young 1937. Zitteliana Abhandlungen der Bayerische
- 961 Staatssammlung für Paläontologie und historische Geologie, München, 14, 81–110.
- 962 Young, C. C. (1937). On a Miocene mammalian fauna from Shantung. Bulletin of the Geological
- 963 Society of China, 17, 209–244.
- 264 Zachos, J.C., Shackleton, N.J., Revenaugh, J.S., Pälike, H. & Flower, B.P. (2001). Climate
- response to orbital forcing across the Oligocene-Miocene boundary. *Science*, 292: 274–278.

Table 1(on next page)

Mammal assemblage of Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

After Schaub & Hürzeler	After Tobien (1975), Scherler et al. (2013)
(1948)	and this study
Talpidarum indet.	Talpidae indet.
Erinaceus priscus	Amphechinus edwardsi
Lagomorphum aff. Pjezodus	Piezodus tomerdingensis
Cricetodon cf. hochheimensis	Eucricetodon cf. hochheimensis
Cricetodon collatus	Eucricetodon collatus
Plesiosminthus myarion	Plesiosminthus myarion
Rhodanomys schlosseri	Rhodanomys schlosseri
Rhodanomys sp. nov.	Rhodanomys sp. nov.
Eomyidarum gen. nov.	Ritteneria sp.
Gliridarum gen. nov.	Gliridae indet.
Cainotherium laticurvatum	Cainotherium latircurvatum
Elomeryx minor	Elomeryx minor
Palaeochoerus meissneri	Hyotherium meissneri
Amphitragulus sp.	Amphitragulus elegans
Tapirus intermedius var.	Eotapirus broennimanni (adult specimens)
robustus	
Tapirus brönnimanni	Eotapirus broennimanni (juvenile specimens)
Aceratherium lemanense	Diaceratherium lemanense
Diceratherium asphaltense	Diaceratherium lemanense
Diceratherium pleuroceros	Pleuroceros pleuroceros

Table 2(on next page)

Dimensions [mm] of the cheek teeth of *Pleuroceros pleuroceros* (Duvernoy, 1853) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

Pleuroceros pleuroceros							
casts NMBE5031553 and NMB-AS77			casts NMBE5026739 and NMB-AS78				
Upper tooth	L _{P3-4}	L _{M1} -	$L_{P3-4}/L_{M1-3} x$	Lower tooth	L _{p3-4}	L_{m1-3}	$L_{p3-4}/L_{m1-3} x$
row		3	100	row			100
left	53.5	94.0	56.9				
right	54.0	95.0	56.8	right	-	101.	-
						5	
Upper cheek	L	W	Н	Lower cheek	L	W	Н
teeth				teeth			
right P1	15.1	15.1	-				
left P2	23.2	26.8	-				
right P2	24.0	27.1	-				
left P3	25.7	34.6	-				
right P3	27.8	36.6	-				
left P4	27.8	37.8	-				
right P4	27.1	37.2	-	right p4	28.0	19.9	
left M1	31.8	38.1	-	left m1	30.5	18.2	
right M1	31.0	35.8	-	right m1	29.0	(19.	
						0)	
left M2	37.5	40.3	20.2	left m2	34.5	21.3	
right M2	39.0	41.3	19.1	right m2	33.6	21.0	
left M3	32.0	37.5	23.7				
right M3	33.8	38.3	-	right m3	36.9	20.8	

Table 3(on next page)

Metapod lengths of *Pleuroceros pleuroceros* and *Diaceratherium* species.

Comparisons of the metapod lengths [mm] based on Pleuroceros pleuroceros (Duvernoy, 1853; McIV NMB-AS79) and Diaceratherium lemanense (Depéret and Douxami, 1902; MtIII NMBE5026811) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene) with those of *P. pleuroceros* from Paulhiac (MN1, France; McII and McIV in de Bonis 1973, p. 152 fig. 43.1 and p. 153 fig. 44.2), *D. lemanense* from Gannat (MN1, France; McII and McIV NMB GN39, MtIII NMB-GN40), *D. asphaltense* from Saulcet (MN1, France; McII, McIV and MtIII NMB-SAU1662) and Pyrimont-Challonges (MN1, France; type material, McII UCBL-213016, McIV UCBL-213011 and 213012 and MtIII UCBL-213016), and *D. tomerdingense* from Tomerdingen (MN1, Germany; type material, MCII SMNS-16155a, McIV SMNS-16155b).

Pleuroceros pleuroceros and Diaceratherium species							
Metapod length							
Species	Locality	McII	McIV	MtIII			
Pleuroceros pleuroceros	Wischberg	-	112.3	-			
	Paulhiac	126.0	112.5	-			
Diaceratherium lemanense	Wischberg	-	-	146.9			
Diaceratherium lemanense	Gannat	150.0	132.5	153.0			
Diaceratherium asphaltense	Saulcet	135.0	124.0	131.5			
Diaceratherium asphaltense	Pyrimont-	129.5	122.0	127.0			
	Challonges		117.0				
Diaceratherium tomerdingense	Tomerdingen	116.5	100.0	-			

Table 4(on next page)

Dimensions [mm] of the anterior teeth of *Diaceratherium lemanense* (Depéret and Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

Diaceratherium lemanense							
Upper incisors	APD	TD	Н	Lower incisors (i2)	APD	TD	Н
(I1)							
NMBE5031540	50.2	18.5	18.2	NMBE5031547	-	-	43.0
(left)				(left)			
NMBE5031540	-	17.5	17.1	NMBE5026738	31.9	24.0	41.2
(right)				(right)			
NMBE5031546	-	17	16.0				
(right)							

Table 5(on next page)

Dimensions [mm] of the upper cheek teeth of *Diaceratherium lemanense* (Depéret and Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

Diaceratherium lemanense						
Original NMBE5031539, casts NMBE5031538 and NMB-AS75						
Upper tooth row	L _{P3-4}	L _{M1-3}	L _{P3-4} /L _{M1-3} x 100			
right	(68.0)	126.9	(53.6)			
Upper cheek teeth	L	W				
right P4	(34.5)	(42.6)				
left M1	39.2	-				
right M1	39.7	47.0				
left M2	47.1	51.1				
right M2	44.0	50.5				
left M3	48.0	52.6				
right M3	46.1	-				

Table 6(on next page)

Dimensions [mm] of the lower cheek teeth of *Diaceratherium lemanense* (Depéret and Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

Diaceratherium original NMBE UM6719	NMB-	casts NMBE5031541 and NMB-AS76					
Lower tooth	L_{p3-4}	L_{m1-3}	$L_{p3-4}/L_{m1-3} x$	Lower tooth	L_{p3-4}	L _{m1-3}	$L_{p3-4}/L_{m1-3} x$
row			100	row			100
right	78.0	137.	56.9	left	77.0	130.	59.2
		0				0	
				right	76.5	133.	57.3
				C		5	
Lower cheek	L	W		Lower cheek	L	W	Н
teeth				teeth			
right p2	30.0	20.1		left p2	28.5	-	24.2
				right p2	28.0	16.9	26.9
right p3	36.0	25.0		left p3	38.2	22.1	-
				right p3	36.1	24.0	-
right p4	40.5	29.5		left p4	36.5	29.0	-
				right p4	38.5	26.5	
right m1	42.8	28.5		left m1	39.5	28.7	-
				right m1	40.5	26.5	
right m2	46.0	30.5		left m2	44.2	30.5	27.5
				right m2	46.8	29.8	28.0
right m3	49.5	28.5		left m3	47.5	28.5	31.0

1

Table 7(on next page)

Occurrences of Diaceratherium species in France, Switzerland and other countries.

Modified from Becker et al. (2009) with additions from Duranthon (1990, 1991), Antoine et al. (1997), Boada-Saña et al. (2007), Antoine & Becker (2013), Mennecart et al. (2012) and Becker et al. (2018).

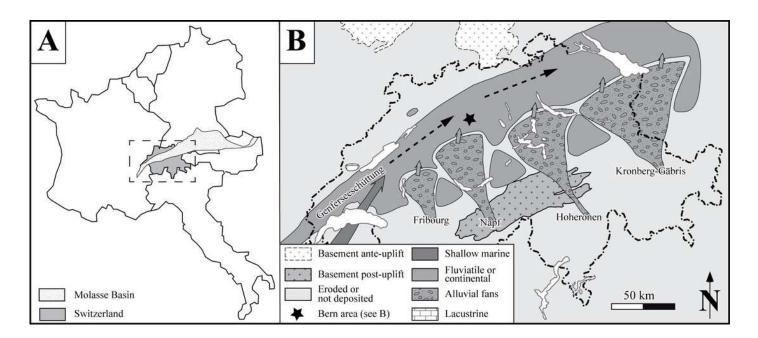
MN3 D. aurel MN2/3 D. askaz MN2 D. ag	elianense I elianense I I	Artenay Neuville-aux-Bois, Beaulieu, Chilleurs-aux-Bois, Chitenay, Esvres, La Brosse, Les	Switzerland Brüttelen,	Areeiro da Barbuda (Portugal), Areeiro de Santa Luzia (Portugal), Eggingen-Mittelhart 3 (= D. cf. aurelianense; Germany), Quinta da Carrapata (Portugal), Quinta da Noiva (Portugal), Quinta da Trindade (Portugal), Quinta das Pedreiras (Portugal), Quinta do Narigão (Portugal), Vale Pequeno (Portugal) Horta das Tripas (= D. cf. aurelianense; Portugal),
MN3 D. aurel MN2/3 D. askaz MN2 D. ag	elianense Elianense I	Neuville-aux-Bois, Beaulieu, Chilleurs-aux-	1 / 1	Luzia (Portugal), Eggingen-Mittelhart 3 (= <i>D</i> . cf. <i>aurelianense</i> ; Germany), Quinta da Carrapata (Portugal), Quinta da Noiva (Portugal), Quinta da Trindade (Portugal), Quinta das Pedreiras (Portugal), Quinta do Narigão (Portugal), Vale Pequeno (Portugal)
MN2/3 D. askaz MN2 D. ag	elianense I		1 / 1	Horta das Tripas (= D. cf. aurelianense; Portugal),
MN2 D. ag		Beilleaux, Les Buissonneaux, Marsolan, Mauvières, Navère, Ronville	Cheyres, La Molière	Molí Calopa (Spain), Rubielos de Mora (Spain), Wintershof-West (Germany)
	azansorense			Askazansor (Kazakhstan)
	Ŭ [(Laugnac, Auterive, Beaupuy, Calmont-St- Cernin, Cintegabelle, Grépiac, Montaigu-le- Blin, Pouvourville, Venerque	Engehalde, La Chaux, Lausanne, Sous-le- Mont	Hessler (Germany)
D. aurel	elianense		1110110	Loranca del Campo (= D. cf. aurelianense; Spain)
	lemanense I	Barbotan-les-Thermes, Cindré, Gans, Laugnac, Montaigu-le-Blin, Selles-sur-Cher, St-Gérand- le-Puy	Engehalde	Budenheim (Germany), Ulm-Michelsberg (Germany)
MN1 D. ag	aginense (Gannat, Paulhiac		
D. as	asphaltense 1	Pyrimont-Challonges, Saulcet		

	D. lemanense	Gannat, Bazas, Bézac, Caignac, Casteljaloux-Balade, Cindré, Ginestous, Grenade-sur-Garonne, Labastide-Beauvoir, Pechbonnieu, La Roche-Blanche-Gergovie, Paulhiac, Pech David, Randan, St-Loup Cammas, St-Michel-du-Touch, Saulcet, Saverdun, Toulouse Borderouge, Toulouse Embouchure	Wischberg	Finthen (Germany), Oppenheim (Germany), Weisenau (Germany) Tomerdingen (Germany)
	tomerdingense			
MP30/MN1	D. asphaltense		Bühler	
MP30	D. lemanense	Billy, Gannat « sommet », Thézels (= <i>D</i> . aff. <i>lemanense</i>), Toulouse-Borderouge		Rott bei Bonn (Germany)
MP29	D. lamilloquense	La Milloque, Castelmaurou, Castelnau d'Estretefonds, Dieupentale	Rickenbach	

1

Table 8(on next page)

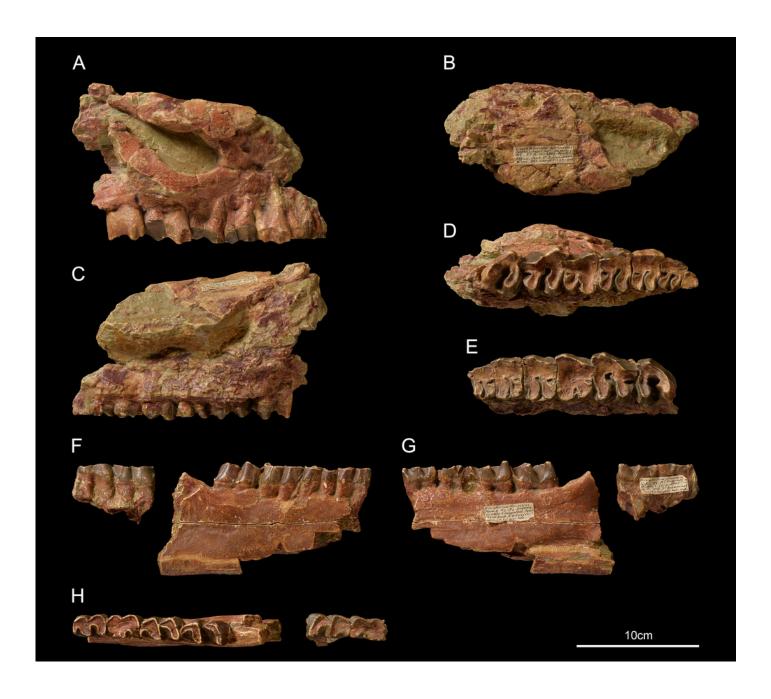
Estimation of rhinocerotid species body mass from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene), based on the allometric correlations with the occlusal surface of the first lower molar (Legendre, 1989).


Rhinocerotidae from	mean L	mean W	Estimated body mass	
Wischberg	m1	m1	(g)	
Diaceratherium lemanense NMBE5026738	42.8	28.5	1'730'049	
Diaceratherium lemanense casts NMBE5031541 and NMB-AS76	40.5	26.5	1'417'016	
Pleuroceros pleuroceros casts NMBE5031553 and NMB-AS77	29.7	18.6	504'352	

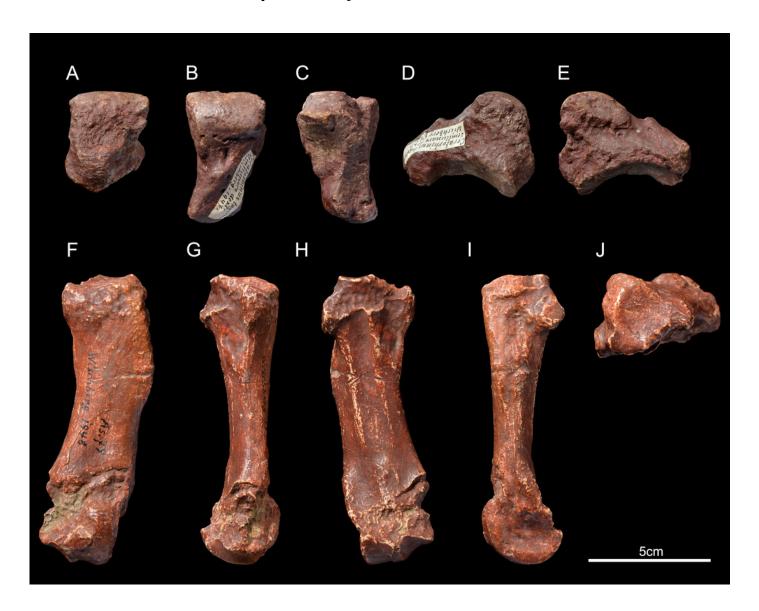
1

General setting of Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

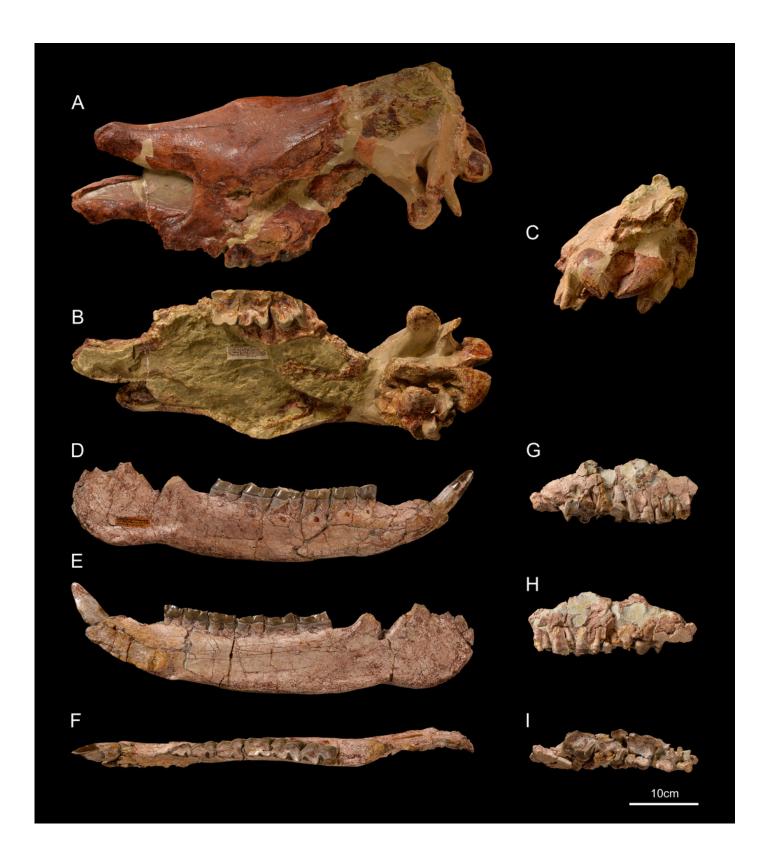
(A) Map of a part of Western Europe showing the location of Switzerland and the Molasse Basin. (B) Enlargement of the Aquitanian palaeogeographical context of the Swiss Molasse Basin, with detailed location of Wischberg locality. Modified from Becker et al. (2010).

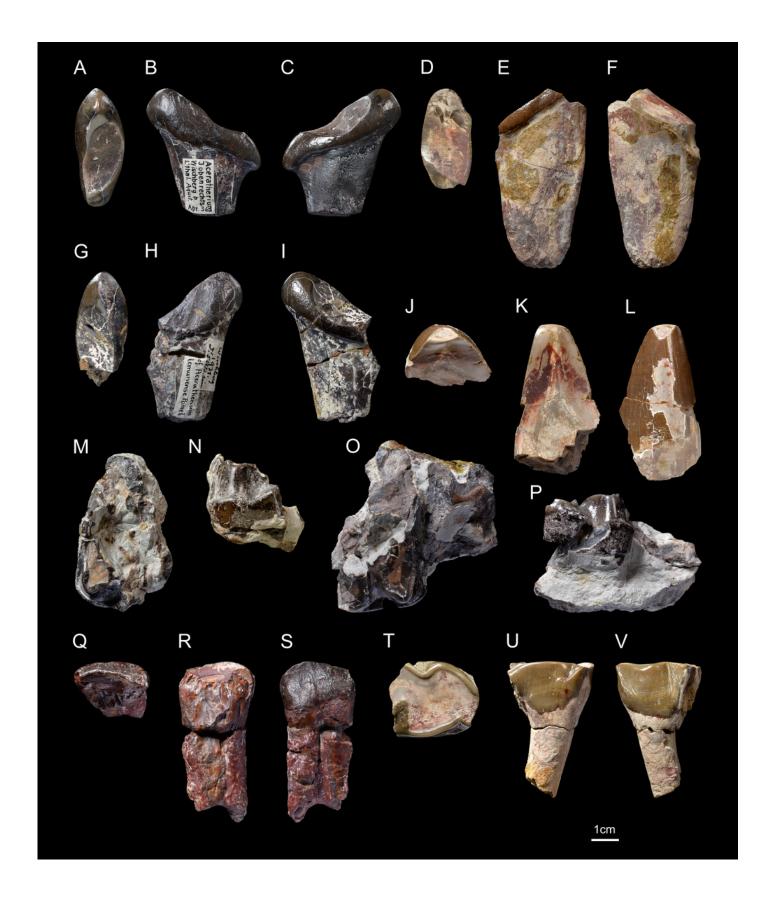


Pleuroceros pleuroceros (Duvernoy, 1853) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).


Partial skull NMBE5031553 in lateral (A), dorsal (B), medial (C) and occlusal (D) views and left-side fragment from the same individual in occlusal (E) view. Mandible fragments NMBE5026739 in labial (F), lingual (G) and occlusal (H) views with p4-m3 (right-side fragment) and m1-2 (left-side fragment). Scale bars = 10 cm.

Pleuroceros pleuroceros (Duvernoy, 1853) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

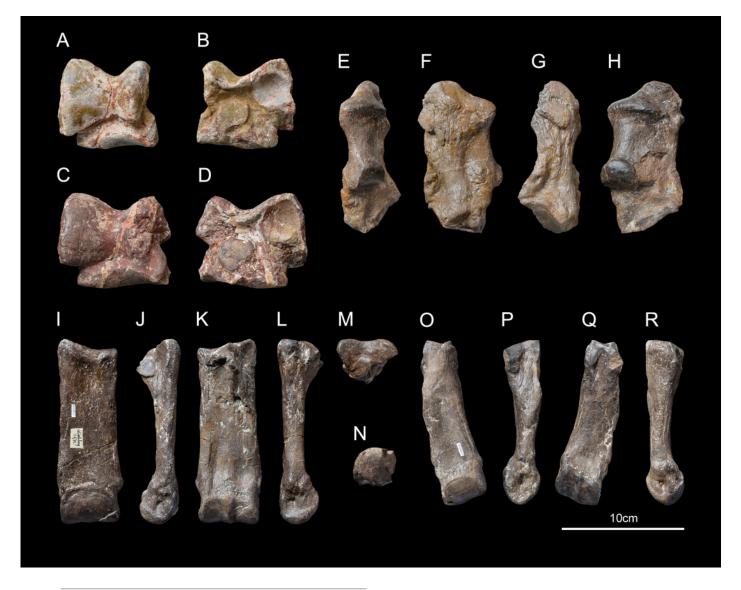

Right semilunate NMBE5031537 in dorsal (A), proximal (B), distal (C), lateral (D) and medial (E) views and right McIV (cast NMB-AS79) in dorsal (F), lateral (G), ventral (H), medial (I) and proximal (J) views.


Diaceratherium lemanense (Depéret and Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

Skull NMBE5031538 in laterodorsal (A), occlusal (B) and occipital (C) views. Right hemimandible NMBE5026738 in labial (D), lingual (E) and occlusal (F) views. Right maxillary fragment NMBE5031539 in labial (G), lingual (H) and occlusal (I) views. Scale bar = 10 cm.

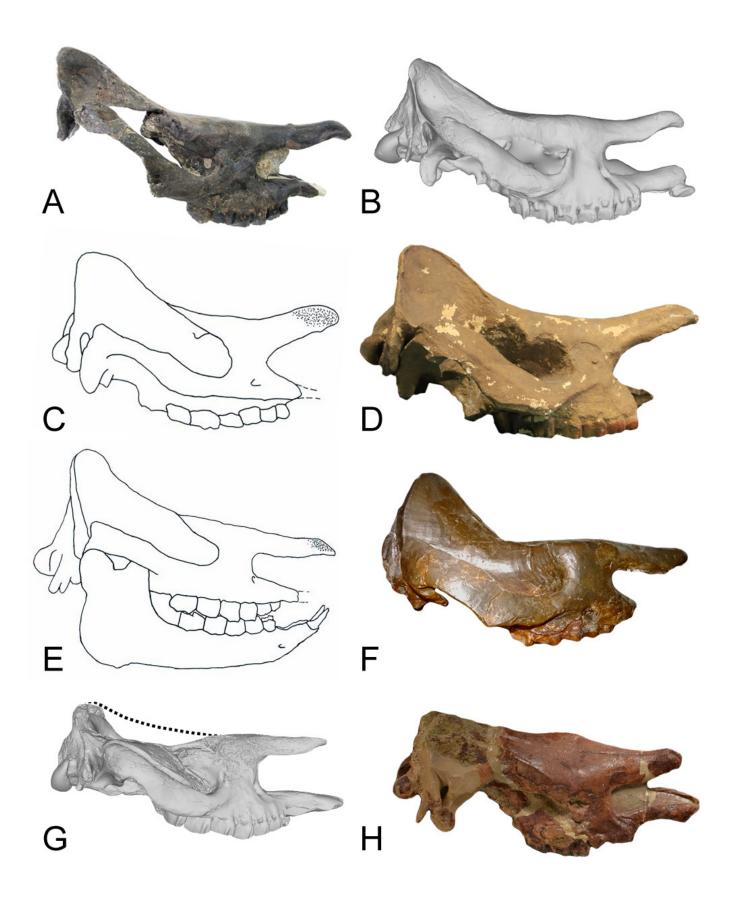
Diaceratherium lemanense (Depéret and Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

Left I1 NMBE5031540 in occlusal (A), lingual (B) and labial (C) views. Right I1 NMBE5031546 in occlusal (D), lingual (E) and labial (F) views. Right I1 NMBE5031540 in occlusal (G), lingual (H) and labial (I) views. Left i2 NMBE5031547 in occlusal (J), lingual (K) and labial (L) views. Left P3 NMBE5031549 in occlusal (M) and lingual (N) views. Right P3 NMBE5031550 in occlusal (O) and lingual (P) views. Fragmentary right P1 NMBE5031548 in occlusal (Q), lingual (R) and labial (S) views. Fragmentary left p4 NMBE5031551 in occlusal (T), lingual (U) and labial (V) views. Scale bar = 1 cm.


Diaceratherium lemanense (Depéret and Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).

Right femur NMB-UM6314 in anterior (A), medial (B), posterior (C) and lateral (D) views. Right tibia NMBE5031544 in anterior (E), medial (F), posterior (G) and lateral (H) views. Scale bar = 10 cm.

Diaceratherium lemanense (Depéret and Douxami, 1902) from Wischberg locality, Bern Canton, Swiss Molasse basin (MN1, Agenian, Early Miocene).


Right astragalus NMB-2017 in dorsal (A) and ventral (B) views. Right astragalus NMB-698 in dorsal (C) and ventral (D) views. Right calcaneus NMBE5031545 in dorsal (E), lateral (F), ventral (G) and medial (H) views. Right MtIII NMBE5026811 in anterior (I), lateral (J), posterior (K), medial (L) and proximal (M) views. Right MtII NMBE5026812 in proximal (N), anterior (O), lateral (P), posterior (Q), medial (R) views. Scale bar = 10 cm.

Comparison of the skulls of Diaceratherium.

(A) *D. asphaltense* (NMSG-F13607) from Bühler (MP30-MN1; Becker et al. 2018). (B) *D. apshaltense* (NMB Sau 1662) from Saulcet (MN1). (C) *D. aurelianense* (MNHN.F.1888-4, holotype) from Neuville-aux-Bois (MN3), original drawing from Heissig (2017). (D) *D. aurelianense* (MHNT.PAL.2013.0.1001, cast of the holotype), from Neuville-aux-Bois (MN3). (E) *D. aginense* (MHNM 1996.17.111.1, "skull B", lectotype) from Laugnac (MN2), original drawing from Heissig (2017). (F) *D. aginense* (FSL collection) from Laugnac (MN2). (G) *D. lemanense* (MNHN-AC-2375, holotype) from Gannat (MN1). (H) *D. lemanense* (cast NMBE5031538) from Wischberg (MN1).

